An Ant-Based Algorithm for Coloring Graphs

Thang N. Bui* ThanhVu H. Nguyen Chirag M. Patel
Kim-Anh T. Phan

Penn State Harrisburg, Computer Science Program, Middletown, PA 17057, USA

Abstract

This paper presents an ant-based algorithm for the graph coloring problem. An
important difference that distinguishes this algorithm from previous ant algorithms
is the manner in which ants are used in the algorithm. Unlike previous ant algorithms
where each ant colors the entire graph, each ant in this algorithm colors a small
portion of the graph using only local information. These individual coloring actions
by the ants form a coloring of the graph. Even with the lack of pheromone laying
capacity by the ants, the algorithm performed well on a set of 119 benchmark
graphs. Furthermore, the algorithm produced very consistent results, having very
small standard deviations over 50 runs of each graph tested.

Key words: graph coloring, ant-based algorithm

1 Introduction

Let G = (V, E) be an undirected graph with vertex set V' and edge set E. A
k-coloring of G is a mapping f : V — C, where |C| = k. The elements of C'
are called colors. A k-coloring is called proper if for all (u,v) € E, f(u) # f(v),
i.e., adjacent vertices must have different colors. The minimum £ such that G
has a proper k-coloring is called the chromatic number of G and is denoted by
X(G). The conflict at a vertex v under f is the number of vertices adjacent to v
having the same color as v under f. The total conflict in G under f is the num-
ber of pairs of adjacent vertices that have the same color under f. The graph
coloring problem is the problem of finding the minimum k such that the given

* Corresponding author.

Email addresses: tbui@psu.edu (Thang N. Bui), txn131@psu.edu (ThanhVu
H. Nguyen), cmp196@psu.edu (Chirag M. Patel), kap158@psu.edu (Kim-Anh T.
Phan).

Preprint submitted to Elsevier 22 March 2008

input graph G has a proper k-coloring. It is well known that the graph coloring
problem is NP-hard. In fact, determining whether a given graph can be colored
with three colors or not is NP-complete. There exists an algorithm that can
approximate the chromatic number within O (|V|(loglog |V [)?/(log [V])?)[22].
However, it is known that we cannot approximate within [V['/7=¢, for any
€ > 0 unless P = NP [2]. The graph coloring problem arises in a wide variety of
problems such as task scheduling, time tabling, frequency assignment in com-
munication networks, register allocation, short circuit testing in PCB design
and traditional map coloring. Since the graph coloring problem is NP-hard
and approximation algorithms are not very promising as mentioned above,
much work has been concentrated on designing heuristic algorithms for the
problem. Heuristics for the graph coloring problem use various algorithm de-
sign techniques including constructive methods [5][27], iterative methods [12],
genetic algorithms [32], local search methods [30], tabu techniques [21], and
ant system algorithms [8][9][11][32].

In this paper we give an ant-based algorithm for the graph coloring problem.
Ant-based algorithms and ant systems are optimization techniques that imi-
tate the collective ability of an ant colony to solve problems [4]. A number of
ant system algorithms for the graph coloring problem have been proposed in
recent years [11][8][9]. Our ant-based algorithm has a number of features that
are different from previous ant system algorithms for the coloring problem.
Unlike the ant system algorithm of Costa and Hertz [11], where the ants are
allowed to move from one vertex to any other vertex in the graph, the ants in
our algorithm can only move along the edges of the graph staying closer with
the ant colony metaphor. Also the results obtained by each ant in Costa and
Hertz’s algorithm were based on sequential and traditional methods like RLF
[27] or DSATUR [5]. Our method, instead, is based on local search by each
ant using new conflict minimization techniques. In comparison to Comellas
and Ozon’s ant system algorithm [8] for graph coloring, where each ant colors
the entire graph and does just one coloring, each of our ants colors a portion
of the graph and does this in stages, called cycles. The local coloring that
each of our ants does in each cycle is affected by the colorings of other ants
in previous cycles. Unfortunately, it was difficult to compare our results with
those of Comellas and Ozon, as they have not used any standard set of test
instances like those used in the DIMACS Second Challenge [25]. We tested
our algorithm using graphs provided by the COLOR04 Computational Sym-
posium web site (http://mat.gsia.cmu.edu/COLOR04/). These are the graphs
of the DIMACS Second Challenge. The performance of our algorithm on a set
of 119 graphs is very encouraging. In this set of benchmark graphs there are
63 graphs with known chromatic numbers or best known upper bound on the
chromatic number. Our algorithm matched the best known values for 56 of
these instances and came within 1 of the best known values for the remaining
7 instances.

The rest of the paper is organized as follows. In Section 2 we give a brief
description of ant system algorithms. We describe our algorithm in Section 3
and present the experimental results in Section 4. The conclusion is given in
Section 5.

2 Ant System Algorithms

Ant System (AS) is a heuristic technique that imitates the behavior of a colony
of ants and their ability to collectively solve problems. For example, it has been
observed that a colony of ants is able to find the shortest path to a food source
by marking their trails with a chemical substance called pheromone [4][14].

