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There is growing interest in termination reasoning for nonlinear programs and, meanwhile, recent dynamic
strategies have shown they are able to infer invariants for such challenging programs. These advances led
us to hypothesize that perhaps such dynamic strategies for nonlinear invariants could be adapted to learn
recurrent sets (for non-termination) and/or ranking functions (for termination).

In this paper, we exploit dynamic analysis and draw termination and non-termination as well as static and
dynamic strategies closer together in order to tackle nonlinear programs. For termination, our algorithm infers
ranking functions from concrete transitive closures, and, for non-termination, the algorithm iteratively collects
executions and dynamically learns conditions to refine recurrent sets. Finally, we describe an integrated
algorithm that allows these algorithms to mutually inform each other, taking counterexamples from a failed
validation in one endeavor and crossing both the static/dynamic and termination/non-termination lines, to
create new execution samples for the other one.

We have implemented these algorithms in a new tool called DynamiTe. For nonlinear programs, there
are currently no SV-COMP termination benchmarks so we created new sets of 38 terminating and 39 non-
terminating programs. Our empirical evaluation shows that we can effectively guess (and sometimes even
validate) ranking functions and recurrent sets for programs with nonlinear behaviors. Furthermore, we show
that counterexamples from one failed validation can be used to generate executions for a dynamic analysis
of the opposite property. Although we are focused on nonlinear programs, as a point of comparison, we
compareDynamiTe’s performance on linear programs with that of the state-of-the-art tool, Ultimate. Although
DynamiTe is an order of magnitude slower it is nonetheless somewhat competitive and sometimes finds
ranking functions where Ultimate was unable to. Ultimate cannot, however, handle the nonlinear programs in
our new benchmark suite.
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1 INTRODUCTION

Termination continues to be an important theoretical property that is of practical interest. In recent
years, there has been a proliferation of termination and non-termination verification tools, including
T2 [Brockschmidt 2020], Ultimate [Ultimate 2020], CPAchecker [Beyer and Keremoglu 2011],
AProVE [Giesl et al. 2014], FuncTion [Urban 2015], SeaHorn [Gurfinkel et al. 2015], HipTNT+ [Le
et al. 2015], and many others (see the Termination track of SV-COMP [Beyer 2020]). These tools
are very effective at proving termination and non-termination, especially for programs with linear
arithmetic assignments and loop guards [Podelski and Rybalchenko 2004a].

Meanwhile, researchers are increasingly using techniques based on dynamic execution, to bolster
static verification. Static analysis explores all possible program paths but typically has one or more
shortcomings: expressivity sacrifices, false positives, simpler invariants or restrictions on kinds of
target programs. Dynamic analysis focuses on exploring only a few program executions and, as
such, also has its own shortcomings: it is only correct with respect to the explored paths. However,
by (initially) sacrificing soundness, dynamic analyses support more expressive invariants and scale
well to large and complex programs (see, e.g., [O’Hearn 2020]), often being effective even when the
source code is not available. Moreover, false positives for the existence of a bug are not a concern:
if any of the explored paths leads to an error, then it is a real error. More recent dynamic analyses
have taken a łdata-drivenž or machine learning approach, i.e., learning based on training data.
DIG [Nguyen et al. 2014a] and [Yao et al. 2020] use this form of dynamic analysis to learn invariants
of nonlinear programs. Moreover, other recent works combine both dynamic and static analysis
techniques in an iterative loop, sometimes for the purpose of termination reasoning [Nori and
Sharma 2013]. The dynamic analysis component is used to łguessž some candidate results and the
static analysis one is used to verify them. The results of the checker, e.g., counterexamples showing
invalidity of the candidate results, are then used to help the dynamic analysis to infer better results.

Landscape. In the context of these recent advances that use dynamic support to learn invariants
of nonlinear programs, a natural question is whether they can be used or adapted to empower
termination and non-termination reasoning for such challenging programs. We explored in this
direction, asking first whether non-termination reasoning can be built from dynamic approaches
for nonlinear invariants, and then a similar question for termination. While these endeavors at first
seem independent and could potentially be parallelized, we finally explored smarter approaches,
where counterexamples from a failed termination proof could be used to generate executions for
dynamically learning non-termination, and vice-versa.

Learning ranking functions and recurrent sets. In this paper, we present algorithms that mix static
and dynamic strategies in order to prove termination and non-termination of nonlinear programs.
Overall, our strategy begins by sampling terminating and potentially non-terminating executions
from an instrumented program, with truncated divergence. We first present a novel termination
algorithm ProveT, which dynamically samples concrete states from the transitive closure of the
loop bodies of sampled traces, fits them to a ranking function template, and uses an SMT solver to
generate unknown coefficients in the template. We then attempt to validate these candidate ranking
functions (via reachability) and use any possible counterexamples to dynamically generate more
sample traces. A second ProveNT algorithm is used for non-termination, and iteratively refines
a recurrent set condition, by executing the program and using samples to learn conditions for
re-entering versus exiting the loop. We next widen the interfaces of these procedures and show
that these algorithms can inform each other. A failed attempt of ProveT to prove termination yields
a potentially infinite path, which we use to generate new executions to input to ProveNT, and
vice-versa.
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We have implemented these algorithms in a new tool called DynamiTe for dynamically proving
termination and non-termination. DynamiTe employs the power of many disparate tools: the dy-
namic invariant inference tool DIG [Nguyen et al. 2014a], the symbolic execution tool CIVL [Siegel
et al. 2015], the reachability analysis tools CPAchecker [Beyer and Keremoglu 2011] and Ulti-
mate [Ultimate 2020] (without termination reasoning), and the SMT solvers Z3 [de Moura and
Bjùrner 2008] and CVC4 [Barrett et al. 2011].

Our main goal is to prove termination and non-termination of nonlinear programs, a domain for
which many existing tools struggle. We evaluate DynamiTe on two existing benchmarks consisting
of nonlinear programs (polyrank [Bradley et al. 2005b], which has nondeterministic terminating
programs, and Anant [Cook et al. 2014], which has nonlinear non-terminating programs) and also
create and evaluate DynamiTe on more challenging nonlinear terminating and non-terminating
benchmarks (by adapting the SV-COMP benchmark nla-digbench [2020] consisting of programs
having nonlinear polynomial invariants). We show that DynamiTe is able to learn rich ranking
functions and recurrent sets for these programs that cannot be handled by tools like Ultimate. We
also show that the integrated algorithm can choose the right algorithm, ProveT or ProveNT or use
the counterexample from a failed proof to assist the other.
Although nonlinear programs were our focus, we also compared our algorithms on linear

programs against a state-of-the-art termination prover: Ultimate [Ultimate 2020]. We used the
62 benchmarks from the category termination-crafted-lit in SV-COMP 2020 and show that,
although DynamiTe is typically an order of magnitude slower (owing to the need for program
execution), it is nonetheless competitive with Ultimate, which is a much more mature tool. Also, in
some cases DynamiTe is faster than Ultimate and in other cases DynamiTe is able to learn ranking
functions, where Ultimate is unable to do so.

Contributions. In summary, we present:

(1) A novel termination algorithm, based on sampling concrete states from the transitive closure
and fitting to ranking function templates with SMT. (Section 4)

(2) A novel non-termination algorithm, based on refining recurrent sets with conditions learned
from dynamic executions of the program (Section 5).

(3) An integrated algorithm for termination and non-termination, that uses counterexamples
from one failed static validation attempt to generate executions for dynamic analysis of the
other. (Section 6)

(4) A new publicly available tool called DynamiTe [2020] for termination/non-termination of
nonlinear programs. (Section 7)

(5) Two new benchmark suites for SV-COMP: one for termination of nonlinear programs, and
one for non-termination of nonlinear programs. (Section 8)

(6) An experimental evaluation, demonstrating that DynamiTe is able to learn and sometimes
validate ranking functions and recurrent sets for nonlinear programs. (Section 8)

Related work. Similarly to DynamiTe, several existing works support programs with nonlinear
properties. Nori and Sharma [2013] show program termination by dynamically inferring (nonlinear,
disjunctive) loop bounds from program execution traces. Bradley et al. [2005b,c] use finite difference
trees to statically infer lexicographic polynomial ranking functions to prove termination of nonlinear
programs. For non-termination analysis, Cook et al. [2014] uses abstract interpretation to over-
approximate the nonlinear programs and infer linear recurrent sets to prove program termination.
Frohn and Giesl [2019] uses recurrence solvers to generate loop-free transitions so that paths
to non-terminating loops can be discovered. In contrast, DynamiTe integrates existing dynamic
invariant generation and static verification for dynamically analyze both program termination and
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non-termination from their concrete snapshots, and it can analyze many other programs that are
not by these works (details in Sections 8 and 9). Also, DynamiTe can analyze termination properties
for nondeterministic programs (similarly to [Bradley et al. 2005b,c; Nori and Sharma 2013], but it
currently cannot handle non-termination for nondeterministic programs (see Sections 3, 5 and 8.3
for additional discussion and evaluation). In Section 9 we discuss these works and other general
termination and non-termination techniques in more details.

2 OVERVIEW

int a = 0, n = *;

while ((a+1) * (a+1) <= n):

a = a + 1

Consider the program to the right. In the loop body of this
program, a is incremented by 1, and the loop terminates
when the square of a+1 is no longer below n. While the
termination of this program is intuitively obvious, existing tools (e.g. Ultimate, AProVE, SeaHorn)
are unable to prove it to be terminating because it requires reasoning about the nonlinear behavior of
program variables. Proving termination here involves discovering a ranking function that pertains
to variables occurring in a quadratic inequality in the loop condition. As we discuss below, examples
like this and more complicated ones with polynomial expressions, foil many existing techniques
that are based on linear arithmetic constraints. One major impediment appears to be the lack of
static reasoning techniques for programs with such nonlinear behaviors. Some static works have
shown static termination reasoning for certain classes of nonlinear programs (e.g. łNAW loopsž
[Babić et al. 2007], loops with finite difference trees [Bradley et al. 2005b,c]), and other works
provide static resource bounds [Gulwani 2009; Gulwani et al. 2009; Hoffmann et al. 2011; Hoffmann
and Hofmann 2010a,b], but still lack general techniques for termination and non-termination of
these challenging programs.

Meanwhile, in recent years, a number of works have showed that dynamic analysis can be used
to learn rich, nonlinear invariants. Nguyen et al. [2012] showed that we can use dynamic analysis
to learn expressive (nonlinear) polynomial invariants from a small set of program execution traces.
Subsequent works [Nguyen et al. 2017a,b] propose iterative loop algorithms to generate candidate
invariants from traces and use symbolic execution to refute spurious results and generate valid
counterexamples, which are then used to improve the invariant generation process. Many other
works, e.g., [Nguyen et al. 2014b; Sharma et al. 2013], combine inferring nonlinear invariants with
static checking. Recently, Yao et al. [2020] proposes using neural networks to learn nonlinear
invariants.

