
Timeline: Start writ-
ing in May (though al-
ready been working on
the topic for almost a
year), finish a week early
and get feedback, sub-
mit in late July, re-
ceived notification from
NSF PM in mid Dec
(seems quite early, I
didn’t expect it), and af-
ter some budget adjust-
ment the award was offi-
cial in Feb’23.

ThanhVu Nguyen’s Annotated NSF CAREER’23 Proposal

This document is inspired by Philip Guo’s NSF Annotated CAREER’18 proposal (no longer
available online). So I am doing the same here. I try to maintain the exact content and format of
the submitted proposal though I have redacted various personal info and names (like this ).

Background This proposal was on the verification of neural networks. It was a completely new
research direction for me and was also my 3rd (last) try. So it was quite risky but I felt strongly
about the topic and have solid preliminary results (described later).

Advice Before getting into the details, here are some general advice.

1. Contact PMs to make sure proposal get to the right panel. NSF PMs are friendly and want My research in software
analysis has three possi-
ble PMs, whose panels
can be very different.

junior faculty to succeed. Send them the proposal summary and discuss with them to see if
the topic would fit their panels (and customize the contents for such panels).

2. Have prelim work (e.g., prototype, small experiments, pilot study, workshop/short papers).
Both the reviewers and you will have more confidence about your proposed work. This is
especially important if you try to work on a new research direction or topic.

3. Finish early to get reviews. Fresh eyes will see issues and provide useful advice. For example,
my original draft didn’t have several things that I believe important including secret source
in intro and concrete examples that you will see later. For example, industrial

support shows the work
has practical impacts.
Education/outreach ap-
pears stronger if others
are willing to help.

4. Get relevant supporting letters. Just as with prelim work, this increases the confidence
that you can do the work and that the work has broad impacts. The letter from the Chair
is also important and read by the reviewers.

5. If possible, get your students involved and help. My students and I have worked on various
pieces of the proposal (e.g., prototypes, experiments) and so they help provided figures and
data to support the proposed ideas. They can also check correctness of various technical parts
and provide suggestions. I have only 1 short pa-

per related to the topic
but spent lots of effort
in developing prototype
and obtain prelim re-
sults to support the pro-
posed work.

6. It is OK to work on a very new research direction, as long as you can show you can do it.
This might be risky and controversial (e.g., a sound advice is that reviewers should not be
surprised when they read what your CAREER is about). But it could be done, especially if
you no longer want to work on something you have been working on for almost 10 years!

What would I do different? Not too much. Of course after working on the project for almost
a year I understand the problem and challenges a lot more and would make various changes to the
proposal. And obviously I would also use ChatGPT to assess and improve the writing. But these
are wishful thoughts; I really felt I have already tried my best when the proposal was submitted. :)



Overview
NSF program managers
look at the summary
and determine if it
would go to their bucket
and consequently their
panels. Reviewers also
look at the summary to
determine if they want
to review proposal.
Very similarly to an
abstract in a paper.
I sent a draft summary
to PM A, who thought
it might fit better with
PM B, who referred me
to another PM C, who
indeed became the PM
of the proposal. So, in
short, use the summary
and contact PMs.

Deep Neural Networks (DNNs) have emerged as an effective approach to tackling real-world prob-
lems. However, just like traditional software, DNNs can have “bugs” and be attacked. This naturally
raises the question of how DNNs should be tested, validated, and ultimately verified to meet the
requirements of relevant robustness and safety standards.

To address this question, researchers have developed powerful formal methods and tools to verify
DNNs. However, despite many recent advances, these approaches and tools still have challenges in
achieving good precision and scalability, could produce unsound results, and do not apply to DNNs
such as Graph Neural Networks (GNNs). To address these challenges, this proposal will develop
techniques for accurate and scalable DNN verification, stress-testing DNN verifiers and certifying
proved results, and tackling GNNs through the lenses of other DNN approaches.

Intellectual Merit
The project has four research components (RCs).

RC#0 develops NeuralSAT, a constraint-solver for verifying DNNs that combines the conflict-
driven clause learning ability of modern SAT solving and an abstraction-based theory solver in
SMT solving and DNN verification. We already have a prototype for NeuralSAT that works with
Feedforward Neural Networks (FNNs), and preliminary results show that the prototype is several
orders of magnitude faster the state of the art in constraint-based DNN verification. This might be a bit

too detail for summary.
Though I felt that it
helped the PMs to deter-
mine that this proposal
does/does not fit their
panels.

RC#1 makes NeuralSAT more precise and efficient at scale. Key insights include building on the
non-convex weak max-plus abstraction developed in our prior invariant work and exploiting heuristics
and optimizations that make SAT solving successful, e.g., branching heuristics and parallelization.

RC#2 helps developers find bugs in their DNN verifiers during production and certify their
results during deployment. We will exploit clause learning to bring the ability to certify the results of
NeuralSAT (e.g., proofs of proved results) and build upon successful metamorphic testing techniques
that found bugs in mature SMT solvers and compilers to stress test NeuralSAT and other DNN
verifiers.

RC#3 explores GNNs, a powerful model in deep learning but with few existing formal tech-
niques and tools, potentially because of their different and complex structures and behaviors. To
analyze GNNs, our insight is using influential substructures of input graphs to an GNN to reduce
that GNN to an FNN, allowing for the applications of FNN analyzers to GNNs. Our pilot study
shows the potential and an interesting application of the approach—we were able to infer rich
properties of GNNs using an off-the-shelf invariant generation tool for FNNs.

Broader Impacts
A preview of my Broader
Impacts section §2 in the
description.

The research will benefit society by improving the reliability of systems embedding DNNs. The
research contributes to ML by developing effective techniques to verify DNNs, allowing AI/ML
researchers and users to improve their DNNs and deploy them with confidence. The findings from
this project will be used to develop new courses and a “DNN Verification by Examples” book. The
research will support graduate and undergraduate student researchers and outreach activities for
K-12 students in Prince William county of Northern Virginia.

Keywords deep neural networks, verification, formal methods, satisfiability checking, clause learn-
ing, resolution proofs, stress-testing, abstractions, reduction, feedforward and graph neural networks



1 Introduction
OK, the most important
section, the intro! 2
pages to get the review-
ers to like the proposal.
If they don’t get excited
by then, they will find
ways to reject the pro-
posal. Similar to review-
ing a paper.

Deep Neural Networks (DNNs) have emerged as an effective approach to tackling real-world prob-
lems. Among many others, they have been used for image recognition [44, 66], autonomous driv-
ing [106,113], power grid control [121], fake news detection [130], drug synthesis and discovery [40],
diabetes detection [43], and not surprisingly, COVID-19 detection and diagnosis [62,102].

Start with a very high
level description and
motivation of the prob-
lem. In general, put ef-
fort in to making the in-
tro understood by every-
one.

However, just like traditional software, DNNs can have “bugs”, e.g., producing unexpected results
on inputs that are different from those in training data, and be attacked, e.g., small perturbations
to the inputs by a malicious adversary or even sensorial imperfections result in misclassification [50,
108,149,156,163]. These issues, which have been observed in many DNNs [36,127] and demonstrated
in the real world [29], naturally raise the question of how DNNs should be tested, validated, and
ultimately verified to meet the requirements of relevant robustness or safety standards [48,60].

To address this question, researchers have developed powerful formal methods and tools to verify
DNNs (e.g., [49,61,72,85,135,140]). However, despite many recent advances, DNN verification still Motivate by talking

about what people have
done, limitations and
challenges.

has many limitations, especially with scalability and precision (e.g., incorrectly claiming safe systems
unsafe). Constraint-based approaches [28, 28, 49, 59, 61] aim to both correctly prove and disprove
properties, but do not scale to large networks. In contrast, abstraction-based approaches [85, 123,
125, 139, 140] correctly prove valid properties but do not guarantee disproved results (can produce
spurious counterexamples). Newer abstraction techniques can check counterexamples and refine
their abstractions—but this makes them slow in disproving [9]. In general, however, abstraction-
based approaches scale well. For instance, the top performers, e.g., β-CROWN [140] and nnenum [7],
in the annual Neural Network Verification competitions (VNN-COMPs) all use abstractions [8].