As an ant moves and searches for food, it lays down pheromone along its
path. As it decides where to move, it looks for pheromone trails and prefers to
follow trails with higher levels of pheromone. Suppose there are two possible
paths to reach a food source. Regardless of the path chosen, the ant will lay
the same amount of pheromone at each step. However, it will return to its
starting point quicker when it takes the shorter path. It is then able to return
to the food source to collect more food. Thus, in an equal amount of time, the
ant would lay a higher concentration of pheromone over its path if it takes the
shorter path, since it would complete more trips in the given time. Ants prefer
to follow the path with the most accumulation of pheromone, which happens
to be the shortest path. In addition, some pheromone evaporates over time
although not a significant amount [4][14].

The Traveling Salesman problem (TSP) was one of the first problems to which
the Ant System (AS) technique was applied [4] [14]. TSP is the well-known
problem of finding the smallest cost tour in an edge weighted complete graph.
The tour must visit each vertex in the graph exactly once, starting and ending
at the same vertex. The cost of a tour is the sum of the costs of the edges
in the tour. A typical ant system algorithm or more precisely, ant colony
optimization (ACO) algorithm, for TSP consists of a number of ants. Each
ant takes turn finding a tour in the given input graph. After an ant has found
a tour, it deposits an equal amount of pheromone on each edge of the tour.
The amount of pheromone deposited is a function of the cost of the tour.
Normally, this amount is inversely proportional to the cost of the tour, i.e.,
the smaller the cost of the tour the more pheromone are deposited. Thus,
edges in a low cost tour will have more pheromone deposited on them than
edges in a high cost tour. Also, an edge may have more pheromone deposited
on it if it is used in one or more tours constructed by the ants. Pheromone
effectively acts as a memory device helping later ants to construct their tours.
In fact, the amount of pheromone on each edge is an important factor in
the construction of a tour by an ant. Generally, ants will tend to pick edges

with higher concentration of pheromone in constructing tours in the graph.
To mitigate the problem of getting stuck in a local optimum, pheromone is
allowed to evaporate. Experimental results reported in [4] and [14] showed that
ACO algorithms for TSP are very competitive against existing algorithms for
TSP.

Other problems that have been the focus of AS as well as Ant Colony Opti-
mization (ACO) [13] work include the quadratic assignment, network routing,
vehicle routing, frequency assignment, graph coloring, shortest common su-
persequence, machine scheduling, multiple knapsack and sequential ordering
problems, graph partitioning, maximum clique [28] [4].

3 An Ant-Based Algorithm for Coloring Graph (ABAC)

In this section we describe an ant system algorithm for the graph coloring
problem, called ABAC. The main idea of the algorithm is for a set of ants
to color the graph. The ants are randomly distributed to the vertices of the
input graph. Each ant follows the same set of rules to color the vertices of
the graph. Our approach differs from the ACO approach in that each of our
ants does not find a complete solution to the problem as is the case in the
ACO algorithms for graph coloring of [8][11] or the ACO algorithm for TSP
as described in the previous section. Instead, each ant in our algorithm ABAC
colors only a portion of the graph. In this manner, ABAC is more amenable to
a distributed implementation. However, in this paper we do not present such
an implementation. Another difference in our approach is that ants in our
algorithm do not have pheromone laying capability. For our case, this helps
reduce the running time and in limited experiments we found that in this
algorithm pheromone did not show visible or significant effect on the quality
of the solution.

3.1 The General Idea

Let G = (V, E) be the input graph. We first run a slightly modified version of
the XRLF algorithm [24][27], which we call MXRLF, on G to obtain a proper
k-coloring of GG. Note that k is an upper bound on the chromatic number,
X(G), of G. An initial coloring of G, which may not be a proper coloring,
is derived from this proper k-coloring by MXRLF. A colony of ants is then
randomly distributed to the vertices of the graph. The algorithm then proceeds
in a number of cycles. In each cycle, each of the ants attempts to color the
portion of the graph close to where it is at using only the set of currently
available colors. At the end of a cycle, if there are no conflicts in the current

Input: Graph G = (V, E)
Output: A coloring of G. Assume that colors are integers starting from 1.

begin
Use MXRLF to obtain a coloring of GG, called currentColoring
Let k be the number of colors in currentColoring /] k> x(G)
bestColoring «<— currentColoring, bestNumColors «—— k
availableColors «—— [ak] // initial number of available colors

Modify currentColoring as follows
Select [Bk] color classes at random
Rename these selected colors with integers from the set {1,..., [5k]}
Erase the color of vertices not belonging to the above [5k] color classes
Color the uncolored vertices using [vk]| color classes