2.1 Learning Ranking Functions and Recurrent Sets

In this paper, we explore the question of whether techniques for nonlinear invariants can be
extended to reasoning about both termination and non-termination and do so in an integrated way.
We begin by adapting earlier dynamic analysis works, to provide a new route for learning ranking
functions and recurrent sets. To highlight and illustrate the key features of our work, we will use
the following pair of slightly more complicated examples. The following two programs are similar,
but one terminates and the other does not:
Termination Non-termination

1 int s = 1, t = 1, k, c = 1

2 while (t*t - 4*s + 2*t + 1 + c <= k):

3 t = t + 2

4 s = s + t

5 c = c + t

1 int s = 1, t = 1, c = 1

2 while (t*t - 4*s + 2*t + 1 + c >= 0):

3 t = t + 2

4 s = s + t

5 c = c + t

These examples are based on sqrt1.c from the SV-COMP benchmark nla-digbench [2020]. (We
discuss how we adapted it in Section 8.) Both of these programs involve loop conditions that
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are nonlinear, given the quadratic term t*t in them. For illustration purposes, the body of both
programs is the same, and it is not difficult to see by induction that the subexpression t*t - 4*s +

2*t + 1 in both loop conditions is always equal to 0.
In the program on the left, the loop condition is essentially equivalent to c <= k for all reachable

states in the program. Given that k is initialized to a nondeterministic value and unchanged and t

is always positive, and thus c is always increasing up to k and the execution will eventually exit
the loop. This reasoning is usually captured with ranking functions: a map from every state to
an ordered element where a transition in the program between states implies a transition from
an element to a strictly smaller in that order element. Moreover, such an order is chosen to not
be forever decreasing, and thus there cannot be an infinite sequence of states with valid program
transitions between them. In this case such a function would be the one that maps every state to
the value of k-c. It is the aim of our algorithm to synthesize this function and we describe in the
following paragraphs how this is achieved.

In the program on the right, the loop condition is now essentially c >= 0 for all reachable states
of the program, which holds trivially since c is initialized to 1 and always increasing. To show
non-termination, a recurrent set is usually constructed: by abstracting the loop body in a relation
Tloop, a set X of states is collected such that for any state s in that set, and any other state s ′ we
can transition to from s , it is the case that s ′ is also in X . The existence of such a set that contains
reachable states implies that the program is non-terminating at least in some cases.

The above examples reiterate the point that, even for simple nonlinear programs, the necessary
reasoning evades existing termination and non-termination tools, many of which are based on
linear arithmetic constraint solving [Gurfinkel et al. 2015; Podelski and Rybalchenko 2004a].

Dynamic snapshots for termination/non-termination. In this paper, we work in a direction that is
based on learning from dynamically generated program traces, for guessing (and possibly validating)
ranking functions and recurrent sets for examples such as those above. To this end, we begin by
describing a simple mechanism for collecting traces which may or may not terminate. Tools for
dynamic analysis typically take łsnapshotsž of the state of the program to record trace information.
These snapshots may record the values of some/all variables, as well as the program location and
there are many techniques for injecting snapshots.

In the case of termination, though, there is the additional challenge of recording snapshots of a
loop that may run forever. Our solution is to break the loop so that potentially infinite executions
are truncated, and then we can learn about those prefixes and try to characterize the ones that
would have terminated versus those that would not have. We can truncate loops by introducing
a counter. Counter instrumentation is common in other kinds of static analysis [Gulwani 2009;
Gulwani et al. 2009; Hoffmann et al. 2011; Hoffmann and Hofmann 2010a,b], but here we use it to
truncate executions.

1 int s = 1, t = 1, c = 1

2 int _ctr = 0, _bnd = 500

3 vtracepre(s,t,c)

4 while (t*t - 4*s + 2*t + 1 + c >= 0):

5 if (_ctr >= _bnd) abort() else _ctr++

6 vtracebody(s,t,c)

7 t = t + 2

8 s = s + t

9 c = c + t

10 vtracepost(s,t,c)

Using the above non-termination example, our
transformation generates the program on the
right, where changes are indicated in the gray
boxed regions. Technically, these changes are
made to every loop of the program, but for il-
lustrative purposes in the section we will just use
one loop. Our transformation begins by introduc-
ing a pair of variables for the loop. The variable
_ctr is used to count the loop’s iterations, and
_bnd is an input to the dynamic analysis, whose value is pragmatically chosen to determine a useful
prefix of potentially non-terminating traces. As such, _ctr is incremented inside the loop body and
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when it reaches _bnd, control exits the loop if it hasn’t already. Next, we inject function calls to a
method vtrace in three places: before (vtracepre), during (vtracebody), and after (vtracepost) the
loop. In each location, vtrace is used to record the values of the variables in scope as a tuple such
as (body, s = 1, t = 1, c = 1), which we call a łsnapshotž. It should be noted that vtracepost only
captures values for states that exited the loop due to natural causes.
This truncation and instrumentation permits us to distinguish between three classes of traces:

π̄base = {(pre, _)·(post, _)}, π̄term = {(pre, _)·(body, _)+ ·(post, _)}, π̄mayloop = {(pre, _)·(body, _)+}

Above we have described the classes of traces using simple regular expressions, matching the first
component of the tuple, and ignoring the values of variables. Technically, by these expressions, we
mean the set of all traces that match the regular expression. The first set of traces π̄base are those
that have a snapshot before the loop, skip the loop entirely and then have a snapshot immediately
after the loop. The second set π̄term is similar but has at least one snapshot from inside the body
of the loop. The third set π̄mayloop includes traces that entered the loop but for which there is no
post-loop snapshot. (Of course the union of these languages covers the language of the program.)
This transformation is unsound because (i) it does not account for loop body states beyond _bnd,
and (ii) executions may be forced to exit the loop before their day has come to do so. However,
as we will see, this strategy collects rich data that enables us to start making guesses for ranking
functions and recurrent sets, even in nonlinear contexts such as this example.

2.2 Algorithms

Learning ranking functions for termination. In Section 4, we present an algorithm beginning with:

(1) Instrumenting the program as discussed above.
(2) Generating random inputs to the program and collect traces (as in [Nguyen et al. 2012,

2014a]).
(3) Partitioning traces into (π̄base, π̄term, π̄mayloop).
(4) Using π̄term as an input to subprocedure InferRF(π̄term), discussed below, to infer a ranking

function from the data.

For the above Termination example, such a possible trace is: {(pre, 1, 1, 42, 1), (body, 1, 1, 42, 1),
(body, 4, 3, 42, 4), (body, 9, 5, 42, 9), . . .} ∈ π̄term, where each tuple represents variables (_,s,t,k,c).
Running DynamiTe on this example takes 7.55 seconds to produce an answer. By comparison,
existing tools for termination [AProVE 2020; CPAChecker 2020; Gurfinkel et al. 2015; Ultimate
2020] typically perform well on linear programs, but fail to produce an answer on this program.
The output of InferRF is the ranking function expression k-c. In some cases this guess may already
be useful, even though it has not been verified. A user may wish to examine it and, in this case, it
appears to be correct. If a stronger guarantee is needed, this ranking function can be given to a
safety reachability prover such as (the reachability analyses of) CPAChecker [2020] or Ultimate
[2020]. For example, using a standard translation [Cook et al. 2006], we can use an encoding that
reduces ranking function validity checking to reachability. In this example, Ultimate’s reachability
reasoning can verify that k-c is a valid ranking function after 167 seconds.
In some cases, however, InferRF guesses incorrectly and returns a ranking function that is

invalid. In these cases, a reachability solver may return a counterexample, which contains valuable
information: a stem (path to the loop) and lasso (cycle through the loop body) that potentially non-
terminates. In Section 4we describe a sub-procedure GuessInput(cex) that uses this counterexample
to guide the generation of new program inputs that can lead to a trace corresponding to this stem
and lasso.
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Our algorithm is parametric over the procedure InferRF for inferring ranking functions from
trace samples. In Section 4 we give one strategy that is based on taking samples from the transitive
closure over the trace snapshots and then fitting them to a template, using models of the well-
foundedness constraints from an SMT solver to generate unknown coefficients of the template. The
output ranking functions can be seen in Section 8.

Learning recurrent sets for non-termination. For non-termination, the goal is to guess a recurrent
set, which is a set of states X , such that once X is reached, every subsequent transition will return
to X . (We will define this formally later.) We begin by instrumenting the program but, unlike the
termination algorithm, we instead use a form of iterative refinement to learn recurrent sets. For
each loop, our overall algorithm keeps a work-list of candidate recurrent sets, starting by using the
loop condition itself as the first candidate recurrent set. On each iteration, we select such a candidate
recurrent set and check whether it is a valid recurrent set and reachable. If so, the algorithm has
proven non-termination and returns. Otherwise, we have a model witness to the invalidity of the
recurrent set which can be used for its refinement.
When R is not a recurrent set, our procedure RefineRS(R, P ,Tstem,Tloop) attempts to learn a

refined set from traces of the program. RefineRS uses the reason for the invalidity of R to generate
a set of traces Π of the instrumented/truncated program. These traces are then used to learn
conditions that lead to refined candidate recurrent sets. These refined candidate recurrent sets are
then returned to the outer algorithm for further validity checking.
From failed validation to dynamic learning. A failed proof of static termination can be used to

inform a dynamic non-termination proof and vice-versa. We discuss how our algorithms can be
integrated together in an algorithm called ProveTNT, described in Section 6. The key idea is to
additionally parameterize ProveT (respectively, ProveNT) by a set of input traces, which are derived
from a failed ProveNT (resp., ProveT) attempt. These concrete traces contain useful data: examples
of where the program appears to terminate or appears to diverge, and can immediately be used to
guess ranking functions or recurrent sets.

2.3 The DynamiTe Tool

We have developed DynamiTe for dynamically guessing (and statically validating) rank functions
and recurrent sets. The tool is publicly available at [DynamiTe 2020]. DynamiTe is written in a com-
bination of Python and OCaml, the latter used mostly for program transformations (instrumentation
and ranking function validity checking) with CIL [Necula et al. 2002].

DYNAMITE
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Fig. 1. Tools used in DynamiTe.

DynamiTe takes advantage of sev-
eral existing dynamic, symbolic, and
static analysis techniques and tools as
shown in Fig. 1. The two main algo-
rithms to check for termination and non-
termination mentioned above are the
two blocks labeled ProveT and ProveNT,
respectively. As shown in the figure,
ProveT uses the two tools Ultimate and
CPAchecker to verify the inferred rank-
ing functions and obtain counterexam-
ples to improve the inference process. On
the other hand, ProveNT uses the CIVL
symbolic execution tool to obtain pro-
gram information such as loop condi-
tions and transition relations, the DIG
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dynamic invariant generation tool to infer invariants from snapshot traces in order to represent and
refine recurrent sets. DynamiTe also uses the Z3 and CVC4 SMT solvers to check if the candidate
recurrent sets are valid and if not obtains counterexamples to refine DIG’s inference process.

Our algorithms can work with programs containing sequential and/or nested loops. Our program
transformation puts each loop into a separate method and replaces the loop by a call to that method.
We then build a call graph of those methods and extract a postorder call sequence from it. We
analyze each loop at a time in that order, i.e., the top-down innermost loop will be examined first.
We proceed to the next loop in the sequence only when we have learned that the current loop
is terminating. Otherwise, we conclude that the whole program does not terminate due to the
non-termination of the current loop.

Our main goal in this paper is to develop integrated termination/nontermination algorithms that
exploit dynamic analysis to support nonlinear programs. However, we also evaluate how DynamiTe
performs on linear examples. To this end, we evaluated DynamiTe on the 66 benchmarks from
the SV-COMP termination-crafted-lit set of linear arithmetic termination and non-termination
problems collected from literature.We comparedDynamiTe to Ultimate, because it is one of the most
successful termination reasoning tools available. We report Ultimate’s proving time as compared
with DynamiTe’s guessing time and DynamiTe’s time to validate guesses. Details are in Section 8.
Overall, DynamiTe is roughly an order of magnitude slower than Ultimate on linear benchmarks,
owing to the fact that DynamiTe must repeatedly execute the program to collect data. Nonetheless,
it’s worth noting that Ultimate is a much more mature tool. In one case, DynamiTe was able to
learn a rank function that Ultimate could not. We also show that DynamiTe is competitive for
proving non-termination of linear programs, as compared to Ultimate’s ability to generate lasso
counterexamples to termination.