Surprisingly, the problem of DNN verification, even with networks with nonlinear activation
functions such as “ReLU”, has been shown in the seminal Reluplex work [59] to be reducible from
the classical satisfiability (SAT) problem [23]. However, while modern constraint solvers scale well
to large formulae and help make the theoretically intractable SAT problem practically tractable [67],
constraint-based DNN verifiers do not seem to scale and be competitive with the best DNN verifiers.
For example, in our experiments (§4.1.2), Marabou [61], the successor of Reluplex and state-of-the-
art constraint-based tool for DNN verification, consistently times out on large benchmarks and falls
far behind abstraction-based tools. Now, talk about the pro-

posed work. It’s a good
idea here to reveal the
“secret ingredients” that
allow the proposed re-
search to overcome lim-
itations of current work
and tackle the problem.

Inspired by Reluplex and Marabou, but with the belief that constraint-based approaches can do
much better, we propose to develop NeuralSAT, a new SAT solving approach to DNN verification
that aims to both prove and disprove properties and do so efficiently. Our insight is to integrate

Try to get to the pro-
posed work on the first
page of the proposal.
Presenting the proposed
work after the first page
might be bit too late.

clause learning [14,78,79] (to improve performance by addressing SAT challenges such as backtrack-
ing) in modern SAT solving with an abstraction-based theory solver (to quickly check for infeasibility)
in SMT solving and abstraction-based DNN verification. We are working on a prototype for Neu-
ralSAT that supports feedforward neural networks (FNNs), a major deep learning model, with the
ReLU activation function. Preliminary results using the standard ACAS XU [56] benchmarks show
that the prototype is at least four orders of magnitude faster than Marabou, which would often
time out and return no solution. Initial investigation suggests that the synergistic combination of
clause learning and abstraction solver is the “secret sauce” distinguishing NeuralSAT and helping it
avoid the scalability problem faced by Marabou (and other constraint-based approaches). Mention prelimin work

here to show prepara-
tion.

Compared to nnenum, the winner of VNN-COMP’21 for FNNs, our prototype is slower in proving
properties (but faster in disproving). Nonetheless, these results are encouraging, especially when
both Marabou and nnenum are heavily optimized, e.g., both effectively leverage parallelization [19,
145]—optimizations that we will pursue in this research.
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In addition to DNN verification, we will explore and develop techniques to tackle several
challenging and interesting problems in the subfield of DNN analysis. These include certifying
proved results of verifiers, stress-testing verifiers, and reducing other DNNs to FNNs.
The SAT-based design allows NeuralSAT to leverage techniques in SAT solving to effectively tackle
some difficult tasks, e.g., using clause learning to obtain resolution proofs for proved results. The
reduction allows for the transfer of ideas and techniques among different DNNs. In sum, if successful,
this research will set a new standard and open new research directions in DNN analyses.

1.1 Intellectual Merit
Intellectual Merit
gives more details on
the research components
(RCs). Using a diagram
to show the connection
or integration of the
proposed RCs.

NeuralSAT 
Solver

sat unsat

FNNproperty

0

proof
2

GNNreduce
3

stress 
test 2

cex
Heuristics, Min-

Plus Abstraction, 
Optimizations
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CNN, 
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The figure on the right depicts the proposed research, provided
through four research components (RCs) shown with black ovals.

RC#0 is on developing the NeuralSAT framework, and what
remains in RC#0 is to evaluate and extend the prototype tool to
support other feedforward learning models such as Convolutional,
Residual, and Recurrent Networks. RC#1 will make NeuralSAT
precise and efficient at scale. Key insights include building on
the non-convex weak max-plus abstraction developed in our prior
invariant generation work [92] and leveraging heuristics and opti-
mizations that make SAT solving successful, e.g., branching heuristics and parallelization. We aim
to give NeuralSAT the power and impact in DNN verification the same way that modern constraint
solvers such as Z3 [84] have in program analyses.

Our experience shows that well-known and mature DNN verifiers can be unsound and prove
invalid properties—a highly undesirable behavior for verifiers. Currently, few DNN verifiers have
the ability to certify their (proved) results, making it difficult to trust them, especially in safety-
critical situations where verifiers are needed. Key challenges include effectively deriving steps used
by the verifier in producing proved results and finding bugs in already well-tested verifiers. To
address these, RC#2 exploits clause learning to certify the results of NeuralSAT (e.g., proofs of
proved results), and applies successful metamorphic testing techniques that found thousands of bugs
in mature SMT solvers and compilers [69,104,144] to stress test NeuralSAT and other DNN verifiers.
This research will help developers find bugs in their DNN verifiers during production and certify
their results during deployment. An easy to understand

ending sentence for each
RC to summarize the
RC.

Graph Neural Networks [116] (GNNs) are another powerful model in deep learning, but have few
formal analyses or tools, potentially because they have different structures and behaviors compared
to FNNs (e.g., the inputs to a GNN are graphs). However, our preliminary work [98] shows that
we can create FNNs from influential substructures of input graphs to GNNs, thus allowing the
applications of FFN analyzers to GNNs. Our pilot study (§4.4.2), in which we manually apply the
idea to a small GNN simulating the BFS (Breadth First Search) algorithm, shows the potential
and an interesting application of the approach—we were able to infer rich properties of BFS using
an off-the-shelf invariant generation tool for FNNs. RC#3 will explore GNNs through the lenses Finish the main part of

the Intro within the first
2 pages!

of analyses developed for FNNs. As with any new research problem with few existing solutions, we
have to start somewhere, and reducing it to something we already know seems to be worthwhile and
even promising as FNN techniques and tools become more powerful.

1.2 PI’s Qualifications and Preparations
Here’s where to convince
the reviewers that you
are the right person to
get the work done.

My research in software engineering and programming languages focus on invariant generation [51,
70, 86, 89, 91, 96] and program analyses (verification, synthesis, and repair) [68, 77, 97, 141, 159, 160].
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Our dynamic invariant generation work DIG [88] was recognized with the Distinguished Paper award
at ICSE’14 [90], and our program repair work GenProg was recognized with the Impact Paper Award
at GECCO’19 [30] and 10-year Most Influential Paper Award at ICSE’19 [141]. Talk about how prelim

work and background
would help achieve each
individual RCs. AI veri-
fication is a new research
direction for me and so
prelim work is important
to show I am prepared.

To prepare for this project, my students and I have developed the NeuralSAT prototype and
obtained preliminary results (§4.1.2) to demonstrate the approach and support the work in RCs
#0–1. The weak max-plus abstraction in RC#2 will build on our prior dynamic invariant generation
work [92, 96]. RC#3 will use our recent work [98] and pilot study on reducing GNNs to FNNs and
experience in developing reduction techniques [97]. My experience in releasing research tools and
contributing to large open-source projects (e.g., I wrote the initial Python API helper [128] for Z3 [84]
and created the comprehensive nonlinear benchmark suite [129] for the annual Software Verification
competitions [16]), will help with the management and distribution of tools and datasets. The proposal has 3 let-

ters of support from
academic and industrial
collaborators, who will
help various part of the
work. In general, hav-
ing proper collaborative
letters would strengthen
the proposal.

The proposal includes collaborative letters from who will
help with optimizations in RC#1 and contribute to the DNN book (§5.1), , a

researcher who will help with industrial adoption and benchmarks (§2), and
, a faculty in the CS department at GMU who will help with outreach activities (§5.2).

2 Broader Impacts
This required section
gives a broader goal of
your work. In other
words, if successfull,
what will the proposed
work bring beyond the
usual research/academic
achievements?

As our world increasingly depends on ML to enhance our lives, the research will benefit society by
improving the reliability of systems embedding DNNs. The research will also benefit researchers and
developers who apply DNNs to safety-assured systems, e.g., autonomous driving [113] and aircraft
collision control [56], and thus provide a path to improving the safety of the public.

In addition to contributing novel algorithms and tools to formal methods and software engi-
neering, the research contributes to AI/ML by developing effective techniques to verify trained
DNNs, allowing AI/ML researchers and users to improve their networks and deploy them with
confidence. The research also connects different types of DNNs (e.g., FNNs and GNNs), allow-
ing for the transfer of techniques and results among them. Similar to many DNN verification
works [11,85,110,114,148,153], we will share our findings with the AI/ML community.

The research will produce industry-relevant tools, and we will work to transfer technology to
the industry. We have been collaborating with on several projects [87,99,158], and they have
expressed interest in NeuralSAT and can help with adoption and contribute real-world benchmarks. A brief overview of ed-

ucational and outreach
activities here and re-
ferring the reader to its
own section §5.2

The findings from this project will be used into my courses and ongoing mentoring and outreach
activities. I will integrate research materials in an upcoming online software engineering course and
an interactive book on DNN analyses. I have successfully involved undergraduate students in my
research (e.g., [51, 52, 86, 87, 93–96]), and this project will provide support to continue these efforts
and explore new opportunities, e.g., broadening participation to K-12 students as outlined in §5.2.