Compute the conflict at each vertex and the totalConflict of G
Distribute nAnts randomly on the vertices of G

for cycle =1 to nCycles do
for ant = 1 to nAnts do
for move = 1 to nMoves do
ant colors its current vertex // i.e., currentColoring is modified
ant updates local conflict costs in current neighborhood
ant updates its recentlyVisited tabu list
ant moves to another vertex using path of length 2
endfor
endfor

update totalConflict cost for the entire graph G

if totalConflict = 0 and bestNumColors > availableColors then
bestColoring «<— currentColoring
bestNumColors «<—— availableColors
availableColors +— availableColors — 1

endif

if availableColors has not improved for nChangeCycles cycles then
availableColors «— availableColors + 1
if availableColors has not improved for nJoltCycles cycles then
perform a jolt operation
if bestNumColors has not improved in the last nBreakCycles cycles
then break
endfor

return bestColoring
end

Fig. 1. An ant-based algorithm for coloring graphs (ABAC)

coloring then the number of available colors is reduced by one and we start
another cycle. Otherwise, we may increase the number of available colors by
one before starting another cycle. Other actions might also be taken by the
algorithm to bring it out of a potential local optimum before it starts another
cycle. Stopping conditions are described in full below. The complete algorithm
is given in Figure 1. In the following subsections we describe the various parts
of the algorithm in detail.

3.2 Initial Coloring

In the following discussion, a color class is a set of vertices having the same
color. A coloring of a graph naturally induces a set of color classes.

Our first objective is to quickly find an upper bound on the chromatic number
of the input graph. For this purpose we used an algorithm that is mainly based
on the RLF algorithm [27] but also uses some features of the XRLF algorithm
[24]. We call this algorithm MXRLEF. Let P be a set of uncolored vertices
not adjacent to any vertices colored with the current color in consideration
and R be a set of uncolored vertices adjacent to at least one vertex colored
with the current color in consideration. MXRLF avoids using vertices from R,
while building a color class. We used the same technique used in RLF [27]; i.e.,
choosing the first vertex with the maximum degree to add to the first color
class. Then we sequentially add the next vertex to the current color class from
P having the maximum degree in R. Ties are broken by selecting the vertex
with the minimum degree in P. Repeat the above process until P is empty or
the color class size limit, MXRLF_SET_LIMIT, is exceeded [24]. This is repeated
recursively until the entire graph is colored. As our intention was to quickly
find an upper bound on the chromatic number, we omitted the exhaustive
search method for building the color classes of the XRLF algorithm [24].

Let k be the number of color classes produced by MXRLF. The initial number
of colors available to the ants, called availableColors, for coloring the graph
is set to [ak]|. From the k color classes produced by MXRLF we select at
random [Sk]| color classes to be kept. The remaining vertices that do not
belong to the selected color classes are then distributed randomly into [vk]
color classes, where 0 < 3 < v < a < 1. These [vk]| color classes include the
[Bk] color classes selected earlier. The parameters «, 5 and ~, as well as other
parameters to follow will be specified in Section 3.5. Note that color classes
are renumbered so that all colors are in the set {1,...,[ak]}. This coloring
is then used as a starting point for the ants. To summarize, we now have a
coloring of G having [vk] colors. Note that this coloring may not be a proper
coloring of G. We also have a total of [ak] colors available for the ants to use
initially.

3.3 How Ants Color

We distribute a colony of nAnts randomly to the vertices of the graph. The
algorithm consists of a number of cycles. In each cycle ants are activated one
at a time. When activated an ant colors a limited local area of the graph
without any global knowledge of the graph and using only colors from the set
of available colors, i.e., the set {1,...,availableColors}. When an ant is at a
vertex its objective is to color or re-color that vertex so that the conflict at that
vertex is zero, if possible. If it is not possible, the ant will select the smallest
number color from the list of available colors that will minimize the conflict
at that vertex. Furthermore, if zero conflict is not possible, the ant will try
to select a color that it has not used in a previous location. This will prevent
additional conflicts to previous vertices that the ant has colored. When there
is a choice among several available colors satisfying the requirement, the ant
just picks one at random. The conflict at this vertex is then updated. Note
that the ant does not have knowledge of the total conflicts for the entire graph.

After an ant finishes coloring its current vertex it moves to another vertex and
tries to color it. Each ant will make nMoves such moves before it stops. The
ant moves to another vertex by taking a path of length two. The first edge
in that path is selected at random among all edges connected to its current
vertex. The second edge in the path is selected so that the ant will end up
in a vertex that has the maximum conflict among all vertices adjacent to the
vertex at the end of the first edge. Ties are broken arbitrarily. Additionally,
each ant also has a tabu list containing recently visited vertices that they
cannot revisit. The tabu list helps prevent ants from getting stuck in a loop.

3.4 Perturbation and Stopping Condition

When all the ants finish coloring at the end of a cycle we have a coloring
of G. We then compute the total conflict of the current coloring. If the total
conflict of the current coloring is zero, we reduce the number of available colors
availableColors by 1 and continue with the next cycle. On the other hand,
we increment availableColors by 1 (up to bestColors) if availableColors
has not been changed for the last nChangeCycles. We also maintain the best
coloring found so far and update that value after each cycle, if appropriate.

To assist ants in escaping local optima, we perturb the current coloring of
the graph by a method that we call a jolt. More specifically, if there is no
reduction in the number of colors used for the last nJoltCycles cycles, then
the current coloring is perturbed as follows. The vertices in the graph that
have conflicts in the top 10% are selected and their neighbors are randomly

re-colored using 80% of the current set of available colors. The idea of the jolt
is to inject enough disturbances into the current coloring to move it out of the
current local optimal but not enough to destroy the coloring that has been
built up to that point.

