Improving the Reliability and Safety of Systems

Toward Scalable Deep Neural Network Verification

ThanhVu (Vu) Nguyen

CEC P&T Seminar, Nov 12 2023

My Background

Academic

- 2013: PhD in CS, Univ of New Mexico-Albuquerque
- 2014: Postdoc, Univ of Maryland-College Park
- 2016: Assistant Prof., Univ of Nebraska-Lincoln
- 2021: Assistant Prof., George Mason University

Govt and Industry

- 2005–2006, 2012: Naval Research Lab, Washington DC
- 2007: Lockheed Martin, New Jersey

My Research

Software Engineering, Formal Methods, Programming Languages

- Invariant Generation and Automatic Program Repair
 - since '08, during PhD study
- Highly-Configurable and Build System Analysis
 - since '15, during postdoc
- Al Verification
 - since '22, new research direction

My Research

Software Engineering, Formal Methods, Programming Languages

- Invariant Generation and Automatic Program Repair
 - since '08, during PhD study
- Highly-Configurable and Build System Analysis
 - since '15, during postdoc
- Al Verification
 - since '22, new research direction

Sponsor

- NSF (4x): CRII'20, Med Collab. '21, CAREER'23, FMIT'23
- Defense (1x): Army Research '18
- Industry (2x): Facebook'23 and Amazon'23
- Internal (1x): UNL Seed'20

DynaROARS dynaroars.cs.gmu.edu

Linhan

Hai

Guolong PhD'22 at UNL

Outline

Al Safety Verification

Highly Configurable and Build Systems Invariant Generation and Program Repair

DNN EVERYWHERE

DNN Problems

7

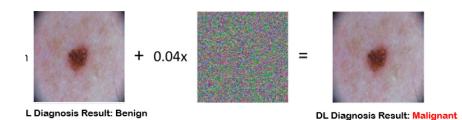
Black person with hand-held thermometer = firearm. Asian person with hand-held thermometer = electronic device.

Computer vision is so utterly broken it should probably be started over from scratch.

Gun	88%
Photography	68%
Firearm	65%
Plant	59%

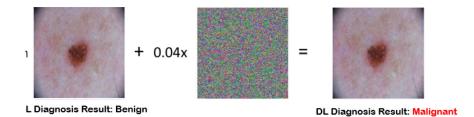
Technology	68%
Electronic Device	66%
Photography	62%
Mobile Phone	54%

Robustness Properties



$$\forall i \in \{0 \dots |X| - 1\}. \ X_i - Y_i \le 0.1 \ \Rightarrow \ class(X) \equiv class(Y) \qquad (1)$$

Robustness Properties



$$\forall i \in \{0 \dots |X| - 1\}. \ X_i - Y_i \le 0.1 \ \Rightarrow \ class(X) \equiv class(Y) \qquad (1)$$

if corresponding pixels of two images X and Y are not different by more than 0.1, then X and Y should have the same classification

Safety Properties

Safety Properties

ACAS: air traffic collision system, detects intruder and decides action.

$$d_{intru} \geq 55947 \land v_{own} \geq 1145 \land v_{intru} \leq 60 \implies r_{nothing} \leq \tau$$

if intruder is distant and significantly slower than us, then we do nothing (i.e., below a certain threshold)

DL Classification: Green Light

Changing one pixel here Text

DL Classification: Red Light

- Well-trained, e.g., 97% accuracy, DNNs are fine for most tasks
 - But not enough for mission-critical tasks, e.g., self-driving cars, air traffic collision control
- Testing can find counterexamples (e.g., adversarial attacks)
 - Testing shows the existence of errors, not its absence (Dijkstra)

DL Classification: Green Light

Changing one pixel here Text

DL Classification: Red Light

- Well-trained, e.g., 97% accuracy, DNNs are fine for most tasks
 - But not enough for mission-critical tasks, e.g., self-driving cars, air traffic collision control
- Testing can find counterexamples (e.g., adversarial attacks)
 - Testing shows the existence of errors, not its absence (Dijkstra)

Formal Verification Can Help!

