
Parallel Shared Memory Strategies for
Ant-Based Optimization Algorithms

Thang N. Bui
Penn State Harrisburg

tbui@psu.edu

ThanhVu Nguyen
University of New Mexico
tnguyen@cs.unm.edu

Joseph R. Rizzo Jr.
Concurrent Technologies

Corporation
rizzoj@ctc.com

ABSTRACT
This paper describes a general scheme to convert sequen-
tial ant-based algorithms into parallel shared memory algo-
rithms. The scheme is applied to an ant-based algorithm
for the maximum clique problem. Extensive experimental
results indicate that the parallel version provides noticeable
improvements to the running time while maintaining com-
parable solution quality to that of the sequential version.

Categories and Subject Descriptors
G.2.2 [Discrete Mathematics]: Graph Theory, Graph al-
gorithms; I.2.8 [Artificial Intelligence]: Problem Solving,
Control Methods, and Search, Heuristic methods

General Terms
Algorithms, Design

Keywords
Ant-Based Algorithms, Distributed Memory, Shared Mem-
ory, OpenMP, MPI, Max Clique

1. INTRODUCTION
Many real world applications bear resemblances to NP-

hard combinatorial problems. Hence, unless P = NP, they
most likely have no algorithms that give exact or even good
approximate solutions in acceptable time. Alternative strate-
gies such as ant algorithms, algorithms that mimic the be-
havior of ants, have been shown to be successful in these
situations, even though they do not guarantee solution qual-
ity. However, in many cases ant algorithms still require large
computing resources and time, especially when the problem
size increases. The nature of these ant algorithms makes
them good candidates for parallelization and several works
have been done in that direction, particularly under the dis-
tributed model of computation. The recent availability and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’09, July 8–12, 2009, Montréal, Québec, Canada.
Copyright 2009 ACM 978-1-60558-325-9/09/07 ...$5.00.

affordability of multi-core processors [15, 22] provide incen-
tive for studying parallel implementations of ant algorithms,
particularly in the shared memory model.

Dorigo first introduced ant systems in [10], which were
later formalized as the Ant Colony Optimization (ACO)
metaheuristics in [12]. Since then many variants of ACO
have been proposed and used successfully to solve a wide
variety of problems [12, 13, 19]. In ACO and its variants a
sequence of ants is used to solve the problem at hand with
later ants using information gathered by previous ants to
help find a good solution. A different approach using ants
was proposed in [4, 5, 6, 7] to solve various graph optimiza-
tion problems. We will call this latter type of ant algorithms
Ant-Based Optimization (ABO) algorithms. In ABO algo-
rithms ants are used to identify an area of the search space
that potentially contains a good solution, effectively reduc-
ing the search space. A local optimization algorithm is then
used to search for a solution in this reduced search space.

In this paper, we first describe a skeleton for ABO algo-
rithms, specifically for graph problems. We then describe
the process of transforming this sequential skeleton algo-
rithm into a parallel algorithm in the shared memory model.
The technique is then applied to the sequential ABO algo-
rithm for the Max-Clique problem of [4]. The resulting par-
allel algorithm was implemented and tested on a test set
of 120 instances of the Max-Clique problem using machines
with multi-core processors. Experimental results show that
the parallel algorithm provides improvements in the running
time of up to a factor of 6 using an 8-core processor, while
maintaining the quality of the solutions. We believe that
this conversion scheme can be effectively applied to ABO
algorithms for other problems.

The rest of the paper is organized as follows. In Section 2
we give background information on ant-based algorithms,
an overview of parallel computing, and our test bed Max-
Clique problem. In Section 3 we present a generic sequen-
tial ABO algorithm, describe an equivalent algorithm in the
shared memory model, and apply this conversion process to
a sequential ant-based algorithm for the Max-Clique prob-
lem. Section 4 shows our experimental results. Finally, our
conclusion and suggestions for future work are given in Sec-
tion 5.

2. BACKGROUND

2.1 Ant-Based Algorithms
Ant Colony Optimization (ACO) is a metaheuristic that

imitates the collective behavior of ants to solve problems [11].

1

In an ACO algorithm, ants take turns at solving the prob-
lem. Each ant solves the entire problem by itself based on
rules that are applicable to all ants as well as information
left by previous ants. Ants communicate with other ants in
the algorithm by using pheromone [3]. Generally, once an
ant has found a solution it leaves pheromone on the problem
structure corresponding to the solution in such a way that
the better the solution is the more pheromone is laid down.
Other strategies include dividing the algorithm into cycles
and allowing only the ant with the best solution in each cycle
to lay down pheromone. Pheromone is also evaporated to
mitigate the chance of ants being stuck at a locally optimal
solution. ACO and its variants have proved to be effec-
tive for various problems including the traveling salesman,
quadratic assignment, routing, and knapsack problems [12,
13, 19].

More recently, another type of ant inspired algorithm has
been used effectively to solve graph problems such as the
graph bisection, k-cardinality tree, degree-constrained span-
ning tree, and maximum clique problems [4, 5, 6, 7]. We will
refer to this type of algorithms as Ant-Based Optimization
(ABO) algorithms. In an ABO algorithm, ants are used to
identify a region of the search space that might contain a
good solution. A local optimization algorithm is then used
to find a solution in this region. More specifically, ants are
distributed on the structure of the problem instance, e.g.,
the vertices of a graph. The distribution of ants is done ran-
domly or based on the result of some quick heuristics. Each
ant then explores the structure of the problem instance, e.g.,
traversing from vertices to vertices. The exploration process
as well as the pheromone placement strategy require each
ant to “see” only the parts of the problem structure closest
to it. Furthermore, all ants perform the exploration in par-
allel. In a sequential ABO algorithm this is accomplished by
having the ants perform the exploration in lock-step. For ex-
ample, the exploration is divided into a number of steps and
all ants perform one step before another step is taken. When
the exploration process terminates the pheromone and the
positions of the ants are used to determine a potential solu-
tion or a candidate set that contains a potential solution.

The main difference between an ACO algorithm and an
ABO algorithm is in the way ants are used. In an ACO al-
gorithm, each ant produces a solution to the problem. In an
ABO algorithm each ant does not solve the entire problem,
rather all the ants collectively identify regions of the search
space that may contain a good solution.

2.2 Shared and Distributed Memory Models
Shared and distributed memory are two prevalent inter-

processor communication systems in parallel computing [23].
Systems using shared memory (SM), such as symmetric multi-
processor (SMP), allow a collection of identical processors
to share main memory via the system bus (or crossbar for
more than four processors) 1. Distributed memory (DM)
systems, such as Beowulf clusters, are composed of multi-
ple stand-alone machines, each with its own processor and
memory set [30]. These machines can be heterogeneous and
communicate with one another by means of passing mes-
sages through a high-speed network. POSIX threads and
OpenMP (Multi-Processing) are two standard shared mem-
ory Application Programming Interfaces (APIs) and Mes-

1We consider systems with chip-level muti-core processors to
belong to the SM model albeit with some minor differences.

sage Passing Interface (MPI) is the traditional API in mes-
sage passing systems [31, 32].

Both shared and distributed memory models have advan-
tages and disadvantages. Porting a sequential program to
a SM system using APIs such as OpenMP often requires
adding parallelism to appropriate sections of the sequential
code. However, race conditions, deadlocks, and other prob-
lems associated with shared access might occur. Writing
message passing programs in a DM system is more compli-
cated; it typically involves designing efficient algorithms to
divide tasks among processors with separate memory spaces.
Moreover, processes coordination, data synchronizations, and
network latency are common challenges. The major advan-
tage of DM systems over SM systems is scalability. Adding
more processors to a DM system is as simple as attaching
new computers to the current environment, whereas doing so
in a SM setting increases the bus traffic on the system, slows
down memory access time, and possibly requires expensive
and complex changes to the current hardware configuration,
e.g., different motherboard design to support more proces-
sors. Some of these problems are alleviated in a multi-core
system, which has cache sharing at various levels [25].

2.3 Previous Work
Parallel ant algorithms often fall under the classes of par-

allel ants [8, 24, 29], parallel ant colonies [8, 14, 18, 20], or
hybridization of various parallel techniques [1, 14, 21, 28]. In
the parallel ants approach, each ant occupies a separate pro-
cessor and sends pheromone updates to others at each step
of the algorithm. In the parallel ant colonies approach, each
processor houses an ant colony. The program periodically
broadcasts the pheromone structure from the best perform-
ing colony to others. The hybrid model combines parallel
ant or parallel ant colonies with different strategies for ex-
changing information. For instance, the processors may be
arranged in a ring, star, or hypercube topology and may ex-
change pheromone and solution information in such a way
that each processor only communicates with its neighbors.

An OpenMP based model creates multiple data structures
(e.g., solution trees, pheromone matrix) and assigns each
to a thread (processor) [9]. These threads work indepen-
dently on their assigned data structures and merge them
when needed. However there are potential issues with man-
aging data structures with dynamically allocated values such
as inserting and deleting nodes from trees.

With the exception of [9], the above approaches assume
the more popular distributed memory model rather than the
shared memory one. In addition, the popular ACO based
algorithms are used in most of these studies.

2.4 The Max-Clique Problem
A clique is a complete subgraph in an undirected graph,

i.e., a clique is a subgraph in which there is an edge between
any two vertices in the subgraph. The size of a clique is
the number of vertices in the clique. The Max-Clique opti-
mization problem is the problem of finding the largest clique
in a graph. Max-Clique arises in problems such as finding
good codes, identifying faulty processors in multi-processor
systems, and finding counterexamples to Keller’s conjecture
in geometry [2, 17, 26, 27].

It is known that Max-Clique is NP-hard. Furthermore,
it has been shown that even finding a good approximation
is difficult for the Max-Clique problem. For instance, it is

2

known that unless P = NP no polynomial time algorithm
can achieve an approximation factor of n1−ε for Max-Clique
for arbitrarily small ε > 0 [16]. Thus, in practice, heuristics
such as ant-based algorithms are often used.

3. ALGORITHMS
In this section we provide a generic (sequential) ant-based

optimization algorithm, specifically for graph problems. We
then describe a shared memory parallel version for it. Fi-
nally, we show how this conversion scheme is applied to the
ABO algorithm for Max-Clique (ABOMC) of [4].

3.1 Sequential ABO Algorithm
The main ideas of a generic ABO algorithm are given

in Figure 1. The algorithm distributes ants on the graph
based on an initial solution, usually found by a simple and
fast heuristic. Typically, more ants are placed on locations
that are occupied by the initial solution in order to start
the algorithm at a local optimum. As ants move, they lay
pheromone to attract other ants. The amount of pheromone
stored in a region increases as more ants explore that region.
Periodically the algorithm constructs a configuration, e.g., a
set of vertices and/or edges, from the graph using the loca-
tions of the ants and pheromone levels. A local optimization
algorithm is then used to extract a solution from this config-
uration. The best solution found is kept and returned when
the algorithm terminates.

Analogous to evolution algorithms, ABO uses ants and
their pheromone production to narrow the search space, i.e.,
to identify promising regions of the search space. To avoid
areas with many ants which could potentially lead to local
optima, ABO periodically evaporates pheromone and per-
turbs the distribution of ants. This lets ants better explore
the search space.

Algorithm ABOSEQ(G = (V, E))

construct a feasible configuration C by using
a quick heuristic method

distribute ants on G based on C

repeat
for each ant α do

α performs some tasks, moves to another location
on the graph, and lays pheromone

end-for

construct a new configuration C′ based on
ant locations & pheromone information

use some local optimization algorithm to extract
a solution from C′

perturb ant distribution on G
until some terminating criteria are met

return the best solution found

Figure 1: Generic Sequential ABO Algorithm

3.2 Parallel Shared Memory ABO Algorithm
The common programming paradigm for shared memory

system is the fork-join model. A single master thread is
created when the program starts, executed sequentially, and

Algorithm ABOSM(G = (V, E))

//Candidate region for parallelism
find a starting configuration C in G.

//Sequential region
distribute ants on G based on the initial configuration C

repeat
//Candidate region for parallelism
for each ant do

ant does the work in parallel where applicable
end-for

//Candidate region for parallelism
use several local optimization techniques/instances

to construct a configuration based on ants’ locations.

//Sequential region
perturb ants distribution on G

until some terminating criteria are met

return the best solution found

Figure 2: Generic Shared Memory Model for ABO

expanded into multiple slave threads when parallelism is re-
quired. These threads work concurrently through the paral-
lel region then merge back to the single master thread when
they are done.

To use the fork-join model, parallel regions from the se-
quential code need to be specified. Figure 2 suggests several
sections in ABOSEQ that are potentially efficient and safe for
parallelism, i.e., which reduce the execution time while not
degrading the solution quality. The work done by ants in the
ABO algorithm’s core seems well suited for parallelization.
However, the main challenge of parallelization is to continue
to reduce the execution time as the number of processors
(or cores) increases while maintaining or improving on the
quality of solutions.

The heuristic function that generates a starting configu-
ration for the ants and the local optimization are potential
candidates for parallelism. Instead of generating one start-
ing configuration, several instances of the same or differ-
ent heuristic algorithms can run in parallel producing mul-
tiple configurations, of which the best one is selected. Simi-
larly, different optimization algorithms can run concurrently
to achieve the best configuration. In addition, the same
heuristic method can run with different parameter settings
or searching techniques, e.g., different selection criteria. A
variety of searching techniques might help ABO perform bet-
ter on different types of graphs or problem parameters. We
note that choosing the best of multiple runs is a greedy-
based approach and therefore might cause the search to be
trapped at local optima.

It is also advantageous to apply techniques from parallel
ant colonies with shared memory. The colonies can be run
in parallel on multiple cores or processors while exchanging
information as necessary. While this technique does not de-
crease the running time of the ants working in a colony, it
might help the quality of the solution as the search space is
explored by multiple ant colonies.

3

3.3 A Parallel Shared Memory Algorithm for
Max-Clique

For convenience we describe the Max-Clique algorithm
of [4] in Figure 3, which we refer to as ABOMCSEQ. It is
easily seen that this algorithm fits into the model of the
generic sequential ABO algorithm given in Figure 1. It
starts with a greedy method to quickly find a clique. A
large fraction of the ants are then distributed at random
on vertices of the clique. The remainder of the ants are
distributed randomly on the vertices of the graph. The al-
gorithm then goes through a number of stages. Each stage
consists of a number of cycles and at the end of each stage a
clique is constructed. In each cycle a fraction of the ants are
selected to move and they do so with certain probability.
Their destinations are determined by various factors such
as pheromone concentration and structure of the neighbor-
hood around the ants. As an ant traverses an edge of the
graph it also puts down a certain amount of pheromone on
that edge. To allow for more exploration and possible es-
cape from local optima, pheromone evaporates over time.
In addition to using pheromone as a means of communica-
tion, ants in ABOMCSEQ also use their positions to com-
municate. For example, in computing a destination to move
to an ant prefers vertices that are currently occupied by a
large number of ants. At the end of each stage, a local op-
timization algorithm is used to construct a set of candidate
vertices based on the current distribution of the ants and
the pheromone levels on the edges. The algorithm then uses
a greedy algorithm to extract a clique from the set of candi-
date vertices. This clique is then further grown, if possible,
using vertices not in the candidate set. A small portion
of ants is then shuffled around the graph before moving on
to the next stage. After finishing all stages, the algorithm
returns the largest clique found in all stages.

Techniques such as pheromone evaporation and ants shuf-
fling are used to mitigate problems caused by premature
convergence and local optima. Moreover, adaptive behav-
iors are given to the ants to encourage a gradual transition
from exploration in the beginning to exploitation near the
end. In early stages, young ants are more active and rely less
on pheromone and more on the structure of the graph. As
the algorithm progresses, ants get older and are less likely to
move and they make more use of pheromone in determining
their movement. More details can be found in [4].

We are now ready to apply the strategies of Section 3.2
to ABOMCSEQ to obtain a parallel shared memory ABO
algorithm for Max-Clique, called ABOMCSM. First we run
multiple instances of the greedy algorithm in parallel and
use the largest clique found as the starting point for the
ants. Similarly we run multiple versions of the local opti-
mization algorithm (and the greedy algorithm) in parallel
to construct the largest clique after each stage. Since these
heuristic algorithms contain random choices, the clique re-
turned by one run is most likely different from another, thus
allowing a more aggressive starting configuration or a larger
clique at the end of each stage. Note that for small graphs we
decided not to run these functions in parallel since prelim-
inary experimental results indicate that there is no notice-
able improvement in solution quality but the running time
is increased due to additional communication overhead.

Figure 4 shows the parallel work of the ants in the parallel
algorithm, ABOMCSM. The stage and cycle loops cannot
be parallelized since each stage requires information from

Algorithm ABOMCSEQ(G = (V, E))

use a greedy method to get a clique C in G
distribute ants on the vertices of G such that

vertices in C have a higher ant concentration
for s = 1 to nStages do

for i = 1 to nCycles do
for α = 1 to nAnts do

ant α decides where to move based on
local information

ant α moves to its new destination
and deposits pheromone on edges along the way

evaporate a small amount of pheromone from areas
close to ant α’s previous location

end-for
end-for
use a local optimization algorithm to find a candidate

set C ′ of vertices based on ant locations & pheromone
use a greedy algorithm to find a clique K in C′

grow K
shuffle ants

end-for
return the largest clique found

Figure 3: Sequential ABO Algorithm for Max-
Clique

previous stage and an ant can only perform an action (move-
ment) per time cycle. We then designate the ant section as
the main parallel region since parallelizing this part would
least likely affect the quality of the results. Moreover, the
size of the ant colony is approximately six times the number
of vertices of the input graph. ABO algorithms often use a
much larger ant population than traditional ACO. In a typ-
ical ACO algorithm each ant solves the entire problem and
hence the number of ants is in some sense the number of iter-
ations. On the other hand, in a typical ABO algorithm, ants
are used aggregately as a means to explore and reduce the
search space. Consequently, the work of the ants consumes
more than half of the total time execution in ABOMCSEQ. 2.

In each cycle each ant determines where to move and
moves there. These activities are expensive since the ant
examines the surrounding neighborhood to decide its next
destination, deposits pheromone on the edges along the way,
and updates its new position. In the sequential version, an
ant’s action influences other ants, even when they occur in
the same time cycle. We redesign this part by separating
it into two operations and parallelize them both as illus-
trated in Figure 4. This refinement allows the ants to make
decision based on the current configuration independently
of other ants in the same time cycle. Hence, in addition
to speed gain, the revision provides better imitation of the
inherent parallelism in natural ant behavior.

When an ant leaves a vertex, a small amount of pheromone
is evaporated from edges in the surrounding region. This
evaporation procedure is time costly since the algorithm
checks whether pheromone on the edges adjacent to the ant
has already been evaporated. Moreover, this part cannot be
parallelized since the pheromone on each edge is evaporated
at most once per cycle.

2The GNU profile utility gprof was used here.

4

Algorithm ABOMCSM(G = (V, E))
//Parallel region

find an initial clique C by running multiple instances of
the same greedy algorithm with different seeds
and keeping the largest clique

//Sequential region

distribute ants on G with heavier concentration on C
for s = 1 to nStages

for i = 1 to nCycles do
//Parallel region: ants make decisions

for α = 1 to nAnts do
ant α decides where to move based on

local information
end-for
//Parallel region: ants move

for α = 1 to nAnts do
ant α moves to its new destination

and deposits pheromone on edges along the way
areas closed to ant α’s previous location are

marked for pheromone evaporation
end-for
//Sequential region

evaporate small amount of pheromone from
the marked areas

end-for //nCycles

//Parallel region

run multiple instances of local optimization & greedy
algorithms to construct candidate sets & cliques

//Sequential region

select the best clique K from the cliques found above
grow K
perturb ants distribution on G

end-for //nStages
return the largest clique found

Figure 4: Parallel ABO Algorithm for Max-Clique

We resolve this situation by selecting the edges for phero-
mone evaporation in parallel and performing the actual evap-
oration sequentially. A shared Boolean array of size equal
to the number of edges is created with everything initial-
ized to false. When the pheromone on an edge is updated,
the corresponding value of that edge in the array is marked
as true. Hence, even if simultaneous updates occur on an
edge, its corresponding value in the shared Boolean array
remains the same3. After all the ants move, the pheromone
on the array’s marked edges is sequentially updated. We
could parallelize this step; however, experiments show that
no significant improvement is obtained by doing so.

Many of the loop sections in the sequential code can be
executed in parallel with the fork-join model; however, not
all tasks make good choices for optimization. Low com-
plexity tasks, such as shuffling ants, may worsen the overall
running time as the overhead caused by forking and joining
threads surpasses the speed gained from parallel process-
ing. Nonetheless, even without speed improvement, in some
cases parallelism enhances the solution quality. Instead of
parallelizing the already efficient greedy and local optimiza-

3Alternatively we can create multiple copies of this array,
assign each to a parallel thread, and merge the results for
the sequential update.

tion algorithms, we independently process them in parallel
and choose the best answers. For example, at the end of
each stage, we run multiple instances of a local optimiza-
tion/greedy combination to find candidate sets and cliques,
using different selection criteria in each instance. We select
the largest clique from these cliques and then grow it. Our
experiments show on average the algorithm achieves good
solutions in fewer iterations when combined with these tech-
niques.

4. EXPERIMENTAL RESULTS
We implemented ABOMCSM in C++ and compiled it us-

ing GNU gcc with OpenMP support for our shared memory.
The OpenMP API consists of compiler directives and library
functions to help compilers execute instructions such as fork-
ing and joining threads [32]. The program was tested on a
computer running Linux with an 8-core Intel Xeon 2.8 GHz
and 16 GB memory.

We test our algorithm on 120 benchmark graphs from [4,
33, 34]. Due to space limitations, only 60 of those instances
are presented here (supplemental results are available in [35]).
Table 1 shows the solution quality of ABOMCSM. For each
benchmark graph and for each setting of the number of cores
c, where c = 1, 2, 4, 6, 8, we ran our algorithm for 100 trials.
For each instance and for each core setting, we list the best
solution found by ABOMCSM, the average (Avg), and the
standard deviation (StdDev) of the results. We also list the
optimal or best known clique size for each instance (Opt).
As can be seen from Table 1, the parallel results are compa-
rable to the sequential results (c = 1).

For c ∈ {2, 4, 6, 8}, let IF (c) = T1/Tc, where T1 is the
running time with one core, and Tc is the running time with
c cores. We think of IF (c) as an improvement factor in the
running time. The average running time, Tavg, and improve-
ment factor in the running time are given in Table 2. Note
that in most cases simple graphs such as johnson8-2-4 did
not benefit from parallelism. This is as expected since the
overhead caused by the fork-join operations dominate the
program’s short running times (a fraction of a second). For
medium size graphs such as c-fat500-5, the running time is
improved by a factor of approximately 1.5, 2.4, 2.9, 3.3 with
2, 4, 6, 8 cores, respectively. On larger and more complicated
graphs like keller-6 the running time is improved by a fac-
tor of approximately 1.9, 3.6, 5, 6.1 with 2, 4, 6, 8 cores, re-
spectively. Table 3 shows the 95% confidence interval, ob-
tained using nonparametric bootstrap, for the improvement
factor IF (c) for graphs of various sizes.

5. CONCLUSION
In this paper we presented a shared memory parallel frame-

work for general ABO approach and used an existing ABO
algorithm for the Max-Clique problem as a testbed. We
maintained the solution quality of the sequential ABO al-
gorithm while achieving noticeable running time improve-
ments. From experimental results, we found that the run-
ning times are improved around 40% with dual-core system
and up to six times faster with an eight-core system. Given
the increasing prevalence of multi-core processors and the
extent to which the ABO approach lends itself to parallelism,
we believe the technique demonstrated here could be applied
to other ABO algorithms as well as other problem domains.
Our future plans include constructing a hybrid distributed-