The algorithm stops after it has run for a preset number of cycles, called
nCycles, or if it has not made any improvement for a number of nBreakCycles
consecutive cycles.

3.5 Parameters

In what follows, we give a brief description for each important parameter
used in the algorithm. These parameters were obtained by testing the ABAC
algorithm on a small number of graphs such as circles, lines, trees, caterpillars
and grids. A few instances of the DIMACS Second Challenge were also used
in these tests. These parameters were not tuned for any particular classes of
graphs. The objective is to balance between performance and running time.
We assume that n = |V is the cardinality of the vertex set.

nAnts is the number of ants in a colony and was set to 20% of the number of
vertices in the graph. For efficiency reason we do not allow nAnts to exceed
100.

nCycles is the number of cycles in the entire coloring process and was set to
be min{6n, 4000} .

« is the percentage of color classes produced by MXRLF that is made available
for the ants to use initially. We set o = 80%.

[is the percentage of color classes from MXRLF that are kept to create an
initial coloring for the graph before the ants start. We set 5 = 50%.

v is the percentage of color classes from MXRLF that are to be used for
coloring vertices that have not been colored in the initial [3k] color classes.
We set v = 70%.

MXRLF_SET_LIMIT is the color class/partition size limit in MXRLF. We set
MXRLF _SET LIMIT = 0.7n.

nMoves is the number of vertices an ant can visit before it stops. We define

nMoves as follows.

n/4, if nAnts < 100

nMoves =

20 + otherwise

n
nAnts’

R_SIZE LIMIT is the length of a tabu list of recently visited vertices. An ant
will avoid revisiting those vertices in its tabu list allowing a more diverse
exploration of the graph. We set R_.SIZE LIMIT = nMoves/3.

nChangeCycle is the number of consecutive cycles allowed in which there is
no improvement before the number of available colors, availableColors,
is increased. We set nChangeCycle = 20.

nJoltCycles is the number of consecutive cycles during which the number of
colors used, i.e, availableColors, has not improved, before a jolt is applied
to the coloring creating a perturbation of the current coloring configuration.
We set nJoltCycles = max{n/2,600}.

nBreakCycles is the number of consecutive cycles during which the value of
availableColors has not improved before the algorithm is terminated. We
set availableColors = max{5n/2,1600}.

4 Experimental Results

In this section we present the results of our algorithm on 119 benchmark
graphs given at the web site http://mat.gsia.cmu.edu/COLOR04/. Informa-
tion about these graphs is summarized in Table 1. The algorithm was imple-
mented in C++ and run on a 3.2 GHz Mobile Pentium4 PC with 1 GB of
RAM running the Linux operating system. The machine benchmark is given
at the end of the paper in Figure 2. For each of the 119 graphs in Table 1
we ran our algorithm for 50 trials. Of the 119 graphs there are 63 graphs
with either known chromatic number or best known bound on the chromatic
numbers. Of these 63 graphs, our algorithm found matching bounds for 56 of
them. There are 7 graphs for which our algorithm got poorer results, but are
within 1 of the best known bound. The results are summarized in Tables 2
and 3. For each graph, we list the name of the graph, the chromatic number
or the best known bound on the chromatic number, the minimum, maximum,
average and standard deviation of the results produced by our algorithm in
50 trials. We also list the average running time (in seconds) out of the 50 runs
of each graph. For a number of graphs the running times were too small to
be recordable and were recorded as 0. It should be noted that the standard
deviations of the results are quite small, less than 1 for all but three graphs.
For the remaining three graphs the standard deviations are less than 2.

Table 1
Summary of the 119 test graphs.