For the nonlinear case, there are two existing benchmarks: polyrank for termination and Anant

for non-termination. However, they only have at-most-quadratic polynomial programs and 10/11
programs in the polyrank benchmark are linear. To make (non)termination reasoning more chal-
lenging, we adapted the closely related SV-COMP digbench set of programs for nonlinear in-
variant generation problems to create two new sets of benchmarks called termination-nla and
nontermination-nla which we are submitting to SV-COMP. The set termination-nla consists of 37
terminating programs and nontermination-nla consists of 38 non-terminating programs, which
were created by adapting (up to sextic degree) nonlinear invariants in their loop conditions. Our
empirical evaluation shows that DynamiTe can discover and sometimes validate rank functions (in
35 of 37 cases) and recurrent sets (in 33 of 38 cases) for nonlinear programs, that are not supported
by Ultimate. (Ultimate returns an unsupported error message.)

3 PRELIMINARIES

We denote a program by P . We assume, for simplicity, that it has a single setV of variables. We will
sometimes use the notation V ′ to mean a second set of primed versions of the same variables, i.e.
V ′
= {v ′ | v ∈ V }, to describe transition relations. We denote by Σ set of states which we treat as

valuations of the variablesV , i.e. Σ : V → Val . To represent conditions, we use logical formulae for
states, denoted C, where [[C]] : Σ → B. We also work with logical state transition relations denoted
T , where [[T ]] ⊆ Σ × Σ. T can also be presented in the form of logical formulae. As we describe
below, program loops can be summarized using these conditions and relations, in a standard way.

Definition 3.1 (Ranking functions). For a state space S , a ranking function f is a total map from S

to a well-ordered set with ordering relation ≺. A relation T ⊆ S × S is well-founded if and only if
there exists a ranking function f such that ∀(s, s ′) ∈ T . f (s ′) ≺ f (s).
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The existence of a ranking function over the transition relationT of a loop implies the termination
of that loop, as there can be no infinite sequence of states s0, s1, . . . such that T(si , si+1) holds for
every i ≥ 0. This is because for all i ≥ 0, f (si+1) ≺ f (si ) and the sequence of states mapped under
f cannot be decreasing forever as the image of f is a well-order.
The termination of a loop with a transition relation T can also be proved by a finite set of ranking

functions (or measures)M = { f1, . . . , fm} by showing that the transitive closure of T is contained
in the disjunctively well-founded relation defined from M [Podelski and Rybalchenko 2004b]. That
is, T + ⊆ {(s, s ′) | f1(s

′) ≺ f1(s) ∨ . . . ∨ fm(s
′) ≺ fm(s)}.

This validity of the finite set of ranking functionsM for the loop’s termination can be checked via
proving safety of the following instrumented loop (i.e., the error is unreachable) [Cook et al. 2006].
This check can be performed by a reachability prover such as Ultimate [2020] or CPAchecker [Beyer
and Keremoglu 2011]. Below is an illustration for awhile loop, whose instrumentation code are put in
gray boxes. In this instrumented program, a state ŝ of the loop is arbitrarily recorded and then for any

_dup = False

while C:

if _dup:

if not (f1(x̂1, ..., x̂n ) > f1(x1, ..., xn ) and f1(x̂1, ..., x̂n ) ≥ 0):

. . .

if not (fm (x̂1, ..., x̂n ) > fm (x1, ..., xn ) and fm (x̂1, ..., x̂n ) ≥ 0):

ERROR: skip

if not _dup and *:

x̂1 = x1; ...; x̂n = xn

_dup = True

B

subsequent state s , we check if
the transition (ŝ, s) satisfies at
least one ranking function inM.
A transition (ŝ, s) that does not
satisfy any ranking function in
M, indicates that the transitive
closure transition T + is not a
subset of the disjunctively well-
founded relation of M. In this
case, the error is reached and the
termination proof fails. Other-
wise, a safe program in which
the error is unreachable implies the loop’s termination.

Definition 3.2 (Recurrent set). For sets of states X and transition relation T , X is a recurrent set if

(1) X , ∅, (2) T is total on X , (3) the image of T on X is contained within X

The above notion of recurrent sets (i.e. łclosed recurrent setsž in [Chen et al. 2014]) can help to
avoid the difficulty and inefficiency of reasoning the ∀∃ alternation in łopen recurrent setsž [Gupta
et al. 2008], but it cannot support nondeterminism without under-approximation. Therefore, our
non-termination proofs are restricted to only deterministic programs. Finding under-approximation
of nondeterminism from concrete possibly-nonterminating snapshots to support non-termination
proofs of nondeterministic programs will be our future work. Note that such restriction does not
apply to our termination proofs.

Definition 3.3 (Loop summary). As is typical [Cook et al. 2006], we will describe loops in terms
of a triple (Tstem,Cloop,Tloop), where Tstem over-approximates the transition from the entrypoint of
the program up to the loop header, Cloop over-approximates the condition for entering the loop,
and Tloop over-approximates the transition through the entire body of the loop back to the header.

4 INFERRING RANKING FUNCTIONS FOR TERMINATION

The algorithm for proving termination is summarized as follows, and two of the main subprocedures
involved, ProveT and InferRF, are shown in Fig. 2.

ProveT. The procedure ProveT aims to prove the termination of a loop L in an instrumented
program Pinstr by inferring a set of ranking functions from a given set of terminating traces πterm.
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1 ProveT(P, Pinstr, L, πterm):

2 rfset = {}

3 π̄mayloop = {}

4 while (True):

5 new_rfset = InferRF(πterm, L)

6 rfset = rfset ∪ new_rfset

7 if (IsUnchanged(rfset):

8 return (Unk, π̄mayloop)

9 else:

10 cex = ValidateRFs(P , rfset)

11 if (not cex):

12 return (, {})

13 else:

14 inps = GuessInputs(Pinstr, cex)

15 π = Execute(Pinstr, inps)

16 πL = Project(π , L)

17 πbase, πterm, πmayloop = Partition(πL, L)

18 π̄mayloop = π̄mayloop ∪ πmayloop

1 InferRF(πterm, L):

2 tcTrans = {}

3 for τL in πterm:

4 tcTrans = tcTrans ∪ GenTCTrans(τL )

5 rfTemplate = GenRFTemplate(L)

6 rfset = {}

7 while not IsEmpty(tcTrans):

8 (s1, s2) = RandPop(tcTrans)

9 t1 = rfTemplate(s1)

10 t2 = rfTemplate(s2)

11 rf = Solve(rfTemplate , {t1 > t2, t1 ≥ 0})

12 rfset = rfset ∪ {rf }

13 tcTrans.filter(t: NotSatisfied(t, rf))

14 return rfset

Fig. 2. Algorithm ProveT for proving Termination, aided by dynamic inference of candidate ranking functions.

(We discuss how Pinstr is built from P in Section 2 and formalize it in Section 7.) The procedure
returns either the result Term when the termination proof is successful or otherwise, returns
Unk with a set of łpossibly non-terminatingž traces π̄mayloop as a counterexample. Initially, the
counterexample π̄mayloop and the set of ranking functions rfset are initialised to be empty. The
procedure then enters a loop until a valid set of ranking functions is found or until no progress is
made when updating the set of ranking functions. Starting with the set of terminating traces πterm,
the subprocedure InferRF is called to produce a set of ranking functions that attempts to cover
those traces in πterm. The details for this subprocedure is given in the next paragraph. The current
set of ranking functions rfset is updated to include the resulting set of ranking functions (new_rfset)
from InferRF. The loop in ProveT exits if no new ranking functions were added. Otherwise, the
updated set of ranking functions rfset is validated against the original program P via a reachability
prover (as is standard [Cook et al. 2006]). If the prover returns no counterexample, which means the
validation is successful, ProveT returns Term indicating that the loop L is terminating (via the set of
ranking functions rfset). On the other hand, if a counterexample to the set of ranking functions is
found, then a new set of inputs is generated. The given program is executed on those new inputs
and a set of concrete traces from these executions (π ) is collected. These traces are then projected
into the locations of interest in the loop L. That is, for each trace τ ∈ π , the projection returns a
sequence of states τL , comprising the state right before the loop, the states reached inside the loop,
right after the loop header, and the state at the loop’s exit. Subsequently, the set of these sub-traces
(πL) are partitioned on whether they never enter the loop’s body (πbase), whether they terminate
(πterm), and whether they reach the instrumented bound of iterations before terminating, and as
such are classified as łpossibly non-terminatingž (πmayloop). Finally, the traces in πmayloop are added
into the counterexample π̄mayloop and the procedure repeats the above steps with the new set of
terminating traces πterm.

InferRF. This sub-procedure first generates a random sample of pairs of snapshots from the
transitive closure of the concrete transition relation as follows. For each terminating trace τL ∈ πterm,
with an implicit order of appearance in the trace τL present, all combinations (σ1,σ2) of the states
σ1,σ2 ∈ τL are generated, restricted so that σ1 appears before σ2 in τL . The set of these combinations
is randomly shuffled into a list, and the first K pairs are selected, with K being a predefined value
for the desired size of the sample. All these samples from each trace τL are aggregated into the set
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1 ProveNT(Pinstr, L, πmayloop):

2 (Tstem, Cloop, Tloop) = GetLoopInfo(Pinstr, L)

3 Cmayloop = DynInfer(πmayloop)

4 # stack of candidate recurrent sets

5 stack S = {(0, Cloop), (0, Cmayloop)}

6 π̄term = {}

7

8 while not IsEmpty(S):

9 (depth , R) = Pop(S)

10 if (depth >UPPERBOUND or R(V̄ ) ≠⇒ Cloop(V̄ )):

11 continue;

12 if IsValid(R(V̄ ) ∧ Tloop(V̄ , V̄ ′) =⇒ R(V̄ ′)):

13 if IsSat(Tstem(V̄0, V̄ ) ∧ R(V̄ )):

14 return (NonTerm, {})

15 else:

16 RS, πterm = RefineRS(R, Pinstr, L, Tstem, Tloop)

17 π̄term = π̄term ∪ πterm
18 for R′ in RS :

19 S.push((depth + 1, R′))

20 return (Unk, π̄term)

1 RefineRS(R, Pinstr, L, Tstem, Tloop):

2 R as
∧
i Ri

3 RS = {}

4 π̄term = {}

5 for Ri in R:

6 ri = (R(V̄ ) ∧ Tloop(V̄ , V̄ ′) =⇒ Ri (V̄
′))

7 if IsSat(¬ri ):

8 inps = GuessInputs(Tstem(V̄0, V̄ ) ∧ ¬ri (V̄ , V̄ ′)

9 π = Execute(Pinstr, inps)

10 πL = Project(π , L)

11 πbase, πterm, πmayloop = Partition(πL, L)

12 Cterm = DynInfer(πterm)

13 Cmayloop = DynInfer(πmayloop)

14 π̄term = π̄term ∪ πterm
15 Cterm as

∧
i Ci

16 for Ci in Cterm:

17 RS = RS ∪ {R ∧ ¬Ci }

18 RS = RS ∪ {Cmayloop }

19 return (RS, π̄term)

Fig. 3. Algorithm ProveNT for proving Non-termination, aided by dynamic inference of recurrent sets.

tcTrans. The subprocedure InferRF also generated a ranking function template, which is of the
form u0 + u1 · v1 + u2 · v2 + . . .un · vn for the set of variables {v1, . . . ,vn} in the loop L and the
unknown coefficients u0,u1 . . . ,un .
While the set tcTrans is non-empty, an element (s1, s2) is randomly popped, and two instances

t1, t2 of the template are produced for the two respective states s1 and s2. Given the valuation
{hi

1
, . . . ,hin} of the set of variables {v1, . . . ,vn} in the state si , for i ∈ {1, 2}, the instance ti is of

the form u0 + u1 · h
i
1
+ u2 · h

i
2
+ . . .un · hin . The solver from Z3 is then asked to return values for

u0, . . . ,un that satisfy the constraints

u0 +
∑

1≤j≤n uj · h
1
j > u0 +

∑
1≤j≤n uj · h

2
j , and u0 +

∑
1≤j≤n uj · h

1
j ≥ 0,

while minimizing the value of
∑

0≤j≤n |uj |. The resulting solution of values for u0, . . . ,un is added
as a candidate ranking function to the set rfset of accumulated ranking functions. Any pair of states
(s1, s2) from the random sample of trasitive closure of the transition relation that was constructed
earlier, that satisfies the latter candidate ranking function is removed from that sample, and the
procedure continues with the remaining ones.