3 Background
Sat Solving Modern SAT solvers employ the CDCL (Conflict-Driven Clause Learning) algo-
rithm [14,78,79], which combines the classical DPLL [25] (Davis-Putnam-Logemann-Loveland) algo-
rithm with clause learning. DPLL has three main components: assigning truth values to variables, For this specific proposal

I have a background
section to help the
reviewers understand
more about the prob-
lems and proposed
work.

inferring additional assignments, and analyzing conflicts and backtracking to a previous decision
level to try new assignments. CDCL also has these DPLL components but extends conflict analysis
to learn clauses, which help avoid conflicts and backtrack more effectively. State-of-the-art SMT
(Satisfiability Modulo Theories) solvers such as Z3 [84] and CVC [12] employ the DPLL(T) algo-
rithm [67, 100] to check the satisfiability of an SMT formula involving non-boolean variables, e.g.,
real numbers. DPLL(T) combines DPLL/CDCL with theory solvers to reason about formulae in
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different theories, e.g., using a linear programming (LP) solver to analyze linear constraints.

DNNs [59] A feed-forward neural network (FNN), the quintessential model in deep learning [35],
consists of an input layer, multiple hidden layers, and an output layer. Each layer has a number
of neurons, each connected to neurons from the previous layer through a predefined set of weights
(derived by training the network with data). A DNN is an FNN with at least two hidden layers.

The output of a DNN is obtained by iteratively computing the values of neurons in each layer.
The value of a neuron in the input layer is the input data. The value of a neuron in the hidden layers
is computed by applying an affine transformation to values of neurons in the previous layers, then
followed by an activation function such as the popular Rectified Linear Unit (ReLU) activation.
Specifically, the value of a hidden neuron y is ReLU(w1v1 + . . . + wnvn + b), where b is the bias
parameter of y, wi, . . . , wn are the weights of y, v1, . . . , vn are the neuron values of the previous
layer of y, w1v1+ · · ·+wnvn+ b is the affine transformation, and ReLU(x) = max(x, 0) is the ReLU
activation. The value of a neuron in the output layer is evaluated similarly but can be without
applying the activation function.

Given a DNN N and a property ϕ, the DNN verification problem asks if ϕ is a valid property
of N . Typically, ϕ is a formula of the form ϕin ⇒ ϕout, where ϕin is the precondition over the inputs
of N and ϕout is the postcondition over the outputs of N . This form of properties has been used It starts to get dry and

technical so I comple-
ment that with some
high-level motivation,
e.g., allowing us to avoid
collision in unmanned
aircraft.

to encode safety and security requirements of DNNs, e.g., safety specifications to avoid collision in
unmanned aircraft [63] and adversarial robustness [60] properties desired by all DNNs, in which a
small input perturbation does not cause major spikes in the DNN’s outputs.

A DNN verifier attempts to find a counterexample input satisfying ϕin but results in an output
violating ϕout. If no such counterexample exists, ϕ is a valid property of N ; otherwise, ϕ is not.

DNN verification can be encoded as an SMT formula and in fact is NP-Complete [59] (thus
theoretically reducible to other NP-Complete problems, such as satisfiability solving). However,
general SAT and SMT solvers do not scale for large and complex formulae encoding real-world
DNNs containing many layers and neurons. Thus, for scalability, many techniques and tools are
specifically developed for DNN verification (§4.6) by exploiting the structures of the DNNs and
using various abstractions to approximate ReLU computations. Having a small, concrete

example can help illus-
trate the problem. Also
use this example at var-
ious places in the pro-
posal.

x1 x3

x2 x4

x5
-0.5

-1.0

1.0

1.0

-1.0-0.5

-1.0

1.0

Fig. 1: A DNN with 2 inputs, 2
hidden neurons, and 1 output.

Example Fig. 1 shows a simple DNN with 2 inputs, 2 hidden
neurons, and 1 output. The weights of a neuron are shown on
the edges connecting to it, and the bias is shown above or below
each neuron. The outputs of the hidden neurons are computed
using affine transformation and ReLU, e.g., x3 = ReLU(−x1 −
0.5x2 − 1.0). The output neuron is computed with just the affine
transformation, i.e., x5 = x3 − x4 − 1. Showing how this toy

example can represent
something real and sig-
nificant, e.g., safety vi-
olation in aircraft colli-
sion systems.

A valid property for this DNN is that the output is x5 ≤ 0 for
any inputs x1 ∈ [−1, 1], x2 ∈ [−2, 2]. An invalid property is that x5 > 0 for those similar inputs
(a counterexample is {x1 = 0.0, x2 = −2.0}, from which the network evaluates to x5 = −1.0).
These properties can be used to check safety requirements (e.g., one rule in the aircraft collision
system in [59,63] is “if the intruder is distant and significantly slower than us, then we stay below a
certain threshold”) or local robustness [60] conditions (a form of adversarial robustness stating that
if individual inputs are close within certain regions, then the output remains within some bound).
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4 Proposed Research
Here comes the techni-
cal or “meat” of the pro-
posal. The intro para-
graph emphasizes that
the proposed work is
beneficial and applicable
to general AI verification
and also as an opportu-
nity to recall the RCs.

The proposed NeuralSAT project consists of four research components (RCs). While we implement
and evaluate the research using the NeuralSAT framework, the underlying principles are applicable to
general DNN verification. For example, RC#0 shows the promise of combining clause learning and
abstraction to verify DNNs; RC#1 develops the weak max-plus domain, which is usable for general
abstraction-based DNN analyses; RC#2 explores resolution proofs for clause learning approaches
and techniques to stress test off-the-shelf DNN verifiers; and RC#3 analyzes GNNs using existing
DNN techniques and tools.

4.1 RC#0: NeuralSAT Solver (Prototype and Preliminary Results)
High level description.
First remind the review-
ers about the limitations
and challenges, and then
introduce the RC.

State-of-the-art DNN verifiers are powerful and continuously improved. However, unlike the field of
constraint solving that many of these techniques rely on, we still lack a scalable approach of modern
SAT solving that renders the theoretically intractable SAT problem tractable in practice. This RC

This RC0 is essentially
about the NeuralSAT
prototype that I have
already developed and
the proposed tasks are
relatively minimal, e.g.,
completing the proto-
type and generalize it a
bit.

is on developing NeuralSAT, a new SAT-based approach to scalabble DNN verification. The design
of NeuralSAT is inspired by the core algorithms used in SAT solvers such as clause learning and
theory solving, and thus NeuralSAT can be considered as a satisfiability solver for DNNs and carries
with it the power of modern SAT solvers.

4.1.1 Constraint-based Solving for DNN Verification

Analyze-
ConflictDecide

BCP Backtrack

DNN + 
Property

Boolean 
Abstraction

SAT UNSATDEDUCTION

Fig. 2: NeuralSAT Overview.

Fig. 2 gives an overview of NeuralSAT, which follows the DPLL(T)
framework (§3) and consists of DPLL/CDCL components (light
shades) and the theory solver (dark shade). The diagram allows non-

experts to have a high-
level idea of the pro-
posed work.

First, NeuralSAT abstracts the DNN verification task into a SAT
problem, consisting of only clauses over boolean variables (Boolean
Abstraction). Here, NeuralSAT creates boolean variables to repre-
sent the activation status of neurons, e.g., with ReLU a (hidden)
neuron is active if the input value to ReLU is positive and inactive
otherwise. Next, NeuralSAT creates clauses asserting each neuron
is either active/true or inactive/false. This abstraction allows Neu-
ralSAT to use (i) DPLL/CDCL to search for truth values satisfying
these clauses and (ii) the theory solver to check the feasibility of truth assignments with respect to
the constraints encoding the DNN and the property of interest.

NeuralSAT now enters an iterative process to satisy the activation clauses. First, NeuralSAT
assigns a truth value to an unassigned variable (Decide) and infers additional assignments caused
by this assignment (Boolean Constraint Propagation). Next, NeuralSAT invokes the theory solver
(DEDUCTION ), which (i) tightens the bounds of the network inputs using the current assignments
and an LP solver and (ii) abstracts (approximates) the bounds of the network outputs using the
new input bounds, (iii) and checks if these bounds are feasible with the property of interest.