Instances V] |E| Best || Instances V] |E| Best
G=(V,E) Known || G=(V,E) Known
1-Fulllns_3.col.b 30 100 ? le450-15d.col.b 450 16750 15
1-Fulllns_4.col.b 93 593 ? le450_25a.col.b 450 8260 25
1-Fulllns_5.col.b 282 3247 ? le450_25b.col.b 450 8263 25
1-Insertions_4.col.b 67 232 4 le450_25c.col.b 450 17343 25
1-Insertions_5.col.b 202 1227 ? le450_25d.col.b 450 17425 25
1-Insertions_6.col.b 607 6337 ? le450_5a.col.b 450 5714 5
2-Fulllns_3.col.b 52 201 ? le450_5b.col.b 450 5734 5
2-Fulllns_4.col.b 212 1621 ? le450_5c.col.b 450 9803 5
2-Fulllns_5.col.b 852 12201 ? le450_5d.col.b 450 9757 5
2-Insertions_3.col.b 37 72 4 miles1000.col.b 128 3216 42
2-Insertions_4.col.b 149 541 4 miles1500.col.b 128 5198 73
2-Insertions_5.col.b 597 3936 ? miles250.col.b 128 387 8
3-Fulllns_3.col.b 80 346 ? miles500.col.b 128 1170 20
3-Fulllns_4.col.b 405 3524 ? miles750.col.b 128 2113 31
3-Fulllns_5.col.b 2030 33751 ? mugl00-1.col.b 100 166 4
3-Insertions_3.col.b 56 110 4 mugl00-25.col.b 100 166 4
3-Insertions_4.col.b 281 1046 ? mug88_1.col.b 88 146 4
3-Insertions_5.col.b 1406 9695 ? mug88_25.col.b 88 146 4
4-Fulllns_3.col.b 114 541 ? mulsol.i.1.col.b 197 3925 49
4-Fulllns_4.col.b 690 6650 ? mulsol.i.2.col.b 188 3885 31
4-Fulllns_5.col.b 4146 77305 ? mulsol.i.3.col.b 184 3916 31
4-Insertions_3.col.b 79 156 3 mulsol.i.4.col.b 185 3946 31
4-Insertions_4.col.b 475 1795 ? mulsol.i.5.col.b 186 3973 31
5-Fulllns_3.col.b 154 792 ? myciel3.col.b 11 20 4
5-Fulllns_4.col.b 1085 11395 ? mycield.col.b 23 71 5
abb313GPIA.col.b 1557 53356 ? myciel5.col.b 47 236 6
anna.col.b 138 493 11 myciel6.col.b 95 755 7
ash331GPIA.col.b 662 4181 ? myciel7.col.b 191 2360 8
ash608GPIA.col.b 1216 7844 ? qg.order30.col.b 900 26100 30
ash958GPIA.col.b 1916 12506 ? qg.order40.col.b 1600 62400 40
david.col.b 87 406 11 qg.order60.col.b 3600 | 212400 60
DSJC1000.1.col.b 1000 49629 ? qg.order100.col.b 10000 | 990000 100
DSJC1000.5.col.b 1000 | 249826 ? queenl0-10.col.b 100 1470 ?
DSJC1000.9.col.b 1000 | 449449 ? queenll_11.col.b 121 1980 11
DSJC125.1.col.b 125 736 ? queenl2_12.col.b 144 2596 ?
DSJC125.5.col.b 125 3891 ? queenl3_13.col.b 169 3328 13
DSJC125.9.col.b 125 6961 ? queenl4_14.col.b 196 4186 ?
DSJC250.1.col.b 250 3218 ? queenl5_15.col.b 225 5180 ?
DSJC250.5.col.b 250 15668 ? queenl6_16.col.b 256 6320 ?
DSJC250.9.col.b 250 27897 ? queenb_5.col.b 25 160 5
DSJC500.1.col.b 500 12458 ? queen6_6.col.b 36 290 7
DSJC500.5.col.b 500 62624 ? || queen7_7.col.b 49 476 7
DSJC500.9.col.b 500 | 112437 ? queen8_12.col.b 96 1368 12
DSJR500.1.col.b 500 3555 ? queen8_8.col.b 64 728 9
DSJR500.1c.col.b 500 | 121275 ? queen9_9.col.b 81 1056 10
DSJR500.5.col.b 500 58862 ? schooll_nsh.col.b 352 14612 ?
fpsol2.i.1.col.b 496 11654 65 schooll.col.b 385 19095 ?
fpsol2.i.2.col.b 451 8691 30 || wapOla.col.b 2368 | 110871 ?
fpsol2.i.3.col.b 425 8688 30 wap02a.col.b 2464 | 111742 ?
games120.col.b 120 638 9 || wap0O3a.col.b 4730 | 286722 ?
homer.col.b 561 1628 13 wap04a.col.b 5231 | 294902 ?
huck.col.b 74 301 11 wap0b5a.col.b 905 43081 ?
inithx.i.1.col.b 864 18707 54 wap06a.col.b 947 43571 ?
inithx.i.2.col.b 645 13979 31 || wapO7a.col.b 1809 | 103368 ?
inithx.i.3.col.b 621 13969 31 wap08a.col.b 1870 | 104176 ?
jean.col.b 80 254 10 || willl99GPIA.col.b 701 6772 ?
latin_square_10.col.b 900 | 307350 ? zeroin.i.1.col.b 211 4100 49
le450_15a.col.b 450 8168 15 || zeroin.i.2.col.b 211 3541 30
1le450_15b.col.b 450 8169 15 || zeroin.i.3.col.b 206 3540 30
le450_15¢.col.b 450 16680 15

“Best Known” columns indicate the best known upper bound on the chromatic number.
A ‘7’ indicates an unknown value.