Correctness. Sub-procedure InferRF terminates since at each iteration of the loop we remove at
least one of the pairs (s1, s2) from tcTrans (line 8 of InferRF), but possibly more (line 13 of InferRF).
By construction, each ranking function returned by InferRF handles at least one of the pairs (s1, s2)
in tcTrans. Such a candidate ranking function is only returned by ProveT if it is validated on P by
a reachability solver. On the other hand, it is not guaranteed that ProveT will terminate. Because
the traces are dynamically generated, and because the transitive closure is sampled randomly, a
newly inferred candidate ranking function could potentially only handle few of the possible pairs
of states in the actual transitive closure of the loop body. As a result, a new ranking function may
be added to the set of possible ranking functions continuously (see line 6 of ProveT).
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5 INFERRING RECURRENT SETS FOR NON-TERMINATION

The algorithm ProveNT for proving non-termination is given in Fig. 3. The input is an instrumented
program Pinstr, the loop L currently being analysed, and a set πmayloop of traces that may be non-
terminating. The procedure outputs either that a recurrent set was found (NonTerm), or that such a
recurrent set was not found (Unk) together with a set of traces that were found to be terminating.
The algorithm is aided by a dynamic sub-procedure RefineRS for guessing candidate recurrent
sets, which are then validated.

ProveNT begins by collecting summaries for the loop L in P . We use standard techniques [Cook
et al. 2006] to represent L in terms of three entities:

• Tstem is a state relation that over-approximates the transition from the entry point of the
program up to the entry point of loop L.

• Cloop is a state predicate that over-approximates the condition for entering the loop.
• Tloop is a state relation that over-approximates all transitions from the beginning of the body
of the loop, back to the loop header.

An illustration of these entities is given in Fig. 4. The algorithm is structured using a stack S as a work
list, tracking candidate recurrent sets that will later be examined and possibly refined. To begin with,
we ambitiously select Cloop to be the first candidate recurrent set. The stack element also includes
an integer 0, to track the exploration depth, so that we can later bound the search. We also add
the condition Cmayloop into the work list S, which is dynamically inferred from the set πmayloop of
possibly non-terminating traces received from a failed termination proof.

fun(int x, int y):

  y = 2*y

  x = x + 5

  while(x < y):

    x = x + 2

    y = y - x

Cloop = {(x, y) | x < y}

}

Tloop = {(x, y), (x′, y′) | x < y ∧

x′ = x+ 2 ∧

y′ = y − x}

Tstem = {(x, y), (x′, y′) | x′ = x+ 5 ∧

y′ = 2 ∗ y}

}

Fig. 4. Illustration of Tstem, Cloop and Tloop

The main loop iterates as long as S is non-
empty and no valid recurrent set was found.
Popping a candidate R off the stack, if we have
gone beyond some upper bound, then we sim-
ply ignore R rather than exploring further re-
finements of R. R is also ignored if it doesn’t
even imply the loop condition: it could not
be a recurrent set. We next use an SMT query
IsValid to check whether R is indeed a recur-
rent set, i.e., Definition 3.2: if R holds of variables V̄ , and a loop body transition to V̄ ′ is possible, then
R must hold of V̄ ′. If R is a recurrent set, then we check that at least some state in R is reachable
from an initial state, using Tstem, and if it is we have succeeded in proving the program to be
non-terminating. Alternatively, if R is not a recurrent set, we explore further by refining R, with
respect to this loop, using subprocedure RefineRS discussed below. This subprocedure also collects
any terminating traces found during the refinement. Such terminating traces are evidence that the
program is terminating, and thus useful for the case where non-termination fails to be proved and
the algorithm switches to proving termination.

RefineRS. This subprocedure, shown in Fig. 3, takes as input the current candidate recurrent
set R with respect to the loop L and returns a set of new candidate recurrent sets RS . The input
recurrent set R is assumed to be a conjunction of {Ri }i≤k , for some k ∈ N, and it is known that R is
not a recurrent set for the transition relation Tloop. As such there are two states σ and σ ′ (i.e. two
valuations of the set of variables V̄ ), for which the formula on the left does not hold:

∧
i≤k Ri (σ ) ∧ Tloop(σ ,σ

′) =⇒
∧

i≤k Ri (σ
′) ri =

∧
i≤k Ri (σ ) ∧ Tloop(σ ,σ

′) =⇒ Ri (σ
′)

Therefore, for at least one of the i ≤ k , the formula on the right does not hold. The candidate recur-
rent set R is updated for each such Ri as described next. The algorithm proceeds via GuessInputs
using SMT to generate solutions V̄0 to the formula ∃V̄ , V̄ ′ Tstem(V̄0, V̄ ) ∧ ¬ri (V̄ , V̄

′), which are used
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as inputs to execute Pinstr. Informally, these inputs are witnesses to a path, via Tstem, from the initial
state to a state on which the recurrent set fails. After the program is executed using the resulting
inputs inps and a set of traces is produced as a result. The traces are first projectedÐto include the
instrumented information regarding only the loop L being analyzedÐand then partitioned into: the
traces πbase that never enter the loop, traces πterm that definitely terminate, and traces πmayloop that
may be non-terminating, as the execution for the latter reached the imposed loop bound. It should
be noted that, since any candidate R implies Cloop, if the program is deterministic, and assuming
soundness of the preceding subprocedures, then the inputs inpswill not cause any traces that never
enter the loop to be generated, and thus πbase will be empty. Traces πterm are used to dynamically
infer a condition Cterm that captures the set of states reached right after the loop header by those
terminating traces and a similar condition Cmayloop is inferred using πmayloop. The accumulating
set π̄term is updated to include πterm and the recurrent set RS is then updated as follows. For every
conjunct Ci of Cterm, RS is updated to include the strengthened candidate recurrent set R ∧ ¬Ci
in which any states in Ci that is possibly in a terminating trace is excluded from the candidate.
The condition Cmayloop is also included as a new candidate recurrent set since it captures all states
that are in possibly non-terminating traces. At the end, the procedure RefineRS returns the set of
candidate recurrent sets constructed, together with any terminating traces accumulated in π̄term.
Consider the example to the right with nonlinear expressions to illustrate how ProveNT and

RefineRS works. The summary of this loop is: Tstem = true, Cloop = t ≤ n2 + 1, and

int t, n, m

while (t <= n*n + 1):

t = t + 2*m

n = n + 1

Tloop = t ≤ n2+1∧ t ′ = t +2m∧n′ = n+1∧m′
=m. The procedure

ProveNT first uses the loop condition t ≤ n2 + 1 as a candidate
recurrent set and checks if the implication t ≤ n2 + 1 ∧ Tloop =⇒

t ′ ≤ n′2+1 is valid. As this is not the case, ProveNT invokes RefineRS
on this invalid recurrent set to refine it. Then RefineRS finds a set
of inputs over the variables (t ,n,m) that invalidate the implication,
such as {(29,−6,−1), (13,−4, 0), (1, 0, 1), (1,−1, 2), (0, 0, 3), (1, 1, 4), . . .}. The program execution
over these inputs produces only terminating traces and a dynamic invariant inference tool, like
DIG [Nguyen et al. 2012, 2014a], can generate the condition m ≥ −1 from the snapshots at
the beginning of the loop’s body in those traces. This possibly terminating condition (see Cterm

in RefineRS) is used to refine the current candidate into a new one t ≤ n2 + 1 ∧ ¬(m ≥ −1).
Unfortunately, this new candidate recurrent set is still invalid and RefineRS generates a new set
of inputs from its validity check, that is {. . . , (78,−9,−5), (26,−5,−4), (24,−5,−3), (15,−4,−2)}.
Again, all these inputs lead to terminating traces, fromwhich a new conditionn ≤ m−1∧m ≤ −2 can
be dynamically inferred. From this new condition, RefineRS returns two new candidate recurrent
sets by strengthening the current candidate t ≤ n2 + 1 ∧ ¬(m ≥ −1):

(1) t ≤ n2 + 1 ∧ ¬(m ≥ −1) ∧ ¬(n ≤ m − 1), and
(2) t ≤ n2 + 1 ∧ ¬(m ≥ −1) ∧ ¬(m ≤ −2).

Finally, the procedure ProveNT determines that the new candidate (1) is a valid recurrent set and
returns the result NonTerm.

DynInfer. We use dynamic invariant inference to guess conditions from terminating traces and
potentially non-terminating traces which are then used to refine the invalid candidate recurrent
sets. Dynamic invariant generation works, pioneered by the tool Daikon [Ernst et al. 2001, 2007],
learns candidate invariants from program execution traces and templates (e.g., equalities, inequal-
ities). Recent works in dynamic invariant generation are capable of generating very expressive
invariants (e.g., nonlinear invariants). In addition, many works integrate dynamic inference with
static checking to remove spurious invariants. We use the DIG [Nguyen et al. 2012, 2014a] tool to
infer numerical invariants from traces. DIG supports nonlinear equations as well as several other
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forms of inequalities such as octagonal invariants and max/min-plus invariants. DIG reduces the
problem of nonlinear equation solving to linear equation and ussing terms to represent nonlinear
polynomials and uses linear constraint solving to find octagonal and max/min-plus invariants. In
addition, DIG implements a counterexample-guided invariant generation technique that iteratively
infer candidate invariants from program traces and check them using symbolic execution, which,
for incorrect invariants, returns counterexamples that are used as traces to help DIG infer better
results in the next iteration.

5.1 Correctness

ProveNT. For correctness of the algorithm ProveNTwe aim to show that if its output is (NonTerm, {})
then there is at least one execution of the program P , that leads to a non-terminating execution of
the loop L at hand. For what follows, we assume that

(1) for any state that satisfies Cloop, there is a valid transition from that state in the program P ,
(2) Tstem is an exact representation, or at worst an under-approximation, of the transition from

the entrypoint to the loop header, and
(3) Tloop is an exact representation, or at worst an over-approximation, of the loop body transition.

The procedure ProveT will declare that the input loop is non-terminating only when both
IsValid(R(V̄ ) ∧ Tloop(V̄ , V̄

′) =⇒ R(V̄ ′)) and IsSat(Tstem(V̄0, V̄ ) ∧ R(V̄ )) hold (see lines 12 and 13
of ProveNT). In other words,

(i) ∃V̄0, V̄ Tstem(V̄0, V̄ ) ∧ R(V̄ ) and (ii) ∀V̄ , V̄ ′R(V̄ ) ∧ Tloop(V̄ , V̄
′) =⇒ R(V̄ ′).