Software Verification

- Provide formal guarantee that a system really has no specific type of errors
- Mature field in CS/Logics with lots of powerful techniques and tools
 - Automated Theorem Proving
 - Constraint Solving (e.g., SAT/SMT solving)
 - Model Checking
 - Abstract Interpretation, ...
- Employed in mission-critical systems, e.g., avionics, medical devices, Windows, Clouds system (AWS)

The problem of Deep Neural Network verification

Question: Given a network N and a property p, does N have p?

• p often has the form $P \Rightarrow Q$ (precondition P, postcondition Q)

Answer: Yes / No

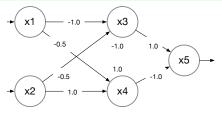
The problem of Deep Neural Network verification

Question: Given a network N and a property p, does N have p?

• p often has the form $P \Rightarrow Q$ (precondition P, postcondition Q)

Answer: Yes / No

Simple DNN with ReLU



• E.g., $x_3 = \max(-1x_1 + -0.5x_2, 0)$

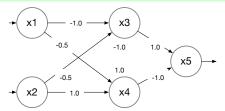
The problem of Deep Neural Network verification

Question: Given a network N and a property p, does N have p?

• p often has the form $P \Rightarrow Q$ (precondition P, postcondition Q)

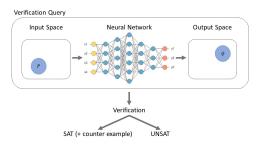
Answer: Yes / No

Simple DNN with ReLU

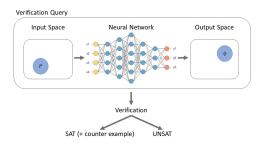


- E.g., $x_3 = \max(-1x_1 + -0.5x_2, 0)$
- Valid: $x_1 \in [-1, 1] \land x_2 \in [-2, 2] \Rightarrow x_5 \le 0$
- Invalid: $x_1 \in [-1, 1] \land x_2 \in [-2, 2] \Rightarrow x_5 > 0$

Constraint Solving Techniques

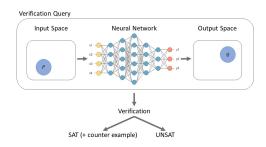


Constraint Solving Techniques



- Transform DNN verification into a constraint (satisfiability) problem
 - UNSAT: *p* is a property of *N*
 - SAT: p is not a property of N (also provide counterexamples)
 - TIMEOUT

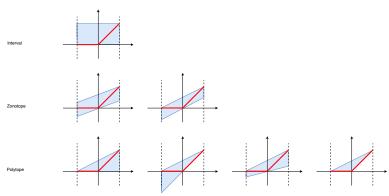
Constraint Solving Techniques



- Transform DNN verification into a constraint (satisfiability) problem
 - UNSAT: *p* is a property of *N*
 - SAT: p is not a property of N (also provide counterexamples)
 - **■** TIMEOUT
- Solve the constraint, e.g., using MILP solvers
- Scalability is a Huge problem (many TIMEOUTs)
 - Complexity $O(2^N)$, where N is the number of neurons

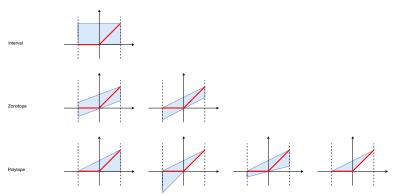
Abstraction Techniques

- Overapproximate computation (e.g., ReLU) using abstract domains
 - interval, zonotopes, polytopes



Abstraction Techniques

- Overapproximate computation (e.g., ReLU) using abstract domains
 - interval, zonotopes, polytopes

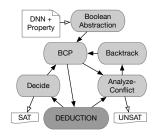


- Scale well, but loose precision (producing spurious cex's)
 - Claiming a property is violated when it is not