10

Table 2
Performance of ABAC

Instances Best 50 runs of ABAC on each instance
Known | Min ‘ Max ‘ Avg ‘ SD | Avg. Time (s)
1-Fulllns_3.col.b ? 4 4 4 0 0.01
1-Fulllns_4.col.b ? 5 5 5 0 0.31
1-Fulllns_5.col.b ? 6 6 6 0 4.54
1-Insertions_4.col.b 4 5 5 5 0 0.1
1-Insertions_5.col.b ? 6 6 6 0 1.64
1-Insertions_6.col.b ? 7 7 7 0 18.6
2-Fulllns_3.col.b ? 5 5 5 0 0.07
2-Fulllns_4.col.b ? 6 6 6 0 2.03
2-Fulllns_5.col.b ? 7 7 7 0 29
2-Insertions_3.col.b 4 4 4 4 0 0.02
2-Insertions_4.col.b 4 5 5 5 0 0.74
2-Insertions_5.col.b ? 6 6 6 0 17.82
3-Fulllns_3.col.b ? 6 6 6 0 0.22
3-Fulllns_4.col.b ? 7 7 7 0 11.22
3-Fulllns_5.col.b ? 8 8 8 0 68.78
3-Insertions_3.col.b 4 4 4 4 0 0.07
3-Insertions_4.col.b ? 5 5 5 0 4.69
3-Insertions_5.col.b ? 6 6 6 0 36.68
4-Fulllns_3.col.b ? 7 7 7 0 0.73
4-Fulllns_4.col.b ? 8 8 8 0 22.53
4-Fulllns_5.col.b ? 9 9 9 0 170.05
4-Insertions_3.col.b 3 4 4 4 0 0.17
4-Insertions_4.col.b ? 5 5 5 0 12.9
5-Fulllns_3.col.b ? 8 8 8 0 1.38
5-Fulllns_4.col.b ? 9 9 9 0 33.5
abb313GPIA.col.b ? 9 10 9.32 | 047 62.78
anna.col.b 11 11 11 11 0 1.14
ash331GPIA.col.b ? 4 4 4 0 17.45
ash608GPIA.col.b ? 4 5 4.24 | 0.43 28.97
ash958 GPIA.col.b ? 4 5 4.46 0.5 50.68
david.col.b 11 11 11 11 0 0.38
DSJC1000.1.col.b ? 21 22 21.42 0.5 74.37
DSJC1000.5.col.b ? 91 93 91.9 0.7 285.27
DSJC1000.9.col.b ? 229 233 | 230.84 | 1.05 503.29
DSJC125.1.col.b ? 5 6 5.7 | 0.46 0.92
DSJC125.5.col.b ? 17 18 17.8 0.4 1.69
DSJC125.9.col.b ? 44 44 44 0 3.51
DSJC250.1.col.b ? 8 9 8.5 0.5 4.33
DSJC250.5.col.b ? 29 30 29.14 | 0.35 13.11
DSJC250.9.col.b ? 72 73 72.4 | 0.49 23.57
DSJC500.1.col.b ? 13 13 13 0 28.92
DSJC500.5.col.b ? 50 52 51.2 0.6 98.55
DSJC500.9.col.b ? 127 129 | 128.36 | 0.56 145.03
DSJR500.1.col.b ? 12 12 12 0 18.62
DSJR500.1c.col.b ? 85 86 85.1 0.3 154.96
DSJR500.5.col.b ? 128 130 | 129.24 | 0.51 147.03
fpsol2.i.1.col.b 65 65 65 65 0 63.18
fpsol2.i.2.col.b 30 30 30 30 0 61
fpsol2.i.3.col.b 30 30 30 30 0 54.43
games120.col.b 9 9 9 9 0 0.72
homer.col.b 13 13 13 13 0 20.75
huck.col.b 11 11 11 11 0 0.2
inithx.i.1.col.b 54 54 54 54 0 97.49
inithx.i.2.col.b 31 31 31 31 0 78.9
inithx.i.3.col.b 31 31 31 31 0 78.35
jean.col.b 10 10 10 10 0 0.35
latin_square_10.col.b ? 100 103 | 101.48 | 0.64 305.21
le450_15a.col.b 15 15 15 15 0 31.52
1le450_15b.col.b 15 15 15 15 0 28
le450_15c.col.b 15 15 21 19.74 | 1.81 41.7

11

Table 3
Performance of ABAC (cont.)