If the theory solver determines feasibility, NeuralSAT continues with new assignments (back to
Decide). Otherwise, NeuralSAT analyzes the infeasibility (Analyze-Conflict) and learns clauses to
avoid such infeasibility and backtrack to a previous iteration (Backtrack). This process repeats until
NeuralSAT no longer can backtrack (returns unsat, indicating the DNN has the property) or finds
a complete assignment for all activation variables (returns sat, and the user can query the solver
for a counterexample).
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ϕ1 ϕ∗
2 ϕ3 ϕ4 ϕ5 ϕ6 ϕ∗

7 ϕ∗
8 ϕ9 ϕ10

NeuralSAT 1025.36 22.84 526.77 330.83 83.51 127.35 262.01 0.15 142.00 191.99
Marabou TO 821.41 8309.09 133.97 1259.74 250.41† TO TO TO 3134.35†

nnenum 168.08 37.75 48.67 44.02 3.83 23.60 232.87 1.13 9.86 2.55

Tab. 1: Comparison to Marabou and nnenum. Runtimes are in seconds, bold means best time, TO means
timeout (after 3 hours), ϕ∗ means invalid properties to be disproved, † means incorrect results.

Example We demonstrate how NeuralSAT proves that the DNN in Fig. 1 has the safety/robustness
property mentioned in §3: for all inputs x1 ∈ [−1, 1], x2 ∈ [−2, 2], the DNN produces the output
x5 ≤ 0. Thus, we want to show that no value assignments to x1, x2 satisfying the input properties
that would result in x5 > 0, the negation of the output property. Using the example

introduced in §3 to
demonstrate NeuralSAT.
In hindsight this level
of details might not
be needed. Though it
might be useful for an
expert to understand
and appreciate the
novelty of the proposed
work.

First, NeuralSAT creates two variables v3 and v4 to represent the (pre-ReLU) activation status
of the hidden neurons x3 and x4. For example, v3 = T means x3 is active, i.e., −x1−0.5x2−1 > 0,
and v3 = F means x4 is inactive, i.e., −x1 − 0.5x2 − 1 ≤ 0. Next, NeuralSAT forms two clauses
{v3 ∨ v3 ; v4 ∨ v4} indicating these variables are either active or inactive.

Now, NeuralSAT searches for truth assignments for activation variables to satisfy the clauses.
In iteration 1, from the input property x1 ∈ [−1, 1], x2 ∈ [−2, 2] NeuralSAT uses the polytope [125]
abstraction to approximate the upper bound x5 ≤ 0.55 and deduces that the output x5 > 0 might be
feasible, and then continues with a (random) decision v3 = F . In iteration 2, NeuralSAT determines
that, with the new constraint imposed by the assignment v3 = F , the upper bound is x5 ≤ 0 and
thus cannot satisfy x5 > 0. It then analyzes the infeasibility to learn the clause v3 (i.e., v3 must
be T ) and backtracks to the previous decision v3 = F to erase it. In iteration 3, NeuralSAT infers
v3 = T because of the recently learned clause v3, determines that this assignment is feasible, and
continues with a (random) decision v4 = T . After 5 such iterations, NeuralSAT learns the clauses
{v3, v3 ∨ v4, v3 ∨ v4}, realizes unsatisfiability, and returns unsat (i.e., the property is valid).

4.1.2 NeuralSAT Prototype and Preliminary Results
These preliminary re-
sults show that Neural-
SAT is promising and
competitive. It empha-
sizes that despite be-
ing still in development,
the prototype is already
extremely competitive.
This RC provides nec-
essary work to complete
the tool and make it the
best in DNN verification.

We are developing a prototype for NeuralSAT in Python that supports FNNs with ReLU. Tab. 1
compares the performance of the prototype to Marabou [61] and nnenum [7] using the standard
ACAS (airborne collision avoidance system) XU [56] benchmarks, which have 45 networks and 10
desired safety properties1. We followed the setups for the FNNs with ReLU category in VNN-
COMP’21, in which nnenum is the best performer while Marabou ranks 3rd. We used the run
scripts and versions provided by Marabou and nnenum in VNN-COMP’21, and ran the experiment
on a Linux machine with an Intel 3.6 GHz CPU with 16 threads and 32 GB RAM.

Other than ϕ4, NeuralSAT outperformed Marabou in all cases, many of which were several
orders of magnitude faster (e.g., 3 hrs vs. 0.15s for ϕ8) and some of which caused Marabou to
return incorrect results (ϕ6,10 and additional details in §4.3). This makes NeuralSAT the most effec-
tive constraint-based tool using the ACAS XU benchmarks. However, NeuralSAT ran slower than
nnenum, especially when proving properties. Nonetheless, these results are encouraging because (i)
our prototype is unoptimized while both Marabou and nnenum are, e.g., both leverage multicores
in modern CPUs (the performance of nnenum dropped significantly when run with a single thread,
e.g., 283s for ϕ6 and 2543s for ϕ8), and (ii) NeuralSAT appears to perform better than nnenum in
disproving properties, suggesting that our approach is effective at finding counterexamples. Further
investigation shows the synergy of abstraction-based theory solver, to quickly derive infeasibility,

1E.g., property ϕ3 requires the airplane to turn sharp right if the intruder is near and approaching from the left.
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and clause learning, to avoid infeasibility and guide future decisions, allows NeuralSAT to run fast,
even as an unoptimized single-thread tool. The proposed task here

is minimal, i.e., just fin-
ishing and bringing the
prototype to light.

While being encouraged by these preliminary results, we do not yet understand the variability
across the verification instances (e.g., the slow run time for ϕ4). The rest of this subtask is to
complete the prototype and evaluate the NeuralSAT’s approach and performance more thoroughly.

4.1.3 Supporting Other Feedforward Learning Models

We will also extend NeuralSAT to support other feedforward learning models, namely Convolutional
(CNNs), Residual Learning (ResNets), and Recurrent (RNNs) Neural Networks, and activation
functions such as sigmoid and tanh. These extensions allow us to evaluate the NeuralSAT approach
on more general feedforward DNNs, and also help NeuralSAT become versatile and competitive with
verifiers supporting these networks (e.g., many participants of VNN-COMPs also support CNNs
and ResNets and non-ReLU activation functions).

While being used for a wide variety of tasks (and especially well-known for image and speaker
recognition problems [35,44,54,66]), ResNets, CNNs, and RNNs, are all feedforward learning mod-
els [35]. In an FNN, computation flows forward from the input layer, through each of the hidden
layers, to the output layer without looping back. In contrast, a ResNet allows neurons to jump over
some layers; an RNN allows neurons to connect those in the previous layer (thus creating a loop);
and a CNN employs a convolution transformation, in which the value of a neuron is computed by
a sliding window of neurons instead of a row of neurons in the previous layer as in FNNs.

NeuralSAT is built for general feedforward models, and thus will not require major changes to
support these DNNs, especially ResNets and CNNs. For example, NeuralSAT still encodes the com-
putations of these networks as linear constraints, and can use any connection flow the network has
(specified in the open ONNX format [6]). For RNNs, which contain loops, we will use “unrolling” [1]
to create an FNN to simulate the execution of the RNN for some fixed k iterations, or a more scalable
approach of creating an FNN that overapproximates but has the same size as the RNN [54].

We will also support continuous activation functions such as sigmoid and tanh [8,35]. Recall that
for ReLU, we use boolean variables to abstract and split the ReLU computation into two regions:
active (> 0) and inactive (≤ 0). For a continuous function such as sigmoid or tanh, we can also
split the computation into two regions (e.g., for tanh, we split at 0) or k regions for better precision
(at the cost of creating more boolean variables and clauses to simulate non-binary values).

4.2 RC#1: Max-Plus Abstraction, Heuristics, and Optimizations
Again, in the intro part,
provide a high level de-
scription, e.g., the aim of
the RC.

This RC will improve the precision and scalability of NeuralSAT by (i) developing the weak max-
plus abstraction to precisely and efficiently capture the non-convex behavior of activation functions,
(ii) exploring heuristics that make SAT solvers powerful, and (iii) leveraging practical engineering
improvements to optimize the implementation of NeuralSAT. This RC aims to make the NeuralSAT
approach reach its full potential and become the top performer in upcoming VNN-COMPs and
ultimately impactful to DNN analyses as SMT solvers such as Z3 to program reasoning.