5

Table 1: ABOMCSM Solution Quality
ABOMC Solution Avg/StdDev when run on c cores

Graph Opt Best c = 1(Seq) c = 2 c = 4 c = 6 c = 8
brock200 1 21 21 19.53 / 0.52 19.57 / 0.57 19.59 / 0.55 19.68 / 0.53 19.59 / 0.51
brock200 2 12 11 10.03 / 0.43 10.04 / 0.31 10.09 / 0.32 10.07 / 0.38 10.09 / 0.35
brock400 1 27 24 22.74 / 0.69 22.68 / 0.65 22.72 / 0.69 22.83 / 0.63 22.83 / 0.63
brock400 2 29 25 22.69 / 0.72 22.84 / 0.61 22.83 / 0.62 22.85 / 0.65 22.79 / 0.67
brock800 1 23 20 18.52 / 0.64 18.55 / 0.61 18.64 / 0.59 18.59 / 0.57 18.67 / 0.63
brock800 2 24 21 18.50 / 0.64 18.68 / 0.53 18.64 / 0.59 18.74 / 0.61 18.80 / 0.53
c-fat500-1 14 14 14.00 / 0.00 14.00 / 0.00 14.00 / 0.00 14.00 / 0.00 14.00 / 0.00
c-fat500-5 64 64 64.00 / 0.00 64.00 / 0.00 64.00 / 0.00 64.00 / 0.00 64.00 / 0.00
c-fat500-10 126 126 126.00 / 0.00 126.00 / 0.00 126.00 / 0.00 126.00 / 0.00 126.00 / 0.00
c250.9 ≥ 44 44 41.16 / 0.98 41.01 / 0.94 41.08 / 1.06 41.33 / 1.13 41.07 / 0.85
c500.9 ≥ 57 55 50.97 / 1.09 51.19 / 1.19 51.27 / 1.08 51.37 / 1.07 51.26 / 1.23
c1000.9 ≥ 68 63 58.98 / 1.22 59.30 / 1.13 59.43 / 1.12 59.50 / 1.29 59.57 / 1.10
c2000.5 ≥ 16 16 13.98 / 0.55 14.09 / 0.38 14.16 / 0.46 14.18 / 0.46 14.17 / 0.43
c2000.9 ≥ 77 71 66.32 / 1.17 66.33 / 0.98 66.54 / 1.09 66.80 / 1.21 66.84 / 1.07
c4000.5 ≥ 18 16 14.95 / 0.50 15.15 / 0.48 15.00 / 0.32 15.10 / 0.30 15.10 / 0.44
dsjc500.5 ≥ 13 13 11.91 / 0.53 12.05 / 0.55 12.07 / 0.50 12.10 / 0.48 12.05 / 0.38
dsjc1000.5 ≥ 15 15 13.05 / 0.50 13.10 / 0.44 13.14 / 0.51 13.16 / 0.39 13.16 / 0.44
gen200 p0.9 44 44 40 37.23 / 1.04 37.21 / 0.90 37.47 / 0.83 37.46 / 1.02 37.22 / 0.78
gen200 p0.9 55 55 55 42.35 / 5.31 41.45 / 4.56 41.89 / 4.83 42.06 / 5.02 41.51 / 4.55
gen400 p0.9 55 55 51 48.33 / 0.91 48.64 / 1.04 48.59 / 0.97 48.35 / 0.99 48.45 / 0.97
gen400 p0.9 65 65 65 47.86 / 3.52 47.37 / 2.16 47.91 / 3.28 48.46 / 4.12 47.78 / 2.93
gen400 p0.9 75 75 75 51.69 / 7.22 54.27 / 9.55 51.85 / 7.34 52.73 / 8.68 51.38 / 6.89
hamming6-2 32 32 32.00 / 0.00 32.00 / 0.00 32.00 / 0.00 32.00 / 0.00 32.00 / 0.00
hamming6-4 4 4 4.00 / 0.00 4.00 / 0.00 4.00 / 0.00 4.00 / 0.00 4.00 / 0.00
hamming8-2 128 128 128.00 / 0.00 128.00 / 0.00 128.00 / 0.00 128.00 / 0.00 128.00 / 0.00
hamming8-4 16 16 16.00 / 0.00 16.00 / 0.00 16.00 / 0.00 16.00 / 0.00 16.00 / 0.00
hamming10-2 512 512 512.00 / 0.00 512.00 / 0.00 512.00 / 0.00 512.00 / 0.00 512.00 / 0.00
hamming10-4 40 40 34.92 / 0.91 35.00 / 0.95 35.34 / 1.12 35.48 / 0.87 35.50 / 1.10
johnson8-2-4 4 4 4.00 / 0.00 4.00 / 0.00 4.00 / 0.00 4.00 / 0.00 4.00 / 0.00
johnson8-4-4 14 14 14.00 / 0.00 14.00 / 0.00 14.00 / 0.00 14.00 / 0.00 14.00 / 0.00
johnson16-2-4 8 8 8.00 / 0.00 8.00 / 0.00 8.00 / 0.00 8.00 / 0.00 8.00 / 0.00
johnson32-2-4 16 16 16.00 / 0.00 16.00 / 0.00 16.00 / 0.00 16.00 / 0.00 16.00 / 0.00
keller4 11 11 10.11 / 0.85 9.94 / 0.87 10.17 / 0.91 10.02 / 0.87 10.14 / 0.84
keller5 27 25 21.46 / 0.95 21.52 / 1.04 21.58 / 0.86 21.81 / 0.89 21.71 / 0.96
keller6 ≥ 59 48 43.27 / 1.45 43.19 / 1.47 43.74 / 1.30 43.71 / 1.34 43.57 / 1.31
mann a9 16 16 16.00 / 0.00 16.00 / 0.00 16.00 / 0.00 16.00 / 0.00 16.00 / 0.00
mann a27 126 126 125.00 / 0.00 125.00 / 0.00 125.01 / 0.10 125.00 / 0.00 125.00 / 0.00
mann a45 345 342 342.00 / 0.00 342.00 / 0.00 342.00 / 0.00 342.00 / 0.00 342.00 / 0.00
mann a81 ≥ 1100 1096 1096.00 / 0.00 1096.00 / 0.00 1096.00 / 0.00 1096.00 / 0.00 1096.00 / 0.00
p hat500-2 36 36 35.94 / 0.24 35.93 / 0.26 35.93 / 0.26 35.98 / 0.14 35.97 / 0.17
p hat500-3 ≥ 50 50 49.00 / 0.53 48.98 / 0.49 49.08 / 0.52 49.00 / 0.49 49.13 / 0.48
p hat700-2 ≥ 44 44 43.62 / 0.49 43.67 / 0.47 43.71 / 0.45 43.62 / 0.49 43.65 / 0.48
p hat700-3 ≥ 62 62 61.24 / 0.53 61.28 / 0.51 61.33 / 0.47 61.41 / 0.53 61.38 / 0.49
p hat1000-2 ≥ 46 46 45.20 / 0.49 45.29 / 0.57 45.34 / 0.55 45.31 / 0.54 45.30 / 0.46
p hat1000-3 ≥ 68 66 64.04 / 0.65 64.06 / 0.60 64.36 / 0.67 64.25 / 0.61 64.25 / 0.55
p hat1500-2 ≥ 65 65 63.58 / 0.51 63.59 / 0.65 63.71 / 0.57 63.67 / 0.51 63.69 / 0.58
p hat1500-3 ≥ 94 93 91.61 / 0.92 91.71 / 0.79 91.84 / 0.81 91.95 / 0.82 91.81 / 0.83
san400 0.7 1 40 40 23.55 / 4.95 25.25 / 6.93 25.03 / 6.56 24.39 / 5.86 24.12 / 5.40
san400 0.7 2 30 30 18.33 / 2.14 18.15 / 1.73 18.45 / 2.40 18.34 / 2.10 18.21 / 1.45
san400 0.7 3 22 17 15.81 / 0.50 15.89 / 0.49 15.96 / 0.40 15.92 / 0.50 15.98 / 0.49
san400 0.9 1 100 100 71.48 / 21.51 74.69 / 21.88 73.43 / 21.62 78.86 / 22.05 78.75 / 21.58
san1000 15 15 10.02 / 0.53 9.97 / 0.17 9.96 / 0.20 9.96 / 0.20 10.09 / 0.72
sanr400 0.5 13 13 12.11 / 0.34 12.02 / 0.45 12.18 / 0.48 12.08 / 0.31 12.11 / 0.47
sanr400 0.7 21 21 19.42 / 0.60 19.39 / 0.63 19.51 / 0.59 19.53 / 0.59 19.52 / 0.62
frb45-21-1 45 39 36.73 / 0.69 36.88 / 0.77 36.90 / 0.69 37.10 / 0.81 36.93 / 0.72
frb50-23-1 50 44 40.77 / 0.82 40.91 / 0.86 41.08 / 0.93 40.99 / 0.79 40.97 / 0.77
frb53-24-1 53 45 42.41 / 0.84 42.31 / 0.88 42.51 / 0.78 42.55 / 0.73 42.56 / 0.86
frb56-25-1 56 48 44.84 / 0.91 44.91 / 0.75 45.07 / 0.89 45.05 / 0.79 45.14 / 0.93
frb59-26-1 59 51 47.66 / 0.84 47.90 / 0.78 47.84 / 0.86 47.80 / 0.82 47.99 / 0.89
frb100-40 100 82 77.06 / 1.05 77.37 / 1.04 77.55 / 0.95 77.66 / 1.13 77.63 / 1.08

shared memory framework of ABO and analyzing the effects
of different network topologies on communications among
colonies of ants. These ideas will be investigated more thor-
oughly in future studies.

6. ACKNOWLEDGMENTS
This work was supported in part by the Air Force Office of

Scientific Research MURI grant FA9550-07-1-0532FA9550-
07-1-0532. The authors would like to thank Jay Zhu and
the anonymous referees for their valuable comments.

7. REFERENCES

[1] S. Alonso, O. Cordon, I. Fernandez de Viana, F.
Herrera, “Integrating Evolutionary Computation
Components in Ant Colony Optimization,” Recent
Developments in Biologically Inspired Computing,
L.Nunes de Castro, F.J. Von Zuben (Eds.), Idea
Group Publishing, 2004, pp. 48–180.

[2] P. Berman and A. Pelc, “Distributed Fault Diagnosis
For Multiprocessor Systems,” Proc. of the 20th Annual
International Symposium on Fault-Tolerant
Computing, Newcastle, UK, 1990, pp. 340–346.

6

Table 2: ABOMCSM Average Running Time and Improvement Factor in Running Time
Running Time†: Tavg/IF (c) when run on c cores

Graph Vertices/Edges c = 1(Seq) c = 2 c = 4 c = 6 c = 8
brock200 1 200 / 14834 2.43 1.59 / 1.53 1.03 / 2.36 0.86 / 2.83 0.77 / 3.16
brock200 2 200 / 9876 1.68 1.13 / 1.49 0.75 / 2.25 0.65 / 2.59 0.61 / 2.76
brock400 1 400 / 59723 9.68 6.24 / 1.55 3.83 / 2.53 2.95 / 3.28 2.47 / 3.92
brock400 2 400 / 59786 9.71 6.25 / 1.55 3.82 / 2.54 2.97 / 3.27 2.46 / 3.95
brock800 1 800 / 207505 47.95 27.70 / 1.73 15.99 / 3.00 11.80 / 4.06 9.64 / 4.98
brock800 2 800 / 208166 48.20 27.82 / 1.73 16.06 / 3.00 11.84 / 4.07 9.71 / 4.96
c-fat500-1 500 / 4459 1.11 0.91 / 1.22 0.70 / 1.59 0.72 / 1.54 0.76 / 1.46
c-fat500-5 500 / 23191 4.02 2.65 / 1.52 1.69 / 2.38 1.37 / 2.93 1.23 / 3.25
c-fat500-10 500 / 46627 8.30 5.33 / 1.56 3.26 / 2.54 2.53 / 3.27 2.23 / 3.72
c250.9 250 / 27984 4.70 3.01 / 1.56 1.89 / 2.48 1.46 / 3.23 1.43 / 3.29
c500.9 500 / 112332 20.16 12.53 / 1.61 7.59 / 2.66 7.04 / 2.86 5.03 / 4.01
c1000.9 1000 / 450079 135.20 74.08 / 1.83 41.12 / 3.29 29.98 / 4.51 24.43 / 5.54
c2000.5 2000 / 999836 363.98 194.34 / 1.87 105.85 / 3.44 76.91 / 4.73 62.32 / 5.84
c2000.9 2000 / 1799532 701.52 370.25 / 1.89 201.49 / 3.48 145.18 / 4.83 117.55 / 5.97
c4000.5 4000 / 4000268 1729.46 899.67 / 1.92 484.65 / 3.57 350.00 / 4.94 283.38 / 6.10
dsjc500.5 500 / 125248 10.33 7.24 / 1.43 4.33 / 2.38 3.39 / 3.05 2.83 / 3.66
dsjc1000.5 1000 / 499652 64.55 37.89 / 1.70 21.41 / 3.01 15.69 / 4.11 12.80 / 5.04
gen200 p0.9 44 200 / 17910 3.00 1.94 / 1.55 1.21 / 2.49 1.00 / 3.01 0.90 / 3.35
gen200 p0.9 55 200 / 17910 3.04 1.95 / 1.55 1.22 / 2.50 1.01 / 3.02 0.92 / 3.32
gen400 p0.9 55 400 / 71820 11.82 7.64 / 1.55 4.61 / 2.56 3.56 / 3.32 2.95 / 4.00
gen400 p0.9 65 400 / 71820 11.82 7.61 / 1.55 4.62 / 2.56 3.56 / 3.32 2.96 / 3.99
gen400 p0.9 75 400 / 71820 11.86 7.64 / 1.55 4.62 / 2.57 3.56 / 3.33 2.96 / 4.01
hamming6-2 64 / 1824 0.39 0.28 / 1.39 0.23 / 1.71 0.23 / 1.70 0.23 / 1.66
hamming6-4 64 / 704 0.15 0.13 / 1.15 0.14 / 1.07 0.14 / 1.08 0.14 / 1.07
hamming8-2 256 / 31616 6.32 3.92 / 1.61 2.38 / 2.65 1.89 / 3.34 1.57 / 4.02
hamming8-4 256 / 20864 3.44 2.21 / 1.55 1.38 / 2.49 1.11 / 3.10 1.02 / 3.37
hamming10-2 1024 / 518656 196.52 106.87 / 1.84 59.38 / 3.31 43.49 / 4.52 35.39 / 5.55
hamming10-4 1024 / 434176 127.18 69.47 / 1.83 38.42 / 3.31 27.97 / 4.55 22.68 / 5.61
johnson8-2-4 28 / 210 0.05 0.05 / 0.92 0.07 / 0.73 0.08 / 0.66 0.08 / 0.64
johnson8-4-4 70 / 1855 0.36 0.26 / 1.39 0.22 / 1.65 0.22 / 1.65 0.22 / 1.68
johnson16-2-4 120 / 5460 0.91 0.62 / 1.48 0.43 / 2.10 0.40 / 2.31 0.40 / 2.29
johnson32-2-4 496 / 107880 18.08 11.40 / 1.59 6.75 / 2.68 5.08 / 3.56 4.22 / 4.29
keller4 171 / 9435 1.57 1.04 / 1.51 0.68 / 2.31 0.60 / 2.62 0.57 / 2.77
keller5 776 / 225990 54.05 30.81 / 1.75 17.64 / 3.06 12.96 / 4.17 10.65 / 5.08
keller6 3361 / 4619898 994.50 1035.62 / 1.93 558.68 / 3.57 402.71 / 4.95 324.74 / 6.14
mann a9 45 / 918 0.20 0.16 / 1.29 0.16 / 1.26 0.15 / 1.32 0.15 / 1.33
mann a27 378 / 70551 13.89 8.66 / 1.60 5.13 / 2.71 3.95 / 3.52 3.36 / 4.13
mann a45 1035 / 533115 199.46 108.58 / 1.84 60.70 / 3.29 45.03 / 4.43 36.99 / 5.39
mann a81 3321 / 5506380 2863.99 1507.33 / 1.90 837.19 / 3.42 616.96 / 4.64 505.63 / 5.66
p hat500-2 500 / 62946 11.51 7.29 / 1.58 4.43 / 2.60 3.43 / 3.36 2.87 / 4.02
p hat500-3 500 / 93800 16.29 10.39 / 1.57 6.20 / 2.63 4.70 / 3.46 3.97 / 4.11
p hat700-2 700 / 121728 25.07 15.44 / 1.62 9.21 / 2.72 6.92 / 3.62 5.61 / 4.47
p hat700-3 700 / 183010 40.99 24.18 / 1.70 13.89 / 2.95 10.25 / 4.00 8.42 / 4.87
p hat1000-2 1000 / 244799 68.53 38.49 / 1.78 21.86 / 3.14 15.99 / 4.29 13.09 / 5.23
p hat1000-3 1000 / 371746 107.85 59.44 / 1.81 33.33 / 3.24 24.24 / 4.45 19.78 / 5.45
p hat1500-2 1500 / 568960 205.26 110.73 / 1.85 61.09 / 3.36 44.19 / 4.64 35.95 / 5.71
p hat1500-3 1500 / 847244 298.42 160.31 / 1.86 87.91 / 3.39 63.69 / 4.69 51.78 / 5.76
san400 0.7 1 400 / 55860 9.15 5.93 / 1.54 3.69 / 2.48 3.01 / 3.04 2.34 / 3.91
san400 0.7 2 400 / 55860 9.01 5.81 / 1.55 3.60 / 2.51 2.78 / 3.24 2.34 / 3.85
san400 0.7 3 400 / 55860 9.04 5.82 / 1.55 3.59 / 2.52 2.79 / 3.24 2.32 / 3.89
san400 0.9 1 400 / 71820 11.87 7.66 / 1.55 4.64 / 2.56 3.59 / 3.31 2.98 / 3.98
san1000 1000 / 250500 63.37 35.87 / 1.77 20.36 / 3.11 15.08 / 4.20 12.29 / 5.16
sanr400 0.5 400 / 39984 6.59 4.25 / 1.55 2.66 / 2.47 2.09 / 3.15 1.79 / 3.69
sanr400 0.7 400 / 55869 9.07 5.87 / 1.54 3.86 / 2.35 2.82 / 3.22 2.35 / 3.86
frb45-21-1 945 / 386854 111.17 61.51 / 1.81 34.35 / 3.24 25.11 / 4.43 20.41 / 5.45
frb50-23-1 1150 / 580603 186.44 100.98 / 1.85 55.77 / 3.34 40.44 / 4.61 32.87 / 5.67
frb53-24-1 1272 / 714129 238.53 128.33 / 1.86 70.70 / 3.37 51.39 / 4.64 41.74 / 5.71
frb56-25-1 1400 / 869624 300.38 161.17 / 1.86 88.45 / 3.40 64.09 / 4.69 52.03 / 5.77
frb59-26-1 1534 / 1049256 375.84 200.63 / 1.87 109.89 / 3.42 79.54 / 4.73 64.57 / 5.82
frb100-40 4000 / 7425226 3310.85 1715.33 / 1.93 926.45 / 3.57 666.59 / 4.97 537.15 / 6.16

†All times are in seconds.

[3] E. Bonabeau, M. Dorigo, and G. Theraulaz,
“Inspiration for Optimization from Social Insect
Behavior,” Nature, Vol. 406, July 6, 2000, pp. 39–42.

[4] T. Bui and J. Rizzo, “Finding Maximum Cliques with
Distributed Ants,” Proc. of the Genetic and
Evolutionary Computation Conf., 2004, pp. 24–35.

[5] T. Bui and G. Sundarraj, “Ant System for the
k-Cardinality Tree Problem,” Proc. of the Genetic and
Evolutionary Computation Conf., 2004, pp. 36–47.

[6] T. Bui and L. Strite, “An Ant System Algorithm for
Graph Bisection,” Proc. of the Genetic and
Evolutionary Computation Conf., 2002, pp. 43–51.

[7] T. Bui and C. Zrncic, “An Ant-Based Algorithm for
Finding Degree-Constrained Minimum Spanning
Tree,” Proc. of the Genetic and Evolutionary
Computation Conf., 2006, pp. 11–18.

[8] B. Bullnheimer, G, Kotsis, and C. Strauss,
“Parallelization Strategies for the Ant System,” High

7

Table 3: Improvement Factor in the Running Time, IF (c)

95% Confidence Interval for IF (c)‡

Graph Vertices/Edges c = 2 c = 4 c = 6 c = 8
johnson8-2-4 28/210 (0.833, 1.200) (0.714, 0.857) (0.625, 0.833) (0.625, 0.750)
hamming6-4 64/704 (1.071, 1.231) (1.000, 1.364) (0.938, 1.250) (0.938, 1.231)
c-fat500-5 500/23191 (1.504, 1.560) (2.083, 2.457) (2.735, 3.116) (2.804, 3.398)
gen400 p0.9 55 400/71820 (1.523, 1.569) (2.468, 2.646) (3.118, 3.542) (3.752, 4.157)
hamming10-2 1024/518656 (1.805, 1.890) (3.268, 3.382) (4.473, 4.632) (5.494, 5.703)
keller6 3361/4619898 (1.908, 1.983) (3.535, 3.672) (4.904, 5.096) (6.111, 6.320)

‡Resampling population of size 10, 000 is used in the bootstrap.

Performance Algorithms and Software in Nonlinear
Optimization, Kluwer, Dordrecht, 1998, pp. 87–100.

[9] P. Delisle, M. Krajecki, M. Gravel, and C. Gagné,
“Parallel Implementation of An Ant colony
Optimization Metaheuristic With OpenMP,” Proc. of
the 3rd European Workshop on OpenMP (EWOMP’
01), Barcelona, Spain, 2001.

[10] M. Dorigo, “Optimization, Learning and Natural
Algorithms,” Ph.D. Thesis, Politecnico di Milano,
Italy, [in Italian], 1992.

[11] M. Dorigo and G. Di Caro, “The Ant Colony
Optimization Meta-Heuristic,” New Ideas in
Optimization, McGraw-Hill, 1999, pp. 11–32.

[12] M. Dorigo and L. Gambardella, “Ant Colony System:
A Cooperative Learning Approach to the Traveling
Salesman Problem,” IEEE Trans. on Evol.
Computation, 1(1), 1997, pp. 53–66.

[13] M. Dorigo, L. Gambardella, and E. Taillard, “Ant
Colonies for the Quadratic Assignment Problem,”
Journal of the Operational Research Society, Vol. 50,
1999, pp. 167–176.

[14] I. Ellabib, P. Calamai, and O. Basir, “Exchange
Strategies for Multiple Ant Colony System,”
Information Sciences, 177(5), March 2007, pp.
1248–1264.

[15] D. Geer, “Chip Makers Turn to Multicore Processors,”
Computer, Vol. 38, No. 5, May 2005, pp. 11–13.

[16] J. Hastad, “Clique Is Hard to Approximate within
n1−ε,” Acta Mathematica, 182, 1999, pp. 105–142.

[17] J. Lagarias and P. Shor, “Keller’s Cube-Tiling
Conjecture Is False In High Dimensions,” Bulletin of
the American Mathematical Society, 27(2), 1992, pp.
279–283.

[18] M. Manfrin, M. Birattari, Thomas Stützle, and M.
Dorigo, “Parallel Ant Colony Optimization for the
Traveling Salesman Problem,” M. Dorigo et al. (Eds.):
ANTS 2006, Lecture Notes in Computer Science,
4150, 2006, pp. 224–234.

[19] V. Maniezzo and A. Carbonaro, “Ant Colony
Optimization: An Overview,” Essays and Surveys in
Metaheuristics, C. Ribeiro editor, Kluwer Academic
Publishers, 2001, pp. 21–44.

[20] R. Michels and M. Middendorf, “An Ant System for
the Shortest Common Supersequence Problem,” in D.
Corne, M. Dorigo, F. Glover (Eds.), New Ideas in
Optimization, McGraw-Hill, 1999, pp. 51–61.

[21] M. Middendorf, F. Reischle, and H. Schmeck, “Multi
Colony Ant Algorithms,” Journal of Heuristic, 8, 2002,
pp. 305–320.

[22] J. Parkhurst, J. Darringer, and B. Grundmann, “From
Single Core to Multi-Core: Preparing for a New
Exponential,” Proc. of the 2006 IEEE/ACM
International Conference on Computer-Aided Design,
2006, pp. 67–72.

[23] D. Patterson and J. Hennessy, “Computer
Organization and Design (2nd Edition),” Morgan
Kaufmann Publishers, 1998.

[24] M. Randall and A. Lewis, “A Parallel Implementation
of Ant Colony Optimization,” Journal of Parallel and
Distributed Computing, 62(9), 2002, pp. 1421–1432.

[25] J. E. Savage and M. Zubair, “A Unified Model for
Multicore Architectures,” Proc. of the 1st

International Forum on Next-Generation
Multicore/Manycore Technologies, 2008.

[26] N. Sloane, “Unsolved Problems in Graph Theory
Arising from the Study of Codes,” Graph Theory
Notes of New York, XVIII, 1989, pp. 11–20.

[27] N. Sloane and F. MacWilliams, “The Theory of
Correcting Codes,” North Holland, Amsterdam, 1979.

[28] T. Stützle, “Parallelization Strategies for Ant Colony
Optimization,” Proc. of Parallel Problem Solving from
Nature, Lecture Notes in Computer Science, 1498,
Springer, 1998, pp. 722–741.

[29] E.-G. Talbi, O. Roux, C. Fonlupt, and D. Robillard,
“Parallel Ant Colonies for Combinatorial Optimization
Problems,” Feitelson & Rudolph (Eds.), Job
Scheduling Strategies for Parallel Processing: IPPS
’95 Workshop, Lecture Notes in Computer Science,
949, Springer, Vol. 11, 1999.

[30] The Beowulf Project. http://www.beowulf.org. Last
accessed March 2009.

[31] MPI - The Message Passing Interface Standard.
http://www-unix.mcs.anl.gov/mpi/. Last accessed
March 2009.

[32] OpenMP Architecture Review Board.
http://www.openmp.org/specs/. Last accessed March
2009.

[33] Clique Benchmark Instances.
http://www.cs.hbg.psu.edu/benchmarks/. Last
accessed March 2009.

[34] BHOSLIB: Benchmarks with Hidden Optimum
Solutions for Graph Problems.
http://www.nlsde.buaa.edu.cn/ kexu/benchmarks/graph-
benchmarks.htm. Last accessed March 2009.

[35] Supplemental results.
http://www.cs.unm.edu/∼tnguyen/Files/Papers/mc-
sup.pdf. Last accessed March 2009.

8

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