NeuralSAT: Our DNN Constraint Solver

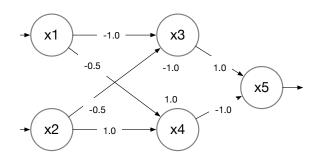
To prove $N \Rightarrow (P \Rightarrow Q)$

- Call NeuralSAT($N \wedge P \wedge \neg Q$)
- Return UNSAT or SAT (and counterexample)



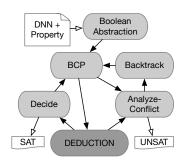
- 1 Abstract as a boolean satisfiability problem
- 2 Iteratively search for satisfying assignment
 - Use heuristics to make decision
 - Use propagation to communicate learn information
 - Analyze conflicts, learn conflict information, and backtrack
 - Use a theory solver to quickly deduce unsatisfiability (UNSAT)

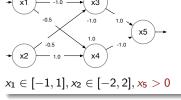
Example: Simple DNN with ReLU activation



To prove $f: x_1 \in [-1, 1] \land x_2 \in [-2, 2] \Rightarrow x_5 \le 0$:

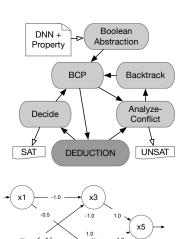
- Use NeuralSAT to check if $\neg f$ is satisfiable
- NeuralSAT($N \land x_1 \in [-1,1] \land x_2 \in [-2,2] \land x_5 > 0$)
- NeuralSAT returns UNSAT, indicating f is valid





Boolean Abstraction

- Create 2 boolean variables v_3 and v_4 to represent activation status of x_3, x_4
 - $v_3 = T$ means x_3 is active, $-x_1 - 0.5x_2 - 1 > 0$

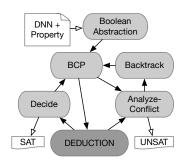


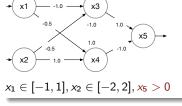
x4

 $x_1 \in [-1,1], x_2 \in [-2,2], x_5 > 0$

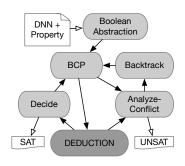
Boolean Abstraction

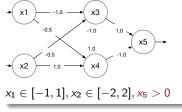
- Create 2 boolean variables v_3 and v_4 to represent activation status of x_3, x_4
 - $v_3 = T$ means x_3 is active, - $x_1 - 0.5x_2 - 1 > 0$
- Form two clauses $\{v_3 \lor \overline{v_3} ; v_4 \lor \overline{v_4}\}$
- Find boolean values for v_3 , v_4 that satisfies the clauses and their implications



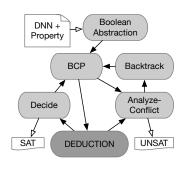


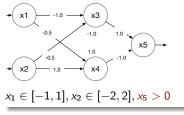
• Use **abstraction** to approximate upperbound $x_5 \le 0.55$ (from $x_1 \in [-1, 1], x_2 \in [-2, 2]$)



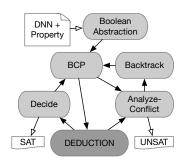


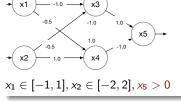
- Use **abstraction** to approximate upperbound $x_5 \le 0.55$ (from $x_1 \in [-1, 1], x_2 \in [-2, 2]$)
- **Deduce** $x_5 > 0$ *might be* feasible



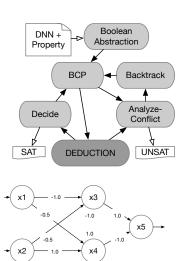


- Use **abstraction** to approximate upperbound $x_5 \le 0.55$ (from $x_1 \in [-1, 1], x_2 \in [-2, 2]$)
- **Deduce** $x_5 > 0$ *might be* feasible
- **Decide** $v_3 = F$ (randomly)
 - lacksquare new constraint $-x_1-0.5x_2-1<0$



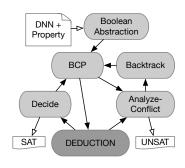


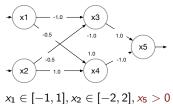
- **Approximate** upperbound $x_5 \le 0$ (due to additional constraint from $v_3 = F$)
- **Deduce** $x_5 > 0$ infeasible: **CONFLICT**



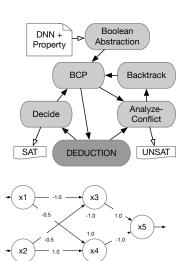
 $x_1 \in [-1,1], x_2 \in [-2,2], x_5 > 0$

- **Approximate** upperbound $x_5 \le 0$ (due to additional constraint from $v_3 = F$)
- **Deduce** $x_5 > 0$ infeasible: **CONFLICT**
- Analyze conflict, backtrack and erase prev. decision $v_3 = F$
- Learn new clause v₃
 - \blacksquare v_3 will have to be T in next iteration



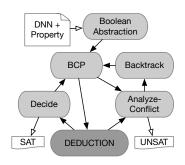


- **Decide** $v_3 = T$ (**BCP**, due to learned clause v_3)
 - lacktriangleq new constraint $-x_1 0.5x_2 1 > 0$



 $x_1 \in [-1,1], x_2 \in [-2,2], x_5 > 0$

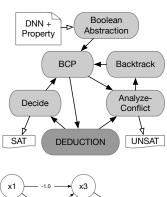
- **Decide** $v_3 = T$ (**BCP**, due to learned clause v_3)
 - new constraint $-x_1 0.5x_2 1 > 0$
- Approximate new upperbound for x_5 (using additional constraint from $v_3 = T$)
- **Deduce** $x_5 > 0$ might be feasible
- **Decide** $v_4 = T$ (randomly)
- :

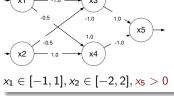




After several iterations

- Learn clauses $\{v_3, \overline{v_3} \lor v_4, \overline{v_3} \lor \overline{v_4}\}$
- Deduce not possible to satisfy the clauses





After several iterations

- **Learn** clauses $\{v_3, \overline{v_3} \lor v_4, \overline{v_3} \lor \overline{v_4}\}$
- Deduce not possible to satisfy the clauses
- Return UNSAT
 - Cannot find inputs satisfying $x_1 \in [-1,1], x_2 \in [-2,2]$ that cause N to return $x_5 > 0$
 - Hence, $x_5 \le 0$ holds (i.e., the original property is valid)

	1	NeuralSAT	1437	100.0%	139	47
ACAS Xu (13K)	1	nnenum	1437	100.0%	139	47
	3	$\alpha\beta$ -CROWN	1436	99.9%	139	46
	4	Marabou	1426	99.2%	138	46
	5	MN-BaB	1097	76.3%	105	47
MNISTFC (532K)	1	$\alpha\beta$ -CROWN	582	100.0%	56	22
	2	NeuralSAT	573	98.5%	55	23
	3	nnenum	403	69.2%	39	13
	4	MN-BaB	370	63.6%	36	10
	4	Marabou	370	63.6%	35	20
CIFAR2020 (2.5M)	1	NeuralSAT	1533	100.0%	149	43
	2	$\alpha\beta$ -CROWN	1522	99.3%	148	42
	3	MN-BaB	1486	96.9%	145	36
	5	nnenum	518	33.8%	50	18
RESNET_AB (354K)	1	NeuralSAT	513	100.0%	23	23
	1	$\alpha\beta$ -CROWN	513	100.0%	49	23
	3	MN-BaB	363	70.8%	34	23
	1	NeuralSAT	480	100.0%	48	0
MNIST_GDVB (3M)	2	$\alpha\beta$ -CROWN	400	83.3%	40	0
	3	MN-BaB	200	41.7%	20	0
Overall	1	NeuralSAT	4536	100.0%	440	136
	2	$\alpha\beta$ -CROWN	4453	98.2%	432	133
	3	MN-BaB	3516	77.5%	340	116
			0050	EQ 00/	000	70
	4	nnenum	2358	52.0%	228	78

Benchmark

Rank Verifier Score Percent Verify Falsify

Key Ideas

- Formalization of DNN verification
- Analyze, learn, and propagate information (significantly reduce search space)
- Dedicated DNN-specific theory solver (enable fast proving)
- New approach; open doors to new research on heuristics, optimizations specific to DNNs

Key Ideas

- Formalization of DNN verification
- Analyze, learn, and propagate information (significantly reduce search space)
- Dedicated DNN-specific theory solver (enable fast proving)
- New approach; open doors to new research on heuristics, optimizations specific to DNNs

Usability Features

- Standard: inputs (ONNX) and outputs (SAT/UNSAT/TIMEOUT)
- Versatile
 - Support Feedforward, Convolutional, Residual Networks
 - Support ReLU, Sigmoid, Tanh, Power, etc
- Scale well to large networks with millions of neurons
- Active development & frequent Updates
- Fully automatic (require little configurations from users)

Outline

Al Safety Verification Highly Configurable and Build Systems Invariant Generation and Program Repai

Linux/Unix Build Systems

```
--- Network device support
[*]
     Network core driver support
<M>
       Bonding driver support
       Dummy net driver support
<M>
<M>
       EQL (serial line load balancing) support
[ ]
       Fibre Channel driver support
<M>
        Intermediate Functional Block support
<M>
       Ethernet team driver support --->
<*>
        MAC-VLAN support
          MAC-VLAN based tap driver
<M>
< >
        IP-VLAN support
        Virtual eXtensible Local Area Network (VXLAN)
< >
<M>
        Generic Network Virtualization Encapsulation
<M>
        GPRS Tunneling Protocol datapath (GTP-U)
< >
        TEEE 802.1AE MAC-level encryption (MACsec)
<M>
       Network console logging support
[*]
          Dynamic reconfiguration of logging targets
<M>
        Universal TUN/TAP device driver support
[ ]
        Support for cross-endian vnet headers on littl
<M>
       Virtual ethernet pair device
<M>
        Virtio network driver
       Virtual netlink monitoring device
<M>
<M>
       Virtual Routing and Forwarding (Lite)
<M>
       Virtual vsock monitoring device
<M>
      ARCnet support --->
v(+)
       <§elect>
                   < Exit >
                               < Help >
```

- Modern software are highly-configurable
 - Allow for customization and flexibility
 - Can have misconfigurations (5th on OWASP most critical security risks)
- Challenge: huge search space (2¹³⁰⁰⁰ for Linux)

Linux/Unix Build Systems

```
--- Network device support
[*]
     Network core driver support
<M>
       Bonding driver support
       Dummy net driver support
<M>
<M>
       EQL (serial line load balancing) support
[ ]
       Fibre Channel driver support
<M>
        Intermediate Functional Block support
<M>
       Ethernet team driver support --->
<*>
        MAC-VLAN support
          MAC-VLAN based tap driver
<M>
< >
       IP-VLAN support
        Virtual eXtensible Local Area Network (VXLAN)
< >
<M>
        Generic Network Virtualization Encapsulation
<M>
        GPRS Tunneling Protocol datapath (GTP-U)
< >
        TEEE 802.1AE MAC-level encryption (MACsec)
<M>
       Network console logging support
[*]
          Dynamic reconfiguration of logging targets
<M>
        Universal TUN/TAP device driver support
[ ]
        Support for cross-endian vnet headers on littl
<M>
       Virtual ethernet pair device
<M>
        Virtio network driver
       Virtual netlink monitoring device
<M>
<M>
       Virtual Routing and Forwarding (Lite)
<M>
       Virtual vsock monitoring device
<M>
      ARCnet support --->
v(+)
       <§elect>
                   < Exit >
                               < Help >
```

- Modern software are highly-configurable
 - Allow for customization and flexibility
 - Can have misconfigurations (5th on OWASP most critical security risks)
- Challenge: huge search space (2¹³⁰⁰⁰ for Linux)
- Approach: use symbolic execution to compute path conditions mapping to built files
 - # of files is very small
 - Solve path conds to find build issues and misconfigurations

Outline

Al Safety Verification Highly Configurable and Build Systems Invariant Generation and Program Repair

Invariant Generation (DIG)

```
def intdiv(x, y):
    q = 0
    r = x
    while r \geq y:
    a = 1
    b = y
    while [??] r \geq 2b:
        a = 2a
        b = 2b
    r = r - b
    q = q + a
    [??]
    return q
```

- Discover invariant properties at certain program locations
- Answer the question "what does this program do?"
- Approach: use template and dynamic analysis

Invariant Generation (DIG)

```
def intdiv(x, y):
    q = 0
    r = x
    while r \geq y:
    a = 1
    b = y
    while [??] r \geq 2b:
        a = 2a
        b = 2b
    r = r - b
    q = q + a
    [??]
    return q
```

- Discover invariant properties at certain program locations
- Answer the question "what does this program do?"
- Approach: use template and dynamic analysis

Program Repair (GenProg)

```
def intdiv(x, y):
   q = 0
   r = x
   while r z y:
   a = 1
         3*v
   while r > 2b:
       a = 2a
       b = 2b
   r = r - b
   return q
```

- Localize errors and modify code to fix bugs
- Approach: use dynamic and static analyses to identify, create, and validate patches

Awards and Impacts

AI Verification

- NSF CAREER ('23—'28)
- Amazon Research Award'23
- featured in SIGBED
- ranked 4th in VNN-COMP'23 (would be 1st now)

Awards and Impacts

AI Verification

- NSF CAREER ('23—'28)
- Amazon Research Award'23
- featured in SIGBED
- ranked 4th in VNN-COMP'23 (would be 1st now)

Highly-Configurable and Build System Analysis

- NSF CISE CRII '20
- NSF Formal Methods in the Field (FMiT) '23
- Meta/Facebook unrestricted gift
- Adoption: used internally at Meta Whatsapp to analyze build issues

Awards and Impacts

Al Verification

- NSF CAREER ('23—'28)
- Amazon Research Award'23
- featured in SIGBED
- ranked 4th in VNN-COMP'23 (would be 1st now)

Highly-Configurable and Build System Analysis

- NSF CISE CRII '20
- NSF Formal Methods in the Field (FMiT) '23
- Meta/Facebook unrestricted gift
- Adoption: used internally at Meta Whatsapp to analyze build issues

Invariant Generation and Automatic Program Repair

- 10-year ACM SIGSOFT/IEEE TCSE Most Influential Paper Award'19
- 10-year ACM SIGEVO Most Impact Award'19
- NSF Medium Collaborative grant '21-'25
- Army Office of Research '18-'21
- Adoption
 - SV-COMP included benchmarks created by DIG
 - GrammaTech integrated DIG in Mnemosyne
 - Facebook and GrammaTech used GenProg in multiple projects

Future Directions

Currently

- focuses on existing problems (robustness, safety)
- tested with existing benchmarks

Future Directions

Currently

- focuses on existing problems (robustness, safety)
- tested with existing benchmarks

Challenges & Opportunities

- new problems
 - what properties should AI/ML have? (e.g., fairness, privacy, security)
 - how to formally define such specifications?
- new benchmarks (e.g., real-world, industrial data)
- new analyses (e.g., automatic property inference and repair for NNs)

- 8 grants: 4 NSF (3 sole-PI, 1 PI), 1 Defense (Co-PI), 2 industry (sole-PI), 1 internal (sole-PI)
 - Total \$2.65M; my share \$1.5M, as PI \$1.3M
 - At GMU (total \$1.9M, my/GMU share \$1.1M, as PI \$1.1M)
 - Young Faculty: NSF CRII'20, NSF CAREER'23, Amazon Research Award'23

- 8 grants: 4 NSF (3 sole-PI, 1 PI), 1 Defense (Co-PI), 2 industry (sole-PI), 1 internal (sole-PI)
 - Total \$2.65M; my share \$1.5M, as PI \$1.3M
 - At GMU (total \$1.9M, my/GMU share \$1.1M, as PI \$1.1M)
 - Young Faculty: NSF CRII'20, NSF CAREER'23, Amazon Research Award'23

Publications

- 27 journals/confs. papers since '16 (11 since joining GMU in '21)
 - 20 papers with students (9 with undergrad)
- Google: 3617 citations (h-index 17 i10-index 24)
- SIGSOFT MIP paper award, SIGEVO Impact paper award

- 8 grants: 4 NSF (3 sole-PI, 1 PI), 1 Defense (Co-PI), 2 industry (sole-PI), 1 internal (sole-PI)
 - Total \$2.65M; my share \$1.5M, as PI \$1.3M
 - At GMU (total \$1.9M, my/GMU share \$1.1M, as PI \$1.1M)
 - Young Faculty: NSF CRII'20, NSF CAREER'23, Amazon Research Award'23

Publications

- 27 journals/confs. papers since '16 (11 since joining GMU in '21)
 - 20 papers with students (9 with undergrad)
- Google: 3617 citations (h-index 17 i10-index 24)
- SIGSOFT MIP paper award, SIGEVO Impact paper award

Students Mentoring

- Current: 3 Ph.D RA's, 2 undergrads
- Graduated (at UNL): 1 PhD, 2 Masters, 11 undergrads (2 Outstanding Undergrad Research Awards)

- 8 grants: 4 NSF (3 sole-PI, 1 PI), 1 Defense (Co-PI), 2 industry (sole-PI), 1 internal (sole-PI)
 - Total \$2.65M; my share \$1.5M, as PI \$1.3M
 - At GMU (total \$1.9M, my/GMU share \$1.1M, as PI \$1.1M)
 - Young Faculty: NSF CRII'20, NSF CAREER'23, Amazon Research Award'23

Publications

- 27 journals/confs. papers since '16 (11 since joining GMU in '21)
 - 20 papers with students (9 with undergrad)
- Google: 3617 citations (h-index 17 i10-index 24)
- SIGSOFT MIP paper award, SIGEVO Impact paper award

Students Mentoring

- Current: 3 Ph.D RA's, 2 undergrads
- Graduated (at UNL): 1 PhD, 2 Masters, 11 undergrads (2 Outstanding Undergrad Research Awards)

Teaching

- At GMU (2 years): 1 grad (2x, required, SWE619), 1 undergrad (SWE419), 1 seminar (CS695)
- Developed online SWE619 course with Wiley (went live in Spring'23)

- 8 grants: 4 NSF (3 sole-PI, 1 PI), 1 Defense (Co-PI), 2 industry (sole-PI), 1 internal (sole-PI)
 - Total \$2.65M; my share \$1.5M, as PI \$1.3M
 - At GMU (total \$1.9M, my/GMU share \$1.1M, as PI \$1.1M)
 - Young Faculty: NSF CRII'20, NSF CAREER'23, Amazon Research Award'23

Publications

- 27 journals/confs. papers since '16 (11 since joining GMU in '21)
 - 20 papers with students (9 with undergrad)
- Google: 3617 citations (h-index 17 i10-index 24)
- SIGSOFT MIP paper award, SIGEVO Impact paper award

Students Mentoring

- Current: 3 Ph.D RA's, 2 undergrads
- Graduated (at UNL): 1 PhD, 2 Masters, 11 undergrads (2 Outstanding Undergrad Research Awards)

Teaching

- At GMU (2 years): 1 grad (2x, required, SWE619), 1 undergrad (SWE419), 1 seminar (CS695)
- Developed online SWE619 course with Wiley (went live in Spring'23)

Services

- Regularly serve in well-known confs/journals, 7 NSF panels in past 5 consec. yrs
- At GMU: program director of MS SWE; organize Virtual Open House; maintain CSRankings DB (GMU is ranked 32!)