4.2.1 The Weak Max-Plus Abstract Domain

DNN verification is challenging because activation functions such as ReLU produce non-convex re-
gions, which are expensive to analyze. Abstraction-based techniques thus develop abstract domains,
e.g., interval [139], zonotope [123], polytope [125], to overapproximate non-convex regions into con-
vex ones for more efficient analyses. However, such an overapproximation, especially when being
repeatedly applied in a large DNN, leads to imprecision, causing invalid counterexamples.
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Existing work in program analysis [3,4] (including ours [58,92]) and abstraction-based DNN ver-
ification [38] has used the non-convex max-plus abstract domain [45] to represent complex program
behaviors such as ReLU. However, just as with general polyhedral analysis, reasoning in (general)
max-plus is prohibitively expensive and has a great impact on scalability [38,92].

Fig. 3: Weak max-plus and com-
parison to zonotope and polytope.

Instead of general max-plus, we will build on our prior
work [92,96] on weak max-plus abstraction, a more restrictive form
of general max-plus (analogously, an interval or octagon is a re-
stricted form of a polygon). The first two pictures in Fig. 3 show As before, talk about

existing work to show
you have the right back-
ground to do this.

the only two types of lines possible in weak max-plus and a weak
max-plus “convex hull” (a tight overapproximation) over a set of
points in 2D. Although weak max-plus is restrictive and produces a relatively peculiar non-convex
shape, it can be computed efficiently [92] and, importantly, can accurately capture the non-convex
region y = max(x, 0) ⇒ y = x ∨ y = 0 of ReLU (the upper-left line in the first picture in Fig. 3).
The last picture in Fig. 3 shows how weak max-plus exactly captures ReLU (black line) while the
popular abstract domains zonotope (blue) and polytope (orange) significantly overapproximate.

Our dynamic invariant work [92, 96] computes min max-plus convex hulls over trace points.
Here, we develop weak-max plus to statically analyze DNNs. We will follow the process of creating
abstraction domains from abstraction-based DNN work, e.g., [2, 32, 125]. This consists of creating
transfer (abstraction) functions to manipulate weak max-plus regions over DNN computations (e.g.,
affine transformations and ReLU), convert from interval constraints over inputs to weak max-plus,
and convert the weak max-plus result back to intervals. We will adapt general max-plus abstraction
work (e.g., [3, 38]) to weak max-plus where the main modifications would be fixing the number of
variables and coefficients, which are restrictions that weak max-plus has over general max-plus.

We will integrate the new weak max-plus abstraction into the theory solver of NeuralSAT, which
currently uses polytope. Weak max plus can also be used as a stand-alone abstraction domain and
adopted by existing abstraction-based DNN tools (e.g., nnenum uses several abstraction domains).

4.2.2 SAT Solving Heuristics

Modern SAT/SMT solvers are powerful and scale well in practice due to advancements in heuris-
tics developed for them. New heuristics are introduced often, through research publications or as
improvements to solvers participating in annual SAT/SMT competitions [16,67].

Decision (branching) heuristics are used to decide free variables and their values and thus are
crucial for the scalability of SAT solving by reducing assignment mistakes. We will adapt well-
known greedy heuristics [67] such as VSIDS [83] (Variable State Independent Decaying Sum), which
prioritizes variables not appeared in recently learned clauses, and DLIS [24] (Dynamic Largest
Individual Sum), which chooses unassigned literal that satisfies the maximum number of unsatisfied
clauses. We will also explore other strategies such as random restart and clause deletion to avoid
being stuck due to greedy choices and improve memory usage [83].

Moreover, instead of searching over activation variables that abstract neuron values, we will
explore searching over variables that abstract input ranges (e.g., splitting the range of each input
into k regions as suggested in [85, 109, 139]). For instance, the DNN in Fig. 1 we can use two Again, reusing the ex-

ample in Fig. 1 to
demonstrate the pro-
posed idea.

boolean variables v1, v2 to abstract the ranges of inputs x1, x2, respectively, e.g., for x1 ∈ [−1, 1],
v1 = T means −1 ≤ x1 < 0 and v1 = F means 0 ≤ x1 ≤ 1. This would make the complexity of
NeuralSAT depend on the input dimensions, instead of the size (# of neurons), of the networks. Thus,
when combined with CDCL and abstraction in NeuralSAT, this strategy can improve scalability as
real-world DNNs often have more neurons than their inputs [109] (e.g., AlexNet used for image
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classification has nearly 6.5 × 106 neurons while training images have far fewer dimensions, e.g.,
28x28 for MNIST [71] and 32x32x3 for CIFAR [65] benchmarks). NeuralSAT will have both search
algorithms and switch them depending on the input DNNs.

The theory solver of NeuralSAT currently uses the common “forward” approach to compute and
propagate abstraction of the DNN starting with the input layers to the output layers and checks if the
approximated result covers the property being considered. We will explore the opposite “backward”
propagation from program analysis [10], which starts from the considered property at the output
layer and propagates computation back to the input layer, and checks if the result satisfies the input
conditions of the DNN. The directed symbolic execution work in [75] presents various strategies to
guide computation flow to the considered property that might be applicable to our approximation.
These approaches involve the property of interest earlier and thus help improve performance [75].

4.2.3 Engineering improvements matter!

Consider nnenum [7, 9], which applies a set of six optimizations to the existing path enumeration-
based technique used in the NNV tool [131–134]. These engineering improvements are often not
considered scientific contributions (e.g., compared to new abstract domains or search algorithms).
Yet, we cannot deny the effectiveness of these optimizations, which allow nnenum to perform 120x
faster [9] than NNV and become the fastest tool for FNNs in VNN-COMP’21 while NNV ranks 10th.

Currently, our NeuralSAT prototype is unoptimized, making it amenable to many possible op-
timizations. For example, to leverage multi-thread processing, we will try the Split and Conquer
technique [61, 145], used to parallelize Marabou by partitioning input regions and applying the
search to each smaller region individually. We will also explore the Branch and Bound (BaB) tech-
nique [9,19,138,140], which is adopted in many top DNN verifiers (e.g., nnenum2, β-CROWN) and
splits the search at ReLU (one search on the path when the neuron is active and another on the
path when it is inactive). We will also adopt the increasingly popular optimization of lifting heavy
matrix computations (e.g., during abstraction in the theory solver) to GPUs [85,125,138,140]. We
also plan to rewrite NeuralSAT, currently implemented in Python, using a compiled language such as
C or Rust, and have APIs in Python, Java, and OCaml. This API practice is used by the CVC [12]
and Z3 [26] SMT solvers and contributes to their widespread adoption. Using a quote from a

well-known researcher to
show the need for engi-
neering, which is what
this subtask is about.

Ken McMillan, a prominent researcher in model checking and formal methods, once noted that
“Engineering matters: you can’t properly evaluate a technique without an efficient implementa-
tion” [81]. Indeed, an optimized tool would allow us to evaluate the NeuralSAT approach more
accurately and find bottlenecks that are worth improving.

4.3 RC#2: Verifying and Finding Bugs in NeuralSAT
High level description of
the RC. Listing the two
questions the RC tack-
les helps mix things up a
bit to avoid boring writ-
ing. Note that I also
show some concrete evi-
dence of the problem ob-
tained from my experi-
mentation.

Just as with other programs, DNN verification tools can have bugs [50]. Our experience with
Marabou, shown in Tab. 1, finds that its results can be incorrect3. Given that formal verification
tools are often employed for mission-critical tasks, it is important that their results could be trusted,
especially when they claim that the networks are safe or robust to adversarial attacks.

This RC tackles two questions: (i) how do we verify the results of the verifiers? and (ii) how do
we find unsound bugs in the verifiers? For the first question, we will extract resolution proofs and
unsat core to verify the results of NeuralSAT. For the second question, we will explore the highly-
successful metamorphic testing techniques [69,103,126,143,144] that find bugs in mature compilers

2 , will help with optimization ideas (LoC attached).
3E.g., in the ACAS XU experiment in Tab. 1 Marabou proved invalid properties (e.g., ϕ2 for 2 networks

model_2_9,model_3_6) and disproved valid ones (e.g., ϕ1 for 3 networks model_2_8, model_5_5, model_5_8).
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and SMT solvers. The research here will allow us to find unsound bugs in NeuralSAT and other
DNN verifiers during production and certify their results during deployment.

4.3.1 Certifying Proved Results

When the verifier disproves a property (e.g., returning sat in NeuralSAT), we can run the DNN on
the counterexample and confirm that it violates the property. However, when the verifier proves a
property (returning unsat and no counterexamples), how can we certify such a claim?