Instances Best 50 runs of ABAC on each instance
Known | Min ‘ Max Avg ‘ SD | Avg. Time (s)
le450-15d.col.b 15 15 21 | 17.02 | 1.42 42.66
le450_25a.col.b 25 25 25 25 0 28.71
le450-25b.col.b 25 25 25 25 0 27.14
le450_25c¢.col.b 25 26 26 26 0 39.55
le450-25d.col.b 25 26 26 26 0 40.71
le450_5a.col.b 5 5 6 5.32 | 047 16.15
le450_5b.col.b 5 5 6 5.44 0.5 16.4
le450_5c.col.b 5 5 5 5 0 20.44
le450_5d.col.b 5 5 5 5 0 20.71
miles1000.col.b 42 42 42 42 0 2.55
miles1500.col.b 73 73 73 73 0 5.11
miles250.col.b 8 8 8 8 0 0.57
miles500.col.b 20 20 20 20 0 1.53
miles750.col.b 31 31 31 31 0 1.95
mugl00_1.col.b 4 4 4 4 0 0.25
mugl00-25.col.b 4 4 4 4 0 0.35
mug88_1.col.b 4 4 4 4 0 0.17
mug88_25.col.b 4 4 4 4 0 0.16
mulsol.i.1.col.b 49 49 49 49 0 7.3
mulsol.i.2.col.b 31 31 31 31 0 5.69
mulsol.i.3.col.b 31 31 31 31 0 5.86
mulsol.i.4.col.b 31 31 31 31 0 5.81
mulsol.i.5.col.b 31 31 31 31 0 5.85
myciel3.col.b 4 4 4 4 0 0
myciel4.col.b 5 5 5 5 0 0
myciel5.col.b 6 6 6 6 0 0.05
myciel6.col.b 7 7 7 7 0 0.56
myciel7.col.b 8 8 8 8 0 2.49
qg.order30.col.b 30 30 30 30 0 44.31
qg.order40.col.b 40 40 40 40 0 71.91
qg.order60.col.b 60 60 60 60 0 226.36
qg.order100.col.b 100 100 100 100 0 1534.7
queenl0-10.col.b ? 11 11 11 0 0.99
queenll_11.col.b 11 12 13 | 12.02 | 0.14 1.34
queenl2_12.col.b ? 13 14 13.4 | 0.49 1.84
queenl3_13.col.b 13 14 15 | 14.66 | 0.48 2.56
queenl4_14.col.b ? 16 16 16 0 3.59
queenl5_15.col.b ? 17 17 17 0 4.9
queenl6_16.col.b ? 18 18 18 0 6.45
queenb_5.col.b 5 5 5 5 0 0.01
queen6_6.col.b 7 7 7 7 0 0.03
queen7_7.col.b 7 7 7 7 0 0.06
queen8_12.col.b 12 12 12 12 0 0.53
queen8_8.col.b 9 9 9 9 0 0.14
queen9_9.col.b 10 10 10 10 0 0.37
schooll_nsh.col.b ? 14 14 14 0 16.87
schooll.col.b ? 14 14 14 0 23.75
wap0la.col.b ? 43 43 43 0 158.15
wap02a.col.b ? 42 43 42.8 0.4 145.21
wap03a.col.b ? 45 46 45.6 | 0.49 514.93
wap04a.col.b ? 44 45 | 44.86 | 0.35 476.18
wap0ba.col.b ? 50 50 50 0 67.49
wap06a.col.b ? 42 43 | 42.86 | 0.35 85.69
wap07a.col.b ? 43 44 | 43.32 | 047 169.88
wap08a.col.b ? 42 44 | 43.02 | 0.32 175.84
will199GPIA.col.b ? 7 7 7 0 22.44
zeroin.i.1.col.b 49 49 49 49 0 8.81
zeroin.i.2.col.b 30 30 30 30 0 8.58
zeroin.i.3.col.b 30 30 30 30 0 8.23

12

5 Conclusion

In this paper we presented an ant-based algorithm that seems to perform well
on a set of 119 DIMACS benchmark graphs. This ant-based algorithm has not
given ants the ability to leave pheromone which generally helps improve the
performance of ant-based algorithms. In limited experiments we found that in
this particular algorithm, adding pheromone laying capability increases run-
ning time without providing visible or significant performance improvement.

6 Acknowledgements

The authors would like to thank the anonymous referees for their valuable
comments.

References

[1] J. Abril, F. Comellas, A. Cortes, J. Ozon and M. Vaquer, A Multi-Agent System
for Frequency Assignment in Cellular Radio Networks, IEEE Transactions on
Vehicular Technology 49(5) (2000) 1558-1564.

[2] M. Bellare, O. Goldreich and M. Sudan, Free Bits, PCPs and Non-
Approximability - Towards Tight Results, STAM J. Computing 27 (1998) 804—
915.

[3] A. Blum and D. Karger An O(n3/ 14) —Coloring Algorithm for 3-Colorable
Graphs, Information Processing Letters 61(1) (1997) 49-53.

[4] E. Bonabeau, M. Dorigo and G. Theraulaz, Inspiration for Optimization from
Social Insect Behavior Nature 406 (2000) 39-42.

[5] D. Brelaz, New Methods to Color the Vertices of a Graph, Communications of
the ACM 22(4) (1979) 251-256.

[6] T. N. Bui and C. Patel, An Ant system Algorithm for Coloring Graphs,
Computational Symposium on Graph Coloring and Its Generalizations,
COLORO02, Cornell University (2002).

[7] M. Chiarandini and T. Stutzle, An Application of Iterated Local Search to
Graph Coloring Problem, Computational Symposium on Graph Coloring and
Its Generalizations, COLORO02, Cornell University (2002).

[8] F. Comellas and J. Ozon, Graph Coloring Algorithms for Assignment Problems
in Radio Networks, Applications of Neural Networks to Telecommunications 2
(1995) 49-56.

13

[9] F. Comellas and J. Ozon, An Ant Algorithm for the Graph Coloring Problem,
ANTS’98 — From Ant Colonies to Artificial Ants: First International Workshop
on Ant Colony Optimization, Brussels, Belgium, (1998).

[10] C. Coritoru, H. Luchian, O. Gheorghies and A. Apetrei, A New Genetic Graph
Coloring Heuristic, Computational Symposium on Graph Coloring and Its
Generalizations, COLORO02, Cornell University (2002).

[11] D. Costa and A. Hertz, Ants Can Colour Graphs, Journal of Operational
Research Society 48 (1997) 295-305.

[12] J. Culberson and F. Luo, Exploring the k-colorable Landscape with Iterated
Greedy, Cliques, Coloring and Satisfiability — Second DIMACS Implementation
Challenge 1993, American Mathematical Society 26 (1996) 245-284.

[13] M. Dorigo and G. Di Caro, The Ant Colony Optimization Meta-Heuristic, New
Ideas in Optimization, McGraw-Hill (1999) 11-32.

[14] M. Dorigo and L. Gambardella, Ant Colony System: A Cooperative Learning
Approach to the Traveling Salesman Problem, IEEE Transactions on
Evolutionary Computation 1(1) (1997) 53-66.

[15] C. Fleurent and J. Ferland, Genetic and Hybrid Algorithms for Graph Coloring,
Annals of Operations Research 63 (1996) 437-461.

[16] P. Galinier, A. Hertz and N. Zufferey, Adaptive Memory Algorithms for
Graph Coloring, Computational Symposium on Graph Coloring and Its
Generalizations, COLORO02, Cornell University (2002).

[17] P. Galinier and J. Hao, Hybrid Evolutionary Algorithms for Graph Coloring,
Journal of Combinatorial Optimization 3(4) (1998) 379-397.

[18] L. M. Gambardella and M. Dorigo, An Ant Colony System Hybridized with a
New Local Search for the Sequential Ordering Problem, INFORMS Journal on
Computing 12(3) (2000) 237-255.

[19] F. Glover, M. Parker and J. Ryan, Coloring by Tabu Branch and Bound,
Cliques, Coloring and Satisfiability — Second DIMACS Implementation
Challenge 1993, American Mathematical Society 26 (1996) 285-307.

[20] C. Gomes and D. Shmoys, Completing Quasigroups or Latin Squares: A
Structured Graph Coloring Problem, Computational Symposium on Graph
Coloring and Its Generalizations, COLOR02, Cornell University (2002).

[21] A. Hertz and D. Werra, Using Tabu Search Techniques for Graph Coloring,
Computing 39 (1987) 345-351.

[22] M. M. Halld6rsson, A Still Better Performance Guarantee for Approximate
Graph Coloring, Information Processing Letters 45 (1993) 19-23.

[23] T. R. Jensen and B. Toft, Graph Coloring Problems, Wiley-Insterscience Series
in Discrete Mathematics and Optimization, 1995.

14

[24] D. S. Johnson, C. Aragon, L. McGeoch and C. Schevon, Optimization by
Simulated Annealing: An Experimental Evaluation; Part II, Graph Coloring
and Number Partitioning, Operations Research, 39(3) (1991) 378-406.

[25] D. S. Johnson and M. A. Trick (Editors), Cligues, Coloring and Satisfiability —
Second DIMACS Implementation Challenge 1993, DIMACS Series in Discrete
Mathematics and Theoretical Computer Science, American Mathematical
Society 26 (1996).

[26] G. Lewandowski and A. Condon, Experiments with Parallel Graph Coloring
Heuristics and Applications of Graph Coloring, Cligues, Coloring and
Satisfiability — Second DIMACS Implementation Challenge 1993, American
Mathematical Society 26 (1996) 309-334.

[27] F. T. Leighton, A Graph Coloring Algorithm for Large Scheduling Problems,
Journal of Research of the National Bureau of Standards 84(6) (1979) 489-506.

[28] V. Maniezzo and A. Carbonaro, Ant Colony Optimization: An Overview, Essays
and Surveys in Metaheuristics, C. Ribeiro editor, Kluwer Academic Publishers
(2001) 21-44.

[29] K. Mizuno and S. Nishihara, Toward Ordered Generation of Exceptionally
Hard Instance for Graph 3-Colorability, Computational Symposium on Graph
Coloring and Its Generalizations, COLOR02, Cornell University (2002).

[30] C. Morgenstern, “Distributed Coloration Neighborhood Search,” Cliques,
Coloring and Satisfiability — Second DIMACS Implementation Challenge 1993,
American Mathematical Society 26 (1996) 335-358.

[31] V. Phan and S. Skiena, Coloring Graphs with a General Heuristic Search
Engine, Computational Symposium on Graph Coloring and Its Generalizations,
COLORO02, Cornell University (2002).

[32] T. White, B. Pagurek and F. Oppacher, ASGA: Improving the Ant System
by Integration with Genetic Algorithms, Proceedings of the 3rd Conference on
Genetic Programming (GP/SGA 98) (1998) 610-617.

The following data was obtained after DFMAX was recompiled on the machine
that we tested our algorithm.

DFMAX(r500.5.b)
5.67 (user) 0.00 (sys) 6.00 (real)
Best: 345 204 148 480 16 336 76 223 260 403 141 382 289

Fig. 2. Machine Benchmark

15