Formula (ii), together with the assumption (3) above implies the condition (3) of Definition 3.2.
From formula (i) and the assumption (2) above, there is a state S ′ at the loop header that can be
reached from S , such that R(S ′) holds which implies that condition (1) of Definition 3.2 holds for
a reachable state in P from S . Finally, given that R implies Cloop (see line 10 of ProveNT), and
given the assumption (1) above, it follows that the real transition relation for the loop is total on R.
Therefore there is a non-terminating execution of P starting from the state S . We should note that,
given that Tstem is an over-approximation in reality, our implementation could simply check if a
witness path exists.

Further, the algorithm terminates, since whenever a new candidate recurrent set R is added the
variable depth is increased and the recurrent sets with an accompanying depth of value higher
than UPPERBOUND are ignored (see line 10 of ProveNT).

6 AN INTEGRATED ALGORITHM

We now describe ProveTNT, an algorithm supported with dynamic analysis, that mixes termination
and non-termination reasoning, allowing the failed outcomes of one endeavor to provide feedback
to the other. In this algorithm, ProveNT consumes the previously ignored argument π̄mayloop (a set
of potentially non-terminating traces returned by ProveT) and ProveT consumes the previously
ignored argument π̄term (a set of terminating traces from ProveNT).
The procedure ProveTNT is given in Fig. 5 and begins by instrumenting the input program P ,

generating random initial inputs, and executing the instrumented program on those inputs to get a
set π of concrete traces. These executions may be used for reasoning about multiple loops in the
program, and avoid the need for re-execution. We then iterate over the loops in the program in
a post-order fashion, in which the top-down innermost loop will be analyzed first. If that loop is
proved to be non-terminating, the procedure returns the result NonTerm immediately. Otherwise, it
continues to analyze the next loop in the post-order sequence. At the end, the procedure returns
the result Term when all loops in the program are proved to be terminating.
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1 ProveTNT(P ):

2 Pinstr = Instrument(P )

3 inps = GenRandomInputs(Pinstr)

4 π = Execute(Pinstr, inps)

5 L = GetLoopSeq(Pinstr)

6

7 for L in L:

8 πL = Project(π , L)

9 πbase, πterm, πmayloop = Partition(πL, L)

10 if card(πmayloop) >> card(πbase ∪ πterm):

11 rnt , π̄term = ProveNT(Pinstr, L, πmayloop)

12 if rnt is NonTerm:

13 return NonTerm

14 else:

15 rt , _ = ProveT(P, Pinstr, L, πterm ∪ π̄term)

16 if rt is Unk:

17 return Unk

18 else:

19 rt , π̄mayloop = ProveT(P, Pinstr, L, πterm)

20 if rt is Unk:

21 rnt , _ = ProveNT(Pinstr, L, πmayloop∪π̄mayloop)

22 if rnt is NonTerm:

23 return NonTerm

24 else:

25 return Unk

26 return Term

Fig. 5. The integrated algorithm for approving termination and non-termination, via mutual feedback.

Within each loop L we project on the set of traces, focusing on only those that reach L’s header
and keeping only the relevant snapshots from the instrumentation on that loop in πL (see line 8 in
ProveTNT). We then partition πL into the three classes of traces π̄base, π̄term, π̄mayloop, similarly to
what was described in previous sections. We next make a decision as to whether we should attempt
non-termination or termination reasoning first. Our algorithm heuristically chooses which action
to perform after comparing the sizes of terminating trace sets (π̄base and π̄term) and the potentially
non-terminating one (π̄mayloop). In our implementation, we decide to prove non-termination first
when the number of the potentially non-terminating traces is four times larger than the total size
of terminating traces. In the case the algorithm succeeds in proving the chosen analysis, it moves
to the next step as described above (i.e. returning NonTerm immediately if ProveNT is chosen or
analyzing the next loop if ProveT is chosen). Otherwise, the chosen sub-procedure will return
counterexamples in the form of new traces, that can be used, together with the traces collected
from running the random inputs, as input to the alternative analysis.
Consider the simple program: while(x>=0): x = x + y. This example conditionally terminates, de-

pending on the initial values of x and y. That is, the loop does not terminate when x≥0 and y≥0
and terminates otherwise. Given that the random inputs are evenly-distributed then x is negative in
roughly half of the random inputs, on which the loop terminates. From the heuristic for choosing
the sub-procedure, ProveTNT may decide to attempt proving termination first. More specifically,
in our implementation, we decide to prove non-termination first when the number of the poten-
tially non-terminating traces is four times larger than the total size of terminating traces. The
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sub-procedure ProveT may find a ranking function such as x from the terminating traces. However,
it is not a valid ranking function for all inputs and the validation in ProveT returns counterex-
amples whose corresponding inputs create potentially non-terminating execution traces, such as
[(x=0, y=0), (x=0, y=0), . . .], [(x=3, y=1), (x=4, y=1), . . .], etc., in which the ranking function x is
not decreasing. Since there is no terminating trace generated from those inputs, ProveT gives up
and returns such potentially non-terminating execution traces as its counterexample traces. At this
point, our ProveTNT algorithm switches gears and uses these counterexample traces as inputs to
ProveNT. Finally, ProveNT proceeds on these traces and finds a recurrent set x≥0∧ y≥0 from them
to confirm the loop’s non-termination.
The proving strategy in ProveTNT also helps to overcome the scenario when execution traces

from a terminating program, like the simple loop in this program: while(x<1000): x = x + 1. This is
wrongly categorized as potentially non-terminating due to the predefined instrumented execution
bound (e.g. 500) being reached before the loop terminates. In this example, the execution traces with
inputs where x < 500 are considered as potentially non-terminating. Note that on those inputs, the
collected traces from that loop are identical to traces collected from the non-terminating loop while

True: x = x + 1. If those inputs dominate the set of random inputs then the procedure ProveTNT
may attempt proving non-termination first. The sub-procedure ProveNT then starts with the first
candidate recurrent set x<1000 and performs a check on it with the implication x<1000 ∧ x′ =

x+1 =⇒ x′<1000. The implication does not hold and there is only one input of x=999 and the
corresponding terminating trace [x=999, x=1000] are generated from it as counterexample. Due to
the lack of data, the dynamic inference is not triggered and there is no new candidate recurrent
set generated. The procedure ProveTNT then passes that terminating counterexample trace to
the sub-procedure ProveT for proving termination. From that trace, ProveT can easily find the
ranking function 999 − x to prove the loop’s termination. Interestingly, the ProveT alone cannot
prove the termination of this loop due to the lack of terminating traces. This happens since we
usually prefer to generate small random inputs and limit the number of them, which may help to
reduce the program execution time, for efficiency. In this example, we can try inputs larger than the
predefined instrumented bound (i.e. x ≥ 500) but the same problem may occur on other examples
if the generated inputs are not large enough. For example, for the same program but with the loop
condition replaced with x < 10000, the algorithm would require some inputs where x would be
larger than or equal to 9500.

7 THE DYNAMITE TOOL

We have realized our learning-based algorithms in a new tool called DynamiTe. DynamiTe employs
the power of several major existing tools, yet our particular combination of them allow DynamiTe
to do things that none of these tools can achieve individually (see Fig. 1). We found that we were
able to use these tools with few modifications and, consequently, our framework allows us to
benefit from improvements in those tools or substitute alternatives. For SMT, we use SMTlib and
for reachability, we follow the SV-COMP [Beyer 2020] format. We now discuss some of the key
components of the implementation.

We perform two transformations on the input program. For validating our guesses in termination
reasoning, we use a standard transformation [Cook et al. 2006] that lets us input candidate rank
functions and apply a reachability prover. This is a common technique and we have briefly described
it in Sec. 3. The second transformation (described in Section 2) involves (i) instrumenting the
program to collect states and traces and (ii) truncating potentially infinite loops. For a formal
description of this transformation, see our technical report [Le et al. 2020].
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DynamiTe and Ultimate on LIN Termination Programs from SV-COMP

DynamiTe Learning Validate Total UAutomizer
Benchmark Learned Rank Functions T(s) Res T(s) Res T(s) σ5 T(s) Res
AlDaFeGo-SAS2010-easy2-2.c z 7.4 ✓ 8.0 ✓ 20.7 1.2 0.4 ✓

AlDaFeGo-SAS2010-random2d.c N+r, −r, r−i, x−r, i−r, N−i 23.8 ✓ 13.2 ✓ 52.38 7.9 0.6 ✓

AlDaFeGo-SAS2010-wcet2.c −i, 1−i, j, j−i, −j, 2−i 11.5 ✓ 121.5 ? 148.14 75.3 1.3 ✓

BrCoFu-CAV2013-Fig1.c n−j, j, −i, n−i 28.9 ✓ 14.2 ✓ 66.22 22.0 1.5 ✓

ChCoGuSaYa-ESOP2008-easy2.c z 3.9 ✓ 2.8 ✓ 9.4 0.8 0.4 ✓

ChFlMu-SAS2012-Ex3.01.c −x+z, y, −x 5.9 ✓ 4.0 ✓ 16.34 2.4 2.8 ✓

CoSeZu-TACAS2013-Fig8a-mod.c −x, x, −K+x, K−x 11.7 ✓ 4.0 ✓ 18.62 0.9 4.6 ✓

HaLaNoRa-SAS2010-Fig1.c 0.0 ? 4.9 ? 8.94 1.8 29.4 ✓

HeHoLePo-ATVA2013-Fig5.c x 2.3 ✓ 5.8 ✓ 9.56 0.5 3.8 ?
KrShTsWi-CAV2010-Fig1.c 28−x, 82−x, 88−x, (see below) 8.9 ✓ 6.0 ? 14.66 1.5 3.9 ✓

LeHe-TACAS2014-Ex1.c q 2.2 ✓ 2.9 ✓ 8.78 1.8 0.5 ✓

PoRy-TACAS2011-Fig1.c y 2.4 ✓ 4.6 ✓ 8.76 0.9 0.3 ✓

Ur-WST2013-Fig2.c −x1, −x1 + 5·x2, (see below) 14.2 ✓ 12.5 ✓ 32.78 5.7 1.6 ✓

cstrcspn.c ś ś ś ś 2 0.2 90.3 ✓

genady.c i 0.1 ✓ 7.4 ✓ 9.78 1.6 0.4 ✓

...
(Results of for the other 46 benchmarks in [Le et al. 2020].

KrShTsWi-CAV2010-Fig1.c: 28−x, 82−x, 88−x, 90−x, 104−x, 118−x, 144−x, 156−x,
212−x, 214−x, 228−x, 234−x, 246−x

Urban-WST2013-Fig2.c: −x1, −x1 + 5·x2, −x1 + 6·x2, −x1 + 7·x2, −x1 + 8·x2, −x1 + 9·x2, −x1 + 10·x2, −x2

Fig. 6. Results of applying UAutomizer and DynamiTe on the 61 termination benchmarks from SV-COMP
termination-crafted-lit. For lack of space, we only show 15 rows (every 4th row) with abbreviated names.
The full result can be found in our technical report [Le et al. 2020]. ? indicates unknown results.

8 EVALUATION

Our main goal of DynamiTe is to improve the state-of-the-art in termination and non-termination
reasoning to better support nonlinear (NLA) programs. To this end, Sections 8.2 and 8.3 report
experimental results on those programs. However, in Section 8.1 we first evaluated DynamiTe to
see how it performs on linear programs, particularly in comparison with the state-of-the-art tool
UAutomizer from Ultimate Ultimate [2020], which is the winner of the Termination category in the
recent Competition on Software Verification (SV-COMP) [Beyer 2020].