An effective solution for this question would depend on the algorithm used by the verifier. For
example, a recent work [50] adapts Farkas’s lemma to show unsatisfiability proof of linear constraints
used in Marabou. Our insight is that CDCL already includes the mechanism to produce unsat proofs,
which we can extend with minimal overhead to extract proof certificates.

Resolution Proofs. One way to verify unsatisfiability result is to check the steps taken by the
verifier that result in unsat. For NeuralSAT, if a formula is unsatisfiable, we will at some point learn
a new clause that is inconsistent with existing ones (at which point NeuralSAT returns unsat). For Reusing the example in

§4.1.1 to illustrate the
proposed idea.

instance, in the fifth iteration of the example in §4.1.1, NeuralSAT learns the clause v3∨ v4, which is
inconsistent with two learned clauses {v3, v3 ∨ v4}, and returns unsat. Thus, we will exploit clause
learning in NeuralSAT to produce unsatisfiability proofs.

More specifically, NeuralSAT already uses an implication graph to store reasons about clauses
it learns and to infer new assignments. Using ideas from SAT solving [5, 67, 155], we can use the
implication graph to build a resolution graph, which tracks the order and reasons clauses were
learned. In the end, when we learn a clause inconsistent with other clauses and results in unsat,
we unwind the resolution graph to extract steps from the last clause to the original clauses, i.e., a
resolution proof showing unsat through learned clauses. Moreover, we will apply techniques in SAT
solving to reduce resolution proofs, making them smaller and easier to check [154,155].

Unsat Core. Another way to show unsatisfiability is using an unsat core, which is an unsatis-
fiable subset of the original set of clauses. In NeuralSAT, each clause asserts that a hidden neuron
is either active or inactive, thus an unsat core means an unsatisfiable activation pattern.

To obtain unsat cores, we will reuse resolution graphs, e.g., by traversing the resolution graph
to capture all original clauses—this represents an unsat core that was used to derive unsatisfiability.
We will further minimize the obtained unsat core using the fixed-point iterative technique described
in [154]. The work in [41] surveys well-known approaches, many of which exploit resolution graphs
and proofs [27, 33,111], to extract small unsat cores.

Unsat cores are also useful for other debugging e.g., the well-known Alloy specification an-
alyzer [53] and our fault localization work [159] use unsat cores to identify inconsistencies in a
specification. Similarly, a user of NeuralSAT can use unsat cores to understand why an unexpected
property is valid in a network or why a network cannot produce a counterexample for a presumably
invalid property.

4.3.2 Testing Verifiers

In §4.3.1 we propose techniques to certify the results of NeuralSAT to gain users’ trust, e.g., during
deployment. Here, we will develop stress-testing techniques to generate inputs that trigger soundness
bugs in NeuralSAT and other DNN verifiers before deployment. This problem of testing DNN verifiers
is both important (to verify DNNs deployed in safety-critical domains) and challenging (e.g., mature
verification tools are likely well-tested).

To tackle this problem, we will explore the semantic fusion technique [144] that generates SMT
input formulae to test SMT solvers. The main idea is to “fuse” pairs of either sat (or unsat) formulae
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by concatenating and substituting variables in the concatenated formula with inverted expressions
to produce another sat (or unsat) formulae—if the SMT solver returns an incorrect result on the
fused formula then it has a bug. This technique, implemented in the Yin Yang tool [104], has found
thousands of confirmed bugs in the mature CVC and Z3 SMT solvers.

We will apply semantic fusion to DNN verification by applying Yin Yang as a blackbox to SMT
formulae encoding DNN verification. Specifically, we take two satisfiable DNN verification instances,
convert them into two SMT formulae, and apply Yin Yang to create a fused satisfiable SMT formula,
from which we create a DNN verification instance and feed it to NeuralSAT or other DNN verifiers
to check for bugs (e.g., if NeuralSAT returns unsat). This blackbox approach also allows us to use
other effective SMT-based fuzzing tools (e.g., FuzzSMT [18] and Storm [76]).

Moreover, we will explore the EMI (equivalence modulo input) compiler-testing techniques [69,
126] by running a seed DNN on sample inputs, analyzing its path, and fuzzing the DNN based on
the traces (e.g., deleting unused neurons and connection edges). EMI-based techniques and tools
have successfully found thousands of confirmed bugs in the GCC and LLVM compilers, and the
benefit of these methods is that they require one input instance instead of two as in semantic fusion.

4.4 RC#3: Graph Neural Networks
High level description
and motivation. This
section on GNNs is a
bit separate from the
other proposed work and
received mixed reviews.
Some reviewers found
that it is a good ex-
ploration while others
thought it doesn’t con-
nect to other RCs.

Graph Neural Networks (GNNs) is another powerful model of deep learning and have been applied
to many practical problems, e.g., heuristics for NP-Complete problems [15, 64, 117,118], knowledge
graphs analysis [136], recommendation systems for social networks [150], chemical and protein classi-
fication [34,105], and advanced COVID-19 detection [112,162] and vaccine development [21,47,161].
However, while many formal techniques and tools have been developed for FNNs, few exist for
GNNs, potentially due to the dynamic structure and behavior of GNNs (e.g., they take arbitrary
input graphs and change computations based on the structures of the graphs).

This RC aims to analyze GNNs by reducing them into FNNs, allowing for the transfer and
applications of techniques developed for FNNs to GNNs. Key challenges are that creating a single
FNN that accepts all possible input graphs of a GNN or an FNN for each input graph that a GNN
accepts would likely be infeasible and not scale. Our insight is to extract substructures of input
graphs that influence the GNN’s prediction and use them to create FNNs. Our pilot study shows
the potential and an interesting application of the approach: we were able to discover properties of
GNNs using an invariant generation tool for FNNs.

4.4.1 Reducing GNNs to FNNs

Instead of creating a GNN for each input graph, we create FNNs for classes of inputs using influential
substructures. Influential substructures of the input graphs are compact subgraphs and subsets of
nodes of those graphs that have a crucial role in GNN’s prediction. For example, inputs that a GNN
predicts “like Johnny Depp” might have substructures with strong connections to nodes representing
interests in “pirates” or recent searches for “defamation”.
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Figure 1: Overview of GNN-Infer

our approach of leveraging existing e�cient techniques and tools
can be achieved quicker and also as e�ective (e.g., by using existing
powerful FFNN tools). Indeed, the GNN-Infer approach is similar
to techniques in software engineering and formal veri�cation that
encode the analysis task as a logical formula that can be e�ciently
analyzed by existing constraint solving techniques and tools (e.g.,
SAT and SMT solvers).

Fig. 1 gives an overview of GNN-Infer. The main challenge in
analyzing GNNs and converting them to FFNNs is that the input
graphs of a GNN can have various topological structures and the
GNN itself also has a dynamic computation graph depending on its
input graphs. To solve this challenge, we �rst mine in�uential sub-
structures of input graphs to summarize the structural input space
of a GNN. Then for each substructure, which represents a class of
input graphs, we “unroll” the structure to create an equivalent FFNN
for each update operation of the GNN, and then combine these
FFNNs into a �nal FFNN representing the original GNN operating
over input graphs captured by the substructure. Finally, we extend
the existing DNN analyses to the FFNN of each substructure and
obtain results for the original GNN.

2 TECHNICAL APPROACH
Existing veri�cation techniques for DNNs check that the DNN sat-
is�es a user-supplied property (e.g., a certain range over inputs
results in a certain output). In contrast, a property inference tech-
nique aims to automatically infer such properties from the DNN.

Figure 2: GNN message passing and unrolling

In both cases, the property to be veri�ed or inferred has the form
pre =) post, where pre is a condition over the inputs and post
is certain requirement on the outputs. GNN-Infer aims to verify
and infer the pre condition for some speci�c post condition, e.g.,
we want to �nd input condition that causing the nerual network to
classify input images as "dog".

To illustrate GNN-Infer, we consider GNN models for the stan-
dard problem of graph node classi�cation, which takes as input a
graph ⌧ and gives a classi�cation 2 for each node E 2 ⌧ . For such
GNNs, the pre are input properties, which are logical predicates
capturing common structures and features1 of the input graphs
that lead to a certain classi�cation of a target node. Below we use a
concrete example given in Fig. 2 to describe GNN-Infer.

2.1 Substructure Mining
Unlike an FFNN, a GNN does not have a �xed structure: it can
take arbitrary graphs and the behavior of GNN itself also changes
depending on the structure of the inputs (e.g., the in�uence of a
node depends on its neighbors). Thus, the direct, naïve way of
converting a GNN to an FFNN does not scale as it would result in a
di�erent FFNN for each di�erent input graph, and the FFNN can
also be large if the input graph is large.

To solve this challenge, GNN-Infer creates FFNNs that support
classes of input graphs. We leverage existing works in network
graphs and GNNs such as GNNExplainer and PGExplainer [11,
20] to mine common and in�uential substructures from sample
input graphs. These substructures are subgraphs that contain nodes,
edges, and features that likely a�ect the outcome of target nodes’
predictions. Importantly, these substructures are compact, which
are crucial for achieving FFNNs with manageable sizes.

Fig. 1 illustrates how GNN-Infer mines in�uential substructures
(sub-structure miner). Given a trained GNN model and a set of in-
put graphs that have the desired classi�cation, we use an existing

1Node features are attributes of nodes, e.g., if we take a node "professor" in academic
graph, its attributes may be "name", "citations", "a�liation", and encoded as a numerical
vector such as {0.1, 0.3, 0.4, 0.5}.

Fig. 4: Influential substructures
and graph isomorphism.

To obtain influential substructures, we will automatically infer
them from sample data (e.g., the training data of the GNN). We
will leverage existing GNN techniques and tools such as GNNEx-
plainer [151] and PGExplainer [74] to mine influential substruc-
tures from sample graphs. For example, in Fig. 4 GNNExplainer Example can be effec-

tive and makes technical
stuff less boring.

extracts three substructures Gsub1, Gsub2, Gsub3 that are common
from the input graphs G1, G2 and contribute significantly to the
prediction of the red target node.
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We also need to check if a substructure covers an input graph (e.g., to evaluate and improve the
accuracy of mined substructures or to reject (bad) input graphs). To do this, we will check if the
graph and the substructure, which is also a graph, are isomorphic, e.g., in Fig. 4 the lower-right
graph and substructure Gsub1 are isomorphic. Graph isomorphism is well-known, and we can check
it using existing techniques [17,42] and tools (e.g., nauty and Traces [80], bliss [57], conauto [73]).

Finally, once having influential substructures, we create an FNN by unrolling the message passing
operations [34] of the GNN over the structures. More specifically, the FNN will have neurons and
connections representing the computation of message update operations of the GNN (e.g., updating
a value of a node in the graph based on the information of its neighboring nodes). Then we combine
created FNNs to represent the behavior of the GNN.

4.4.2 Pilot Study
The published short
ICSE NIER paper [98]
and this pilot study
help demonstrate the
feasibility of the ap-
proach. Having concrete
evidence such as prelim
work or pilot study
greatly strengthen the
proposal.

We have introduced this idea of reducing GNNs to FNNs using substructures in a recent ICSE’22
NIER paper [98]; this RC will develop it. For this proposal we conducted a pilot study to assess the
approach using a GNN modeling a simple BFS algorithm, which predicts if a node n in a given graph
would be visited next [137]. We created a small GNN and trained it using existing data from the
work in [137] (e.g., the GNN for BFS has only 2 layers and its training data has 160 input graphs).
Then, we manually performed the proposed tasks on the GNN. First, we used GNNExplainer to
extract substructures from the training data used for that GNN. Then, we apply scripts to perform
unrolling to obtain FNNs for each substructure and manually combine them into an FNN.

To evaluate the application of the approach, we applied the invariant discovery tool Prophecy [37]
to the reduced FNN to learn its properties. While Prophecy produces cryptic formulae representing
discovered properties, we recognized several familiar and crucial ones such as (i) if n has been visited,
it will not be visited next regardless of the state of its neighbors, (ii) if n and all of its neighbors
have not been visited, then n would not be visited next, and (iii) if all neighbors of n have been
visited, then n will be visited next. We also were able to use Marabou (used by Prophecy to check
inferred properties) to confirm the discovered properties are valid in the reduced FNN.

While we anticipate scalability (e.g., the size of the created FNN might be big) and other
challenges (e.g., how to interpret discovered invariants), we are excited about these challenges and
opportunities they would provide (e.g., GNNExplainer and Prophecy show that substructures and
DNN invariants are better understood by humans through visualization, i.e., useful for explainable
AI [37,115,151]). Similar to program analyses being benefited through advancements in constraint
solving, this research direction will become more realizable as DNN analyses and tools (such as
those developed in this project) become more available and powerful.

4.5 Evaluation
Evaluation or Validation
Plan is especially im-
portant in this type of
topics of prototype and
tool developments. In
general, every proposal
should have this part to
evaluate the outcomes of
the project.

Benchmarks We will continue using VNN-COMP benchmarks, which include standard ones such
as ACAS XU [56], MNIST [71], CIFAR [65], and others designed to challenge state-of-the-art veri-
fiers. Together, these benchmarks consist of thousands of instances for FNNs, CNNs, and ResNet [8].
We also use more diverse benchmarks including those automatically generated [146]. For RNNs we
will use benchmarks from verification and invariant generation work, e.g., [54, 82]. For GNNs we
will collect those modeling classical algorithms such as sorting [107] and shortest paths [39,137,147]
(e.g., BFS, Bellman-Ford, and Prim’s)—these have well-known properties that we can use as ground
truths (e.g., to compare inferred invariants). We will also use GNNs modeling complicated tasks,
e.g., heuristics for the Traveling Salesman [15,64] and boolean satisfiability problems [117,118], and
large real-world analyses, e.g., the MUTAG (mutagenic effects of molecules) and REDDIT-BINARY
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(social network analysis) benchmarks used in GNNExplainer for substructure mining [151].

Evaluation Metrics For RCs#0–1 we will evaluate and compare the performance of NeuralSAT
(e.g., correctness, efficiency, memory usage) to state-of-the-art tools such as those participating in
VNN-COMPs. We also compare to newer versions of published tools as DNN verification evolve
rapidly and developers often publish new tools to their code repositories. For RC#1, we will
compare the precision and scalability of weak max-plus to existing abstract domains, and evaluate
improvements of individual and combinations of heuristics and optimizations using the current
unoptimized NeuralSAT prototype as the baseline for comparison. We will participate in VNN-
COMPs [8], which systematically compare tools over a wide variety of benchmarks and criteria.

For RC#2 we will evaluate the overhead of computing resolution proofs, and report the sizes of
unsat cores and resolution proofs. We will work with the organizers of VNN-COMPs to give bonus
points for verifiers to include proofs of proved results and adopt a standard format for such proofs
(similar to the DRAT [31,142] format used in SAT competitions for unsatisfiability proofs). We will
evaluate stress-testing on NeuralSAT and other mature and well-maintained DNN verifiers (because
they would likely have fewer bugs). We will record efficiency and effectiveness (e.g., number of bugs
found), and report bugs to DNN tool developers. The Yin Yang tool has helped fixed thousands of
real bugs in Z3 and CVC [104]; we believe our research will be as effective, if not more, for DNN
verifiers, which are not as mature and well-tested compared to these SMT solvers.

For RC#3 we focus on precision (able to obtain relevant substructures for reduction), efficiency
(in mining substructures and performing the reduction), scalability (sizes of created FNNs), and
applications (whether existing FNN techniques such as NeuralSAT and Prophecy work on the reduced
FNNs). This research also produces new, diverse benchmarks consisting of GNNs’ modeling tasks
that are often not used by FNNs. We will share these benchmarks and our results with FNN tool
developers to improve their work.

4.6 Related Work
Not sure if this sec-
tion is needed, e.g., I
have other funded pro-
posals without this sect.
But for this CAREER
it seems necessary to
demonstrate that I know
the literature, especially
since I am new in this
topic and to show the re-
lationship/difference of
the RCs with related
work.

DNN Verification The literature on DNN verification is rich (cf. [72, 135]), and here we sum-
marize well-known techniques with tool implementations. Constraint-based approaches such as
DLV [49], Planet [28], Reluplex [59], Marabou [61] (successor of Reluplex) transform DNN ver-
ification into a constraint problem, solvable using an SMT (Planet, DLV) or customized sim-
plex and MILP (Reluplex, Marabou) solvers. Abstraction-based approaches such as AI2 [32],
ERAN [85,123,125] (DeepZ [123], DeepPoly [125], K-ReLU [122]), RefineZono [124]), ReluVal [139],
Neurify [138], VeriNet [46], NNV [133], nnenum [7, 9], CROWN [153], β-CROWN [140], use ab-
stract domains such as interval (ReluVal/Neurify), zonotope (DeepZ, nnenum), polytope (Deep-
Poly), starset/imagestar (NNV, nnenum) to scale verification. OVAL [101] and DNNV [119] are
frameworks containing various existing techniques and tools. Our NeuralSAT is a constraint-based
approach that integrates clause learning and abstractions.

Abstractions, Heuristics, and Optimizations The aforementioned interval, zonotope, poly-
tope, and starset/imagestar are well-known and effective abstraction domains. Some verifiers such
as ERAN and nnenum use multiple abstractions (e.g., ERAN uses zonotope and polytope, nnenum
adopts zonotope and imagestar). The work in [38] uses the general max-plus abstraction [45] to
represent the non-convex behavior of ReLU. NeuralSAT currently uses polytope in its theory solver
and RC#1 will develop the “weak max-plus" abstraction, which is more restrictive, but likely much
faster than general max-plus.

Modern SAT solving benefits from effective heuristics, e.g., VSIDS and DLIS strategies for
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decision (branching), and random restart [83] and shortening [22] or deleting clauses [83] for memory
efficiency and avoiding local maxima caused by greedy strategies (§4.2.2). Similarly, modern DNN
verifiers such as nnenum, ERAN, β-CROWN, and Marabou include many optimizations to improve
performance, e.g., Branch and Bound [19] and Split and Conquer [61, 145] for parallelization, and
various optimizations for abstraction refinement [7, 124]) and bound tightening [7, 61, 140]. RC#1
will explore such heuristics and optimizations to improve the performance of NeuralSAT.

Certifying and Testing DNN Verifiers Certifying proved results are well-studied and even
required in SAT competitions [13, 31]. In DNN verification, the recent work [50] constructs unsat
proofs for Marabou by combining Farkas’s lemma to show the unsatsifiability of linear constraints
with a mechanism to handle ReLU constraints. For stress-testing, while numerical imprecision in
DNN verifiers is well-acknowledged (e.g., [7, 55]), we are unaware of testing techniques making the
verifiers reverse their decisions (e.g., from sat to unsat and vice versa). In contrast, metamorphic
testing [20] (e.g., semantic fusion [104, 144] and EMI [69, 126]) and fuzzing/mutation approaches
(e.g., [18, 76, 103, 143]) have been used to find many bugs in mature SMT solvers and compilers.
RC#2 will develop resolution proofs for proved results and apply SMT testing-based techniques to
find bugs in DNN verifiers. This proposal does not

include a timeline dia-
gram and section, which
many proposals have. I
had created it but felt
it doesn’t give anything
useful, i.e., mostly bs,
and decided to not in-
clude it.

Reductions and GNNs Reduction techniques have been explored in DNN analyses, e.g., convert-
ing DNN correctness properties into adversarial attacks that can be handled by existing adversarial
techniques [120], and reducing RNNs into FNNs through loop unrolling [1] or approximation [54].
In general, reduction is commonly used to solve unknown problems, and is thus a good approach
to tackle GNNs, in which few formal verification techniques or tools exist. However, while few
verifiers exist for GNNs, work such as GNNGuard [157] can help defend against adversarial attacks
and data poisoning [163–165] in GNNs by augmenting the networks and retraining them to improve
robustness. Such defense mechanisms complement the research in RC#3, which aims to apply FNN
verification and property discovery analyses to GNNs.

5 Integration of Research and Education
Crucial section in the
CAREER that inter-
grate research and ed-
ucation. Think hard,
be creative, and cus-
tomize it based on your
own experience. Note
that I don’t strictly use
“we/our” here in this
part. Another note is
the section has just a lit-
tle bit more than a page,
which is very short com-
pared to most CAREER
proposals. But I felt
(and reviewers probably
concurred) that it is cre-
ative and fits my experi-
ence.

The proposed research and funding will help me continue my current efforts and explore new activ-
ities in integrating research into my teaching and involving undergraduate and minority students in
my research. Planned activities include new course development, an interactive "DNN Verification
by examples" book, and efforts to involve K-12 students.

5.1 Curriculum Development and “DNN Verification by Examples” Book

At GMU, I have redesigned my graduate course, Software Construction and Specification, to include
verification and constraint solving (using Z3). These topics receive positive feedback from students,
many of whom are professional developers and unfamiliar with formal methods. Due to high demand,
I am designing an online undergraduate version of the course with Wiley publishing. This version,
available in Fall’23, will include DNNs as a practical application and integrate techniques and tools
developed in this research. Over the time frame of this proposal, I will teach the course (avg. 40
students) at least five times and thus have ample opportunities to evaluate and improve its materials.

DNN Book Learning DNN verification by reading technical papers is hard. My students and I
have started a “survey” paper reviewing major DNN analyses. In contrast to existing DNN surveys Reviewers like this idea

of creating a Jupter
notebook demonstrating
DNN verification tech-
niques.

and books, e.g., [2, 72, 135], this paper demonstrates how major DNN verification techniques work
step-by-step using small DNN examples (e.g., similar to the DNN in Fig. 1 used in various examples
in this proposal). I will extend this activity into an online, interactive, and open-source book, similar
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to the Fuzzing Book [152] used in my previous Software Testing courses. This book would contain
small executable Jupyter implementations of DNN techniques, allowing students to experiment with
code and their effects live on the web browser.

I will integrate materials from the book into my Software Construction and Specification course
and evaluate its materials along with the course. Many of my collaborators teach similar software
courses and thus are potential users of the book (e.g., has expressed interest to contribute
and use particular modules of the book in courses).

5.2 Undergraduate Research and Outreach
Talk about experience
and success of working
with undregrads to con-
vince the reader that
you are capable of pro-
posed outreach activity.

Undergraduate Research I enjoy involving and mentoring undergraduate students in my re-
search and motivating them to pursue graduate studies. Since 2017, I have worked with 10 un-
dergraduate research assistants (most of whom are first-generation students, two females, and two
freshmen). One former undergraduate student, Linhan, has recently moved to GMU and started his
Ph.D. with me. Another student, KimHao, has worked with me since his freshman year, produced
numerous publications [51,52,86,87,93–96], and is planning to pursue a Ph.D. at GMU working on
this DNN project. I will continue recruiting and creating opportunities for undergraduate students
and have included a budget to support an undergraduate researcher in the proposal (I will also
apply for an REU supplement if the project is funded).

Presenting concrete evi-
dence showing my out-
reach experience.

Community Outreach At UNL (University of Nebraska-Lincoln), my previous institution, I was
involved in Initialize, a program developed by CS undergraduates dedicated to using computing skills
to give back to the local community. In particular, in 2019 I worked with
and Initialize students and obtained funding ($19K from Bosch Community Fund and $5K from
Beyond School Bell, a local nonprofit organization) for several new initiatives (e.g., providing CS
learning opportunities to under-resourced and underrepresented students in Lincoln).

I will build on these experiences and continue similar outreach activities at GMU, where I just
moved to earlier this year. For example, I live in the southern part of Prince William County (PWC), Outreach plan tailored

for my situationabout an hour from GMU. It currently does not have connections with GMU, and has a much more
diverse and low-income population (compared to other places in Northern Virginia according to the
US Census). I aim to build a bridge between GMU and PWC K-12 schools and have already begun
coordination with at , where my
children attend. He is interested in doing activities with GMU, and I am working with several CS fac-
ulty at GMU to get several events going
and GMU faculty presenting their work to 4th and 5th graders at (Asst. Profs.
and have expressed interest). Moreover, using my experience in proposal writing, I
plan to work with them to obtain funding from PWC, e.g., materials to build/support a stem
lab/maker space. I will evaluate these efforts via the number of events and funding created and
levels of student and teacher involvement.

6 Results from Prior NSF Support
Nguyen is the PI on CCF-2107035 “Ensuring Safety and Liveness of Modern Systems through Dy-
namic Temporal Analysis” ($399,879, 2021–2024). Intellectual Merit: This project develops Mention potentional re-

lationship between the
CAREER and a prior
NSF project.

theoretical and practical integration of static and dynamic approaches to analyze and repair tem-
poral aspects of reactive/interactive systems. NeuralSAT might be extended to prove dynamically
inferred temporal properties of RNNs. Broader Impacts: This work produces advanced methods
for ensuring the safety and liveness of today’s reactive/interactive software. The PI is working with
a graduate and undergraduate on this project and has produced two publications [52,95].
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I spent sometime to
clean up these refer-
ences, making them
consistent, and ensuring
that nothing “bad”
stands out.
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