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Abstract—This paper describes BeAFix, a tool for automated
repair of faulty Alloy models. The tool builds upon the Alloy
Analyzer, the analysis tool for Alloy. It generates repair candi-
dates by mutating a faulty Alloy model, and employs a bounded-
exhaustive approach to traverse the space of repair candidates.
Since BeAFix’s mutation operators make the space of repair
candidates to quickly grow, the tool supports some sound pruning
techniques, that allow it to fix Alloy models with more than one
faulty line or expression. Additionally, BeAFix does not require
tests as a patch acceptance criterion. Although BeAFix supports
tests as oracles, our tool is also able to leverage property-based
oracles, which are more commonly found in Alloy models in the
form of predicate satisfiability and assertion validity checks.

A video demonstration of BeAFix can be found at https:
//youtu.be/5RG40SmlFXQ. The tool’s binaries and further details
about its usage, can all be found at https://sites.google.com/view/
beafixevaluation/beafix. The tool is also available in a public
archive at https://doi.org/10.5281/zenodo.5296466.

Index Terms—Alloy, Automated Repair, Bounded-Exhaustive
Analysis

I. INTRODUCTION

The problem of guaranteeing that a software system behaves
correctly according to the user expectations is still one of the
most challenging problems in software engineering, despite
the significant advances in techniques for software validation
and verification. Ambiguities and incompleteness issues in
software requirements, among other issues introduced as part
of early software design activities, are common causes of
unexpected behaviors being observed in delivered software
[4]. Formal notations for capturing software requirements and
stating abstract characterizations of the software-to-be, can
help in reducing these issues. More precisely, by analyzing
abstract formal models of software, one can discover missing
problem domain constraints or flaws in abstract software
designs, anticipating problems long before the software is
developed [2].

Alloy [6] is a formal specification language, well suited to
aid in the above described situations, because it features a
fully automated SAT-based specification analysis mechanism.
For this reason, it is also the target language of other analysis
tools [3], [9], [1]. Alloy’s language is expressive, based on
a first-order relational logic that includes transitive closure.

Its specifications can be automatically analyzed using Alloy
Analyzer, the language’s main tool. The analyses that this tool
supports are predicate satisfiability checks (checking whether a
given property is consistent with the specification constraints)
and assertion validity checks (checking whether a given prop-
erty is a consequence of the specification constraints). Both
analyses are bounded, or more precisely, bounded-exhaustive:
given a predicate (resp., assertion) given a user provided bound
(maximum number of elements in the specification’s domains),
the tool either finds the predicate (resp., assertion) to be
satisfiable (resp., valid) within the bound, or guarantees that no
model (resp., counterexample) of the predicate (resp., asser-
tion) exists, within the bound. These checks are implemented
through a reduction to SAT solving.

As with any formal notation, correctly modeling a given
software design and corresponding problem domain may not
be straightforward. Developers can make mistakes, formal-
ization mistakes in particular, i.e., mistakes associated with
wrongly expressing, in the formal notation, the developers’
intention. These mistakes lead to faulty Alloy specifications,
which many times can be identified via Alloy’s analyses, when
analysis results differ from what the developers expected [8].
For instance, the developer may have expected a predicate to
be consistent with the specification and is not, or an assertion
to follow from the specification, and it does not.

In this paper, we present BeAFix, a tool that aids in de-
bugging faulty Alloy specifications by performing automated
repair. The tool is similar in spirit to automated program repair
tools, but for the context of formal specifications instead of
programs. As explained in [5], where the tool’s technique
is introduced, this is not just a simple change of context:
certain characteristics make programs and specifications dif-
ferent, and techniques for program repair difficult to adapt
to the specification context. For instance, in programming
contexts one often finds test cases, which can be used as patch
acceptance criterion as well as to drive the repair process
to the most suspicious parts of a program. But tests are
not naturally found accompanying formal specifications. Also,
large software repositories can be the source of patch patterns,
that techniques can identify and use to repair other programs.



But no such repositories are available for formal software
specifications.

BeAFix takes advantage of common Alloy specification
elements. Rather than using test cases as patch acceptance
criteria, BeAFix attempts to exploit the property-based oracles
that are typically found in Alloy specifications, such as predi-
cates and assertions associated with analyses (satisfiability/va-
lidity checks). These properties are usually more general than
specific test cases, and therefore naturally constitute stronger
patch acceptance criteria, diminishing the impact of overfitting.
Moreover, BeAFix follows a bounded-exhaustive approach
to specification repair: given a faulty Alloy model, a set of
suspicious locations, a set of expression mutation operators
and a bound k, the tool either finds a fix, i.e., a modification
of the suspicious locations that applies the mutation operators
at most k times per location, or it guarantees that no such
fix is possible. Thus, the technique fits well with the kind of
analysis that the Alloy user is accustomed to.

BeAFix supports Alloy specifications with multiple buggy
expressions. It also supports different repair “oracles”, in
particular failing predicates and assertions, as well as the
recently proposed Alloy unit tests [11]. However, the tool does
not perform fault localization: it is a task that is performed only
once, before the repair process starts, and can be delegated to
Alloy fault localization tools [13], [14].

Our presentation concentrates on the tool itself. Details on
the repair technique, and in particular on its sound pruning
approaches (necessary to help with the tool’s efficiency, as the
space of repair candidates is bounded exhaustively explored)
are only briefly described, as these are part of the technical
paper that introduced the technique [5].

II. USING BEAFIX

BeAFix is implemented as an extension of the Alloy Ana-
lyzer. The Alloy user will therefore feel comfortable with the
tool. All standard Alloy Analyzer functionalities for editing
and analyzing specifications are exactly as in the original tool.
Features specific to specification repair appear as additional
options, that do not affect the standard options.

In order to describe how the tool is used, let us consider an
abstract formal specification of a file system. The specification
is originally introduced in [10]. The objects of a file system
can be files or directories, which are specified as signatures
(the mechanism to define data domains in Alloy). These
signatures are combined in an additional one, FSObject,
which the former extend (Alloy allows one to define data
domain inclusion via signature extension, and signatures which
are solely composed of their extensions via the “abstract”
keyword). A file system is defined using a signature, with
fields that capture its set of live objects, a distinguished
root directory, a parent relation stating that every element
of the system, except the root, belongs to exactly one directory,
and the relation that represents the directories’ contents.
Assumed constraints are specified in Alloy via facts, expressed
in Alloy’s relational logic. This specification’s assumptions
state that all live system objects can be reached from

the root, recursively via the contents relation; also, the
parent relation is the transpose of contents. This part of
the specification is then as follows:

1 abstract sig FSObject { }
2 sig File, Dir extends FSObject { }
3 sig FileSystem {
4 live: set FSObject,
5 root: Dir & live,
6 parent: (live - root) -> one (Dir & live),
7 contents: Dir -> FSObject
8 }
9 {

10 live in root.*contents
11 parent = ˜contents
12 }

Now that we have the structural specification of the file
systems, we would like to capture some operations on file
systems, such as moving an element from a directory to
another, or recursively removing all elements contained in
a given one. Model operations are specified in Alloy via
predicates. A move predicate will capture the move operation,
and a removeAll predicate the recursive removal. Predicate
parameters represent the file system an operation is applied
on, the resulting system (if the operation may modify it), as
well as other operation arguments and return values. As a
convention, primed variables represent resulting values. For
instance the move operation will apply to a fs file system,
it will “return” a fs’ file system, and needs to receive both
the object to be moved, and the target directory. The body
of the predicate captures the behavior of the operation as a
relationship between the corresponding parameter variables.
The operations are then specified as follows:

12 pred move [fs, fs’:FileSystem, x:FSObject, d:Dir]{
13 (x + d) in fs.live
14 fs’.parent = fs.parent- x->(x.(fs.parent))- x->d
15 }
16

17 pred removeAll [fs, fs’: FileSystem, x: FSObject]{
18 x in (fs.live - fs.root) and fs’.root = fs.root
19 let subtree = x.*(fs.contents) |
20 fs’.parent =
21 fs.parent - subtree->(subtree.(fs.contents))
22 }

While it is not obvious, both operations are wrongly speci-
fied. The move operation should state that d is the new parent
of x, and it does not (it actually “removes” this map). The
removeAll operation, on the other hand, wrongly specifies
how the parent relation is updated (removing the contain-
ment in descendants of subtree, rather than ancestors of
it).

As proposed in [10], one can check the specification by
means of satisfiability checks, and by defining assertions that
capture intended properties of the specification, in particular
of the two operations. For the move operation, the assertion
moveOkay states that the operation should not alter the
objects of the file system. For the removeAll operation, the
removeAllOkay assertion states that the operation removes
the direct and indirect contents of the removed element. These
assertions look as follows:



21 assert moveOkay {
22 all fs, fs’: FileSystem, x: FSObject, d:Dir |
23 move[fs, fs’, x, d] => fs’.live = fs.live
24 }
25

26 assert removeAllOkay {
27 all fs, fs’: FileSystem, d: Dir |
28 removeAll[fs, fs’, d] =>
29 fs’.live = fs.live - d.*(fs.contents)
30 }
31

32 run move for 5 expect 1
33 run removeAll for 5 expect 1
34 check moveOkay for 5
35 check removeAllOkay for 5

Four analysis commands define the expectations on the
specification: predicates move and removeAll are ex-
pected to be consistent with the specification, and assertions
moveOkay and removeAllOkay are expected to hold.
When these are checked, Alloy Analyzer determines that the
assertions are invalid, and produces witnessing counterexam-
ples. At this point, we can use BeAFix to attempt to repair the
specification, i.e., to modify it so that all analysis commands
succeed. We refer to these expectations as the repair oracle.

To perform the repair process, BeAFix requires the pro-
vision of one or more suspicious locations, i.e., expressions
in the specification that are assumed to be the cause of
the defect in the specification. These suspicious locations
can be whole formulas, lines, or other subexpressions within
the specification. However, signature definitions, that define
the domains of the specification and its structure, cannot
be marked as suspicious. The suspicious locations may be
manually indicated, or automatically generated, by resorting to
some fault localization technique for Alloy, such as FLACK
[14] or AlloyFL [13]. As we illustrate in Figure 1, these
locations are indicated in the specification text by enclos-
ing the corresponding expression together with the symbol
#m#([comma separated variables]) 1 where the
variables associated to the marker are variables that appear free
in the marked expression. One can then execute the Repair by
mutating marked exprs #m# action from the Execute Alloy
Analyzer menu 2 .

During repair, the GUI version of the tool displays the
fix candidates being considered (both the original expression
and corresponding mutated expression, for reference), and
the analysis verdicts (which parts of the oracles passed and
failed, etc.) 3 . A detailed report is shown when the repair
process finishes, and if a fix is found, the proposed changes
are reported 4 , and the corresponding fixed version of the
specification is written to a file.

For our running exaiple, BeAFix found a fix with the
following modifications:

Line 14:
ORIGINAL: ...(x -> (x.(fs.parent)))) - (x -> d))
REPAIRED: ...(x -> (x.(fs.parent)))) + (x -> d))

Line 21:
ORIGINAL: ...(subtree -> (subtree.(fs.contents))))
REPAIRED: ...(subtree -> (subtree.˜(fs.contents))))

2

3

4

1

Fig. 1. BeAFix Graphical User Interface.

BeAFix allows the user to set various parameters, including
a maxdepth (maximum number of mutations allowed per
marked expression) and a timeout (time budget, whose default
is “unlimited”). The two pruning techniques, variabilization
and partial repair, can be enabled or disabled for the repair
process. Pruning techniques only work when the faulty speci-
fication has more than one suspicious location. Further details
on how the pruning techniques operate, and precisely when
these apply, can be found in [5]. The effect of pruning can
be assessed by running the repair process with it enabled and
disabled. For instance, in our running example, repairing with-
out pruning explores more than 4600 repair candidates before
finding a fix, while the tool only explores 324 candidates when
pruning is enabled.

BeAFix can be run from the command line too; we provide
a specific version of the tool for this usage.

BeAFix requires the SAT solver used for analysis to be
MiniSAT. The command line version found in the replication
package’s docker container has MiniSAT already selected. If
the user runs the command line version of BeAFix natively,
MiniSAT needs to be selected as underlying solver, upon first
use (this can be achieved by executing Alloy Analyzer, or the
GUI version of BeAFix, just to set the solver). This step is
not necessary in the latest version (2.12.1) of the tool.

III. HOW BEAFIX WORKS

BeAFix does not perform fault localization. This task is
delegated either to the user, or to an external tool. BeAFix then
starts with an Alloy specification with some marked suspicious
expressions. Assuming that the specification is faulty, i.e., at
least one of the analysis commands fails, BeAFix will attempt
to fix the specification by mutating the marked expressions
using a set of expression mutation operators, with the aim of
finding a modification of the specification where all commands
succeed. BeAFix’s repair algorithm is graphically depicted in
Figure 2. The algorithm maintains a queue of candidate fixes,
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Fig. 2. BeAFix repair process.

initially populated with only the original faulty specification.
In each iteration, the first candidate is dequeued and the
analysis commands are checked on it to validate it; if at
least one command fails, then all applicable mutations on this
candidate are applied (as long as the max. mutation depth is
not reached) and the results enqueued, before discarding the
failing candidate. The candidate offspring generation involves
the sound pruning strategies, that may lead to discarding some
of the candidates (when pruning applies, these candidates are
not even generated, of course). The process is iterated until a
fix is found (all analysis commands succeed on the current fix
candidate), the queue becomes empty, or the time budget for
analysis is reached.

The pruning techniques that BeAFix supports are variabi-
lization and partial repair. Both are concerned with speci-
fications that have more than one suspicious location. Vari-
abilization performs a check of a candidate expression e′,
replacing a suspicious expression e, in combination with the
remaining faulty locations in the specification. Intuitively, it
performs a check to analyze whether leaving e′ fixed (i.e.,
removing it from the suspicious locations) may lead to a repair
or not; if fixing e′ necessarily leads to violating a command,
then e′, and its combination with mutations for the remaining
locations, are disregarded. Partial repair, on the other hand,
performs a syntactic analysis between the dependencies of the
commands in a given candidate and the suspicious locations,
to decide whether a particular fix candidate can be considered
or disregarded, without necessarily checking all commands.
Both pruning techniques are sound, in the sense that they can
only disregard fix candidates that would not pass the analysis
checks, and complement each other.

IV. FINAL REMARKS

Formal specification practitioners are aware of the subtleties
of correctly capturing, in a formal notation, a given abstract
design and the relevant characteristics of the corresponding
problem domain. Tools like Alloy have had great success in
formal specification contexts, among other reasons, because

of its outstanding automated analysis support, that can help in
incrementally developing formal models, fixing issues, adding
missing assumptions, and adapting design decisions. This
process has been largely manual, and it has recently received
attention with repair tools such as ARepair [12], and tools for
automating auxiliary tasks such as fault localization.

Our tool BeAFix arrives to this context, and attempts to
profit from standard Alloy “oracles”, which are naturally
stronger than test cases, to effectively suggest fixes to faulty
Alloy specifications. As a consequence, the tool is less prone to
overfitting, compared to test-based techniques. As the evalua-
tion in [5] shows, BeAFix was able to effectively repair a large
portion of a benchmark of over two thousand faulty models,
with significantly less overfitting than alternative techniques.
It can also correctly repair a significant number of cases in
the ARepair benchmark (the benchmark introduced in [12]),
without the need to manually craft test cases. Figure 3 shows
an overview of these results.

Fig. 3. BeAFix evaluation

The experimental dataset that was used to assess BeAFix
was built by complementing the ARepair benchmark, with a
set of real faulty specifications originated in the Alloy4Fun
project [7]. This project gathers a large collection of infor-
mation of student sessions solving specification assignments.
We inspected and combined these sessions to construct speci-
fications performed by a same student, accumulating different
specification defects. The resulting faulty specification dataset
has, as we mentioned, more than two thousand faulty Alloy
models. The tool, the experimental dataset, and the scripts to
reproduce the experiments, are all publicly available in:

https://sites.google.com/view/beafixevaluation/

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their helpful com-
ments. This work was supported in part by awards W911NF-
19-1-0054 from the Army Research Office; CCF-1948536,
CCF-1755890, CCF-1618132 from the National Science Foun-
dation; a Faculty Seed Award from UNL; and PICT awards
2017-1979, 2017-2622 and 2019-2050 from Argentina’s Na-
tional Agency of Scientific and Technological Promotion (AN-
PCyT).



REFERENCES

[1] Julien Brunel, David Chemouil, Alcino Cunha, and Nuno Macedo. The
electrum analyzer: model checking relational first-order temporal spec-
ifications. In Marianne Huchard, Christian Kästner, and Gordon Fraser,
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