Our experiments were all run on a 20-core Intel(R) Core(TM) i7-6950XCPU@3.00GHz.DynamiTe
in general take advantages of parallel processing when possible. For example, in termination
reasoning, multiple instances of Ultimate’s variants (Automizer and Taipan) and CPAchecker are
invoked to validate the termination results. In non-termination reasoning, we use these CPU
cores to run the symbolic execution tool CIVL to obtain program information at multiple depths.
The dynamic inference tool DIG also computes invariants simultaneously. The timeout for each
benchmark program is 400s.

8.1 Linear Programs

Although our main goal was to support NLA programs (i.e. expressivity) we nonetheless compared
our work against the state-of-the-art termination tool UAutomizer. We ran both UAutomizer and
DynamiTe on the 61 termination benchmarks and 5 non-termination benchmarks from the SV-
COMP suite termination-crafted-lit, which were used in SV-COMP 2020. Note that this folder
contains other benchmarks that are for other properties like overflow.

Terminating Linear Programs. The results of the experiments on these programs are shown in
Table 8. SinceDynamiTe is nondeterministic, we ran our experiments 5 times. We depict the ranking
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Fig. 7. Visual comparison between DynamiTe and UAutomizer on linear termination benchmarks.

functions learned by DynamiTe in the second column, taken from the first iteration of DynamiTe.
If a benchmark program has more than one loop, we report the ranking functions learned from the
last analyzed loop. We also break down the overall time (and result) of DynamiTe into time spent
to learn ranking functions versus validate them. Finally, we report the Total time, averaged over 5
runs, as well as the standard deviation σ5.
In the last two columns, we show the time and result of UAutomizer. These results are also

visualized in the plot in Fig. 7. The results show that UAutomizer often performs much faster
than DynamiTe on these linear examples, owing largely to the fact that DynamiTe must execute
the program many times (on the newly generated inputs), as is typically the case for data-driven
strategies [Nguyen et al. 2017a]. Nonetheless, the results show that DynamiTe is competitive. In
most benchmark programs, DynamiTe can learn useful ranking functions from their terminating
traces. For ranking functions that cannot be validated by the reachability provers, we manually
checked if they are valid with respect to the observed terminating traces. We found that some of
them are the desired ranking functions to prove the programs’ termination while the others are
still in good progress so that we could infer the desired ranking functions from their validation’s
counterexamples. There are no ranking functions learned from unsupported recursive programs
and string-manipulating programs. We also found that DynamiTe was able to infer a ranking
function for the program HeHoLePo-ATVA2013-Fig5.c, which can be validated successfully, while
UAutomizer cannot. It is worth noting that UAutomizer is a very mature tool, with contributions
from multiple researchers/developers, has been applied in industrial settings, and has consistently
performed well in the SV-COMP Termination categories. By contrast,DynamiTe is still in its infancy.
Furthermore, we will soon discuss nonlinear programs, a class of programs not currently supported
by UAutomizer.

Non-terminating Linear Programs. Of the termination-crafted-lit SV-COMP suite, only 5 bench-
marks were for non-termination. We ran DynamiTe and Ultimate on them; the results are given in
Fig. 8. Again we report the mean and standard deviation over 5 runs. In all cases, UAutomizer was
able to generate a lasso counterexample to termination.DynamiTewas able to produce a validated re-
current set in 3 programswith UPPERBOUND=3 in ProveNT. The program HeJhMaSu-POPL2002-LockEx.c

has a nondeterministic loop condition so that Trueis its trivially valid recurrent set. Therefore,
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DynamiTe and Ultimate on LIN Non-termination Programs from SV-COMP

DynamiTe Learning Validate Total UAutomizer
Benchmark Learned Rec. Sets T(s) Res T(s) Res T(s) σ5 T(s) Res
BrMaSi-CAV2005-Fig1-mod.c y1,y2 ∧ y2 = 0 11.7 ✓ 8.9 ✓ 44.3 1.7 0.1 χ
ChCoFuNiHe-TACAS2014-Intro.c 5.8 ? 2.7 ? 38.68 5.4 0.2 χ
HeJhMaSu-POPL2002-LockEx.c T rue 0.0 ✓ 0.1 ✓ 17.4 0.1 0.1 χ
Ur-WST2013-Fig1.c 6.8 ? 0.8 ? 17.7 1.8 0.4 χ
Velroyen.c x,0 0.0 ✓ 0.1 ✓ 12.1 0.7 2.2 χ

Fig. 8. Results of applying ultimate and DynamiTe on the 5 non-termination benchmarks from SV-COMP
termination-crafted-lit. Ultimate returned “incorrect,” indicating that it had found a non-terminating
lasso to disprove termination.

there is no cost for learning recurrent sets in these programs. On the other hand, the program
ChCoFuNiHe-TACAS2014-Intro.c has a nondeterministic assignment in its loop body so that while
the loop condition is a (closed) recurrent set, it cannot be validated without an underapproxi-
mation to restrict the choice of nondeterministic values in that assignment. The two programs
Ur-WST2013-Fig1.c and Velroyen.c have many branches in their loop bodies but only some of
them were taken by the symbolic execution tool to build the loop summaries. Unfortunately, in
Ur-WST2013-Fig1.c, the non-terminating branch was missing so that DynamiTe cannot find any
valid recurrent set from the other (terminating) branches in the summary.

8.2 Termination of NLA Programs

Currently, we lack challenging benchmark suites for termination of nonlinear programs. The
existing polyrank benchmark [Bradley et al. 2005b] has only one (quadratic) polynomial program.
The other programs in polyrank are linear and many of them were included into the SV-COMP
termination-crafted-lit suite. DynamiTe can prove the termination of 8/11 benchmarks (see Fig.
9) by inferring multiple linear ranking functions, instead of a single nonlinear ranking function,
and successfully validating them with Ultimate or CPAchecker. For the remaining 3 examples,
DynamiTe was able to infer the correct ranking functions, but the validators could not validate
them before timeout. In order to better evaluate the tool, we adapted an existing nonlinear testsuite
from SV-COMP called nla-digbench which consists of 28 programs implementing mathematical
functions such as intdiv, gcd, lcm, power. Although these programs are relatively small (under 50
LoCs) they contain nontrivial structures such as nested loops and nonlinear invariant properties.
To the best of our knowledge, nla-digbench contains the largest number of programs containing
nonlinear arithmetic. These programs have also been used to evaluate other numerical invariant
systems [Rodríguez-Carbonell and Kapur 2007b; Yao et al. 2020].
However, these benchmarks are for invariant generation rather than termination and most

of them are linear programs (with nonlinear invariant properties). We therefore adapted these
benchmarks to make them suitable nonlinear examples for termination. For each benchmark, we
manually examined the behavior of the program. The benchmarks contain commented nonlinear
assertions, that illustrate the need for nonlinear reasoning. For example, bresenham1 contains the
assertion 2*Y*x - 2*X*y - X + 2*Y - v == 0. We adapted these assertions to be loop conditions
in various ways, creating one or more termination challenge programs. We typically geared the
loop condition to the assertion. In this case, we used the invariant that the LHS is 0 and added an
additional term +c that increased on each iteration, and made the loop condition bounded by a
variable k. For example, from the bresenham1 program, we created a new program in which the loop
condition is 2*Y*x - 2*X*y - X + 2*Y - v + c <= k. In other cases, we introduced new variables
and had them be integrated by other expressions that we knew to be monotonically increasing or
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DynamiTe on NLA Termination Programs adapted from SV-COMP

DynamiTe Learning Validation
Benchmark Learned Ranking Functions Time Res Time Res
loop1.c −i, −j + bn, −i + an 16.3 ✓ 7.6 ✓

loop2.c x, x + −y 3.5 ✓ 3.8 ✓

loop3.c x, −y + z, z, x + −z, x + −y 8.2 ✓ 17.4 ✓

loop4.c −i, −i + an, −j, −k + bn, −k, −j + bn 17.4 ✓ 179.7 ✓

loop6.c −x, N + −x, −x + −y 1.2 ✓ 4.2 ✓

loop7.c

loop8.c −1 · y1 + 12 · y2, y2, −1 · y1 + 14 · y2, −1 · y1 + 29 ·

y2, −1 · y1 + 34 · y2, −1 · y1 + 42 · y2, −1 · y1 + 49 ·

y2, −1 · y1 + 50 · y2

5.0 ✓ 15.9 ✓

loop9.c y2, y1 6.9 ✓ 4.9 ✓

loop10.c y, x, w + −1 · y, w, z 0.7 ✓ 682.3 ?
loop11.c −e, e, −n, n 1.0 ✓ 296.3 ?
loop12.c −1 ·y, −1 ·y+−1 ·z, x +−1 ·y, −1 ·x, z, 1+−1 ·y, 1+z 7.7 ✓ 725.2 ?

Fig. 9. Results of applying DynamiTe to the benchmark suite polyrank.

replace variables and numbers with nonlinear expressions that are equal to them. We have made
these 38 benchmarks available in the supplemental materials [DynamiTe 2020] and will issue a pull
request to submit them to the SV-COMP benchmark repository.

The results of applying DynamiTe to these benchmarks is given in Fig. 10. For each benchmark,
we give a brief description of the mathematical behaviors of the program in the second column.
Based on the results, we display the output list of inferred ranking functions, as well as a breakdown
of the time it took to learn versus validate them. As mentioned in the previous section, we use
Ultimate and CPAchecker for validation. In 34 of the 38 benchmarks, DynamiTe was able to guess
ranking functions. The ranking functions derived from 8 of those 32 benchmarks can be validated.
For those ranking functions that cannot be validated by the existing safety provers, we manually
inspected them and confirmed they were correct. In the remaining 4 cases, the program cohencu4

is non-terminating because the increment statement c++ was unintentionally not added. Therefore,
there are no terminating traces to learn ranking functions. After fixing that problem, DynamiTe
can infer the desired ranking functions for this program successfully. The 2 programs freire1 and
knuth-nosqrt are originally floating-point programs but were intentionally transformed to integer
programs. However, the invariant assertions in the original benchmarks is no longer valid in our
adapted benchmark programs. Therefore, the desired ranking functions cannot be found from
them. The last program knuth still has the use of sqrt function which is not supported by our CIL
instrumentation. It is worth noting that UAutomizer cannot handle these benchmarks. In addition,
since the validation get stuck on most benchmarks, we do not report the total time in Fig. 10.

8.3 Non-termination of NLA Programs

We first apply DynamiTe to the existing nonlinear non-termination benchmark Anant [Cook
et al. 2014]. The benchmark is a set of quadratic polynomial programs and some of them have
nondeterminism and divisions. The result of applying DynamiTe on this benchmark is given in
Fig. 11. DynamiTe can prove the non-termination of 4 benchmarks that [Cook et al. 2014] cannot
handle. However, there are 10 benchmarks that DynamiTe cannot handle, due to nondeterminism
(4), overfitting invariants (1), overflow (1), and problems in SMT solvers (2) or in symbolic execution
(2). This result shows that our dynamic approach is orthogonal to the existing static techniques for
proving non-termination of (nonlinear) programs.
In addition to the benchmark Anant, we also adapted SV-COMP nla-digbench suite to create

NLA non-termination challenge programs (e.g. up-to-sextic polynomial programs). (These are
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DynamiTe on NLA Termination Programs adapted from SV-COMP

DynamiTe Learning Validation
Benchmark Desc. Learned Ranking Fns. Time Res Time Res
bresenham1 −c + k 33.3 ✓ 17.5 ✓

cohencu1 cubic sum −x, k + −z 11.9 ✓ 8.2 ✓

cohencu2 cubic sum k + −z, −x, k + −y 7.5 ✓ 172.9 ?
cohencu3 cubic sum k + −z, −y + z, k + −x 8.6 ✓ 39.4 ?
cohencu4 cubic sum 0.0 ? 16.5 ?
cohencu5 cubic sum −c + k 14.4 ✓ 147.0 ?
cohencu6 cubic sum a + −n 21.4 ✓ 197.7 ?
cohencu7 cubic sum a + −n 12.0 ✓ 38.6 ?
dijkstra1 square root n + −q 4.9 ✓ 15.8 ✓

dijkstra2 square root −c + k 13.7 ✓ 45.7 ?
dijkstra3 square root n + −q 1.3 ✓ 6.5 ?
dijkstra4 square root −c + k, h 7.3 ✓ 199.9 ?
dijkstra5 square root −c, −c + k 12.6 ✓ 16.5 ?
dijkstra6 square root −c, −c + k 11.1 ✓ 15.4 ?
divbin1 int div r − b 6.2 ✓ 192.4 ?
egcd gcd b, a 21.4 ✓ 13.2 ?
egcd2 gcd c, −s, s, −q 13.9 ✓ 34.8 ?
egcd3 gcd −v, c +−v, b +−v, v, c +

−2 · v, c + −d, d, −c

23.4 ✓ 12.1 ?

fermat1 product −c + k 8.4 ✓ 17.5 ?
freire1 square root −1 · r + 12 · a + 3 · k 19.6 ? 4.4 ?
geo1 geo series y, −x, −y, −x + y, x, k−c 18.4 ✓ 13.5 ?
geo2 geo series −y, y, x + −y, k + −c 16.5 ✓ 4.5 ?
geo3 geo series −x, −x + y, y, −y, k + −c 690.1 ✓ 7.9 ?
hard int div −q, p 5.0 ✓ 60.6 ?
hard2 int div r + −p 6.8 ✓ 7.1 ?
knuth product ś ś ś ś
knuth-nosqrt product q, t, −t, −r + t 2.9 ? 10.3 ?
lcm1 divisor x, v, u − y 22.6 ✓ 6.6 ?
lcm2 divisor y, x 21.3 ✓ 13.2 ?
mannadiv divisor y3 13.8 ✓ 4.6 ?
prod4br gcd, lcm b, −q, a 15.0 ✓ 15.4 ?
prodbin gcd, lcm y 9.8 ✓ 10.4 ?
ps2 pow sum k + −c 5.2 ✓ 5.0 ?
ps3 pow sum k + −c 4.1 ✓ 8.3 ✓

ps4 pow sum k + −c 4.9 ✓ 14.1 ✓

ps5 pow sum −x, k + −c 8.2 ✓ 12.7 ✓

ps6 pow sum x, k + −c 6.4 ✓ 176.8 ✓

sqrt1 square root k + −c 6.3 ✓ 205.4 ✓

Full RF for egcd3: c+−v, v, −37 ·b+−d, −293 ·b+−d, −2341 ·b+−d, −18725 ·b+−d, −37449 ·

b+c+−d, 10083 ·c+−d, 322639 ·c+−d, 2581111 ·c+−d, −1677722 ·b+−d
freire1: −1 ·r+12 ·a+3 ·k, −1 ·r+19 ·a, −1 ·r+28 ·a+3 ·k, −1 ·r+2 ·k, −1 ·r+−1 ·a, −1 ·

r+−2 ·a, −1 ·r+−16 ·a, −1 ·r+25 ·k, −1 ·r+34 ·k, −1 ·r+38 ·k, −1 ·r+40 ·k, −1 ·

r+44 ·k, −1 ·r+−19 ·a, −1 ·r+89 ·k, −1 ·r+105 ·k, −1 ·r+154 ·k, −1 ·r+186 ·a

Fig. 10. Results of applying DynamiTe to our new benchmark suite of NLA termination challenge problems.
For egcd3 and geo1 the full set of ranking functions are below the table.

also available in the supplementary materials and will be submitted to SV-COMP.) The results of
applying DynamiTe on this benchmark are given in Fig. 12. Out of the 39 benchmarks, DynamiTe
was able to generate a recurrence set for 37 programs.

Interestingly, we found that, for non-termination, our algorithm’s semantic extraction of the
first candidate recurrent set from the loop condition already provides a good guess to start with.
Consequently, in 34 cases, dynamic analysis was actually unnecessary because our algorithm
could already use the loop condition to guide guessing for a recurrent set. This is in contrast with
termination, where we don’t have have any semantic information to provide a starting guess for
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DynamiTe on NLA Non-termination Programs from Anant

DynamiTe Learning Validation
Benchmark Learned Recurrent Sets Time Res Time Res
p1.c −1 >= x + −y ? ✓ 0.1 ✓

p2.c And (y >= 2, 5 >= y, y + −z <= −5, 0 >= −x + y) 1.8 ✓ 2.1 ✓

p2a.c And (y >= 3, 3 >= −y + z, 8 >= z, x >= 6, y + −z <= −3) 3.0 ✓ 30.2 ✓

p3.c And (y + −1 · z <= −7, y >= 1, 0 <= x ) 1.5 ✓ 1.4 ✓

p4.c And (w + −z <= −8, 0 >= w + −x ) 2.8 ✓ 2.2 ✓

p5.c ? ? 0.1 ?
p6.c −5 <= z ? ✓ 0.2 ✓

p7.c 2 <= w 0.0 ✓ 1.4 ✓

p8.c 2.3 ? 0.4 ?
p9.c 1.7 ? 1.6 ?
p10.c ? ? ? ?
p11.c 8.0 ? 3.9 ?
p12.c And (y + −z <= −3, 6 >= z, −x + −y <= −3, y >= 3) 19.5 ✓ 81.3 ✓

p13.c And (Not (w >= 2), 0 >= w + −x ) 1.3 ✓ 37.8 ✓

p14.c 0 <= x ? ✓ 0.1 ✓

p15.c And (−20 >= y, 1 <= x ) ? ✓ 0.1 ✓

p16.c And (1 <= x, Not (y <= −1)) 2.5 ✓ 14.7 ✓

p17.c −1 >= x + −y ? ✓ 0.1 ✓

p18.c −1 >= x + −y ? ✓ 0.1 ✓

p19.c And (y >= 6, z >= 1, 0 <= x ) 3.0 ✓ 1.1 ✓

p20.c And (1 == y · z +−x +−z, −x + z <= −8, 2 >= −x +y, y >= 4) 27.7 ✓ 25.1 ✓

pfactorial.c 64.9 ? 14.0 ?
pinteger_log.c ? ? ? ?
pinteger_log_by_mul.c ? ? ? ?
plasso_example1.c And (j >= 2, −i+−j <= −6, k >= 3, −j+−k <= −9, −i+−k <=

−6, i >= 0)

4.2 ✓ 6.5 ✓

plasso_example2.c ? ? ? ?
plasso_example3.c And (0 <= i, k >= 1, j >= 1) 6.1 ✓ 17.7 ✓

pnCr_combination.c 1 <= nCr ? ✓ 0.4 ✓

ppower.c ? ? ? ?

Fig. 11. Results of applying DynamiTe to the benchmark suite Anant of NLA non-termination problems.

rank functions. However, in 3 cases, dynamic refinement was necessary where the loop conditions
are not the existing invariant assertions in the original benchmark programs and the refinement
can find non-trivial conditions to construct valid recurrent sets.

8.4 Integrated Algorithm: Discriminating between Termination and Non-termination

We experimented with ProveTNT to evaluate (a) whether the algorithm is able to discriminate
programs that terminate from those that non-terminate and (b) whether feedback from a failed
attempt to prove termination can inform a proof of non-termination and vice-versa. For (a), we
jumbled together all of the NLA benchmarks and ran the integrated algorithm on them. The results
are given in Fig. 13. For these benchmarks we note the number of loops (#L). We also indicate
whether a guess was made of either a recurrent set (rcr) or a ranking function (rf). ProveTNT
makes an initial guess whether to pursue termination or non-termination and if the choice fails,
łswitchesž to the opposite tack.We report the number of switches (#Sw), as well as the final validated
conclusion and the total time.
For the vast majority of the examples, there are no switches, which means the initial choice

(based on dynamic execution sampling the instrumented program) was was a good one, or that
ProveTNT timed out before it could validate a guess. In 16 of the 77 benchmarks, a switch was made
at least once. As compared with Fig. 10 (NLA Termination) and Fig. 12 (NLA Non-termination),
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DynamiTe on NLA Non-termination Programs adapted from SV-COMP

DynamiTe Learning Validation
Benchmark Desc. Learned Rec. Sets Time Res Time Res
bresenham1 And (0 == (2 · Y · x + −X + 2 · Y + −v)%2, 0 ==

X · y + −((2 · Y · x + −X + 2 · Y + −v)/2))

? ✓ 0.2 ✓

cohencu1 cubic sum −6 <= 6 · n + −z ? ✓ 0.1 ✓

cohencu2 cubic sum And (−6 == 6 · n + −z, 0 == n2
+ −((−1 + −3 · n +

y)/3), 0 == (2 + −3 · n + y)%3)

4.1 ✓ 21.5 ✓

cohencu3 cubic sum And (−6 == 6 ·n +−z, 6 == y · z +−18 · x +−12 ·y +

2 · z, −12 == z2 + −12 · y + −6 · z)

3.9 ✓ 1.3 ✓

cohencu4 cubic sum And (6 == y · z + −18 · x + −12 · y + 2 · z, −12 ==

z2 + −12 · y + −6 · z)

4.0 ✓ 8.6 ✓

cohencu5 cubic sum −12 == z2 + −12 · y + −6 · z ? ✓ 0.2 ✓

dijkstra1 square root 1 <= 2 · p + q + −r ? ✓ 0.1 ✓

dijkstra2 square root 0 == n · q + −p2 + −q · r ? ✓ 6.2 ✓

dijkstra3 square root 0 == h3
+−q · (h · (12 · n +q +−12 · r )+−16 · n · p +

4 · p · q + 16 · p · r )

? ✓ 6.3 ✓

dijkstra4 square root 0 == n · h2
+ 4 · q · n2

+ −n · q2
+ −8 · n · q · r + r ·

q2
+ 4 · q · r2 + −h · (h · r + 4 · n · p + −4 · p · r )

? ✓ 0.4 ✓

dijkstra5 square root 0 == p ·h2
+−q ·(h ·(4 ·n+−4 ·r )+−4 ·n ·p+p ·q+4 ·p ·r ) ? ✓ 0.3 ✓

dijkstra6 square root 0 == n · q + −p2 + −q · r ? ✓ 6.2 ✓

divbin1 int div 0 == b · q + −A + r ? ✓ 0.1 ✓

egcd gcd 0 == q · x + s · y + −b ? ✓ 0.2 ✓

egcd2 gcd 0 == p · x + r · y + −a ? ✓ 0.2 ✓

egcd3 gcd 0 == q · x + s · y + −b ? ✓ 0.1 ✓

fermat1 product 0 == u2
+ −v2

+ −4 · A + −4 · r + −2 · u + 2 · v ? ✓ 0.2 ✓

fermat2 divisor 0 == u2
+ −v2

+ −4 · A + −4 · r + −2 · u + 2 · v ? ✓ 0.2 ✓

fermat3 0 == u2
+ −v2

+ −4 · A + −4 · r + −2 · u + 2 · v ? ✓ 0.2 ✓

freire1 square root 0 == r2 + −a + −r + 2 · x ? ✓ 0.2 ✓

geo1 geo series −1 == x · z + −x + −y ? ✓ 0.1 ✓

geo2 geo series −1 == x · z + −y · z + −x ? ✓ 0.1 ✓

geo3 geo series 0 == a · y · z + −x · z + −a + x ? ✓ 0.2 ✓

hard int div 0 == B · p + −d ? ✓ 0.1 ✓

hard2 int div 0 == B · p + −d ? ✓ 0.1 ✓

knuth product ś ś ś ś
knuth-nosqrt 0 == a · k + −a · t + −d · k + d · t ? ✓ 0.2 ✓

lcm1 divisor 0 == a · b + −u · x + −v · y ? ✓ 0.2 ✓

lcm2 divisor And (0 == (u ·x+v ·y)%2, 0 == a ·b+−((u ·x+v ·y)/2)) ? ✓ 0.2 ✓

mannadiv 0 == x2 · y1 + −x1 + y2 + y3 ? ✓ 0.1 ✓

prod4br gcd, lcm 0 == a · b · p + −x · y + q ? ✓ 0.1 ✓

prodbin gcd, lcm 0 == a · b + −x · y + −z ? ✓ 0.2 ✓

ps2 pow sum 0 == y2
+ −2 · x + y ? ✓ 0.1 ✓

ps3 pow sum And (0 == (−3 ·y2
+ 6 · x +−y)%2, 0 == y3

+−((−3 ·

y2
+ 6 · x + −y)/2))

? ✓ 0.5 ✓

ps4 pow sum 0 == y4
+ y2 · (1 + 2 · y) + −4 · x ? ✓ 0.2 ✓

ps5 pow sum And (0 == y5
+−((−y3 ·(10+15 ·y)+30 ·x+y)/6), 0 ==

(−y3 · (10 + 15 · y) + 30 · x + y)%6)

? ✓ 0.6 ✓

ps6 pow sum And (0 == y6
+ −((−y2 · (−1 + y2 · (5 + 6 · y)) + 12 ·

x )/2), 0 == (−y2 · (−1 + y2 · (5 + 6 · y)) + 12 · x )%2)

? ✓ 0.7 ✓

sqrt1 square root −1 == t2 + −4 · s + 2 · t ? ✓ 0.2 ✓

sqrt2 ? ? ? ?

Fig. 12. Results of applying DynamiTe to our new benchmark suite of NLA termination challenge problems.

more timeouts occur here. However, the comparison is a little unfair: in the earlier experiments we
already knew the conclusion (T versus NT) so we aimed DynamiTe toward the prize.
For ProveTNT, one pitfall is that a wrong initial choice could lead to time spent attempting to

validate a ranking function, when it should be spent pursing recurrent sets (or vice-versa). A first
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DynamiTe’s ProveTNT Algorithm on NLA Term. & Non-term. Programs adapted from SV-COMP

DynamiTe
Benchmark #L Exp. Out #Sw. Res Time
bresenham1 1 NT rcr. ś NT 15.4
bresenham1 1 T rf. ś T 24
cohencu1 1 NT rcr. ś NT 10.1
cohencu1 1 T rf. ś T 9.6
cohencu2 1 NT ś ś ? 24.8
cohencu2 1 T rf. ś ? 0
cohencu3 1 NT ś 1 ? 35.9
cohencu3 1 T rf. ś ? 0
cohencu4 1 NT ś 1 ? 39
cohencu4 1 T ś 1 ? 105.9
cohencu5 1 NT rcr. ś NT 10.6
cohencu5 1 T rf. ś T 166.4
cohencu6 1 T rf. ś ? 0
cohencu7 1 T rf. ś ? 0
dijkstra1 2 NT rf. 1 ? 59.4
dijkstra1 2 T rf. ś T 15.2
dijkstra2 2 NT rf. 1 ? 353.1
dijkstra2 2 T rf. ś ? 0
dijkstra3 2 NT rf. ś ? T.O.
dijkstra3 2 T rf. 1 ? 0
dijkstra4 2 NT rf. 2 ? T.O.
dijkstra4 2 T rf. ś ? 0
dijkstra5 2 NT rf. ś ? T.O.
dijkstra5 2 T rf. 1 ? 0
dijkstra6 2 NT rf. 2 ? T.O.
dijkstra6 2 T rf. 1 ? 0
divbin1 T ś ś ? 2
divbin1 2 NT ś ś ? T.O.
egcd 1 NT rcr. ś NT 85.6
egcd 1 T rf. ś ? 0
egcd2 T ś ś ? 2
egcd2 2 NT rcr. ś NT 86.1
egcd3 3 NT rcr. ś NT 139.2
egcd3 3 T rf. 1 NT 744.9
fermat1 3 NT rf. ś ? T.O.
fermat1 3 T rf. ś NT 396.2
fermat2 3 NT rcr. ś NT 138.3
fermat3 3 NT rf. ś NT T.O.
freire1 1 NT ś ś ? T.O.

DynamiTe
Benchmark #L Exp. Out #Sw. Res Time
freire1 1 T ś 1 ? 0
geo1 1 NT rcr. ś NT 48.5
geo1 1 T rf. 1 ? 0
geo2 1 NT rcr. ś NT 48.6
geo2 1 T rf. 1 ? 0
geo3 1 NT rcr. ś NT 53.2
geo3 1 T rf. 1 ? 0
hard 2 NT rcr. ś NT 49.2
hard 2 T rf. 1 NT 121.1
hard2 2 NT rcr. ś NT 48.9
hard2 2 T rf. 1 ? 57.3
knuth NT ś ś ? 10.6
knuth T ś ś ? 3.4
knuth-nosqrt 1 NT rcr. ś NT 75.9
knuth-nosqrt 1 T ś 1 ? 0
lcm1 3 NT rcr. ś NT 82.9
lcm1 3 T rcr. 1 NT 172.7
lcm2 1 NT rcr. ś NT 86.4
lcm2 1 T rf. 1 ? 0
mannadiv 1 NT ś 1 ? 197.2
mannadiv 1 T rf. 1 ? 0
prod4br 1 NT ś 1 ? 198.4
prod4br 1 T rf. 1 ? 0
prodbin 1 NT ś 1 ? 337
prodbin 1 T rf. 1 ? 0
ps2 1 NT rcr. ś NT 50.3
ps2 1 T rf. ś T 19
ps3 1 NT ś ś ? T.O.
ps3 1 T rf. ś T 20.6
ps4 1 NT rcr. ś NT 51.4
ps4 1 T rf. 1 ? 56.5
ps5 1 NT ś ś ? 61.1
ps5 1 T rf. 1 ? 58.2
ps6 1 NT ś ś ? 61.7
ps6 1 T rf. 1 ? 29.1
sqrt1 1 NT rcr. ś NT 51.1
sqrt1 1 T rf. 1 ? 0
sqrt2 1 NT rf. 1 ? T.O.

Fig. 13. Results of applying DynamiTe to a mix of terminating and non-terminating examples.

attack against this problem is to improve the first guess: the better the initial guess, the closer
the results come to those in Fig. 10 and Fig. 12. A naïve strategy could be to add a timeout to
validation. Another could be to parallelize, pursuing termination and non-termination concurrently.
The downside of parallelization, is that one cannot use the output of one failed endeavor to inform
the other. ProveTNT takes an alternate strategy, as dicussed in Section 6: pursue one and, if it fails,
exploit the information from the counter example to expedite the alternative. In the worst case, this
at least improves over running the two strategies sequentially. In Section 6 we gave two examples
that demonstrate where the integrated strategy helps.

8.5 Discussion

Unlike static analysis techniques, our dynamic analysis technique executes the programs to collect
data in the form of snapshots at several program locations. In some cases, the time to execute the
programs and process their raw output is significant, especially on programs with high-complexity
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or programs with a large number of parameters which require a large number of random inputs to
maintain the data’s diversity. On the other hand, when there is not enough data, overfitting may
occur. In proving non-termination, overfitting can make the dynamically inferred conditions too
strong to refine a recurrent set. In proving termination, overfitting may create a large number of
ranking functions and overwhelm the validation tools. We also have a problem with branching
in the loop body where the loop summary returned by the symbolic execution is imprecise since
some branches are not taken. That imprecision affects the refinement of candidate recurrent sets.

On the other hand, our dynamic analysis has some advantages that static analysis does not have.
For example, we can find a reliable set of ranking functions from known terminating traces at the
beginning so we can avoid many expensive validation steps whereas static analysis techniques
require many of them to refine the ranking function set from scratch.

9 RELATED WORK

Inference of nonlinear invariants. Nonlinear polynomial relations arise in many safety-and
security-critical applications. For example, the Astrée analyzer, which has been applied to verify
the absence of errors in the Airbus A340/A380 avionic systems [Blanchet et al. 2003], implements
the ellipsoid abstract domain [Feret 2004] to represent and analyze a class of quadratic inequalities.

Rodríguez-Carbonell and Kapur [2007a,b] used abstract interpretation to infer nonlinear equali-
ties. They first observe that a set of polynomial invariants form the algebraic structure of an ideal,
then compute the polynomial invariants using Grobner basis and operations over ideals based on
the structure of the program until a fixed point is reached. The approach is restricted to non-nested
loops and programs with assignments and loop guards expressible as polynomial equalities. The
SPEED project [Gulwani 2009; Gulwani et al. 2009] uses a numerical abstract domain [Gulavani and
Gulwani 2008] to compute disjunctive and nonlinear invariants representing runtime complexity
bounds. The numerical domain uses operators such as max to represent disjunction and constraints
over various operators using inference rules to represent nonlinear operators.

The well-known dynamic invariant tool Daikon [Ernst et al. 2001, 2007] infers candidate invari-
ants under various templates over concrete program states. The tool comes with a large set of
templates which it tests against observed traces, removing those that fail, and return the remaining
ones as candidate invariants. DIG [Nguyen et al. 2014a], which is used by DynamiTe focuses
on numerical invariants and therefore can compute more expressive (e.g., nonlinear) numerical
relations than those supported by Daikon’s templates.
More recently, Yao et al. [2020] described a method for inferring invariants through a form of

neural networks. The technique uses a Continous Logic Network to learn SMT formulas directly
from program traces. The authors show that this approach can learn more general nonlinear
invariants (equalities, inequalities, and disjunction).

There are several hybrid works in the form of guessing and checking invariants. In Sharma et al.
[2013], łguessž component infers nonlinear equalities using the similar equation solving technique
in DIG and the łcheckž component uses the Z3 SMT solver. Counterexamples from the checker
are used to produce more traces to infer better invariants. The works from NumInv [Nguyen
et al. 2017a] and SymInfer [Nguyen et al. 2017c] combined the dynamic analyis from DIG to infer
nonlinear invariants with symbolic execution to remove spurious results.

PIE [Padhi et al. 2016] and ICE [Garg et al. 2014] also use an guess and check approach to infer
invariants to prove a given specification. To prove a property, PIE iteratively infers and refined
invariants by constructing necessary predicates to separate (good) states satisfying the property
and (bad) states violating that property. ICE uses a decision learning algorithm to guess inductive
invariants over predicates sepa- rating good and bad states. The checker produces good, bad, and
łimplicationž counterexamples to help learn more precise invariants.
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Termination. Today, numerous theories, techniques, and tools exist for proving termination and
non-termination [Cook et al. 2006, 2011; Cousot and Cousot 2012; Dietsch et al. 2015; Giesl et al.
2004; Podelski and Rybalchenko 2004a]. Tools include Terminator [Cook et al. 2006], Ultimate
Automizer [Ultimate 2020], HipTNT+ [Le et al. 2015], FuncTion [2020], CPAChecker [2020], and
AProVE [2020]. There is even a category on termination in the Software Verification Competition
(SV-COMP) [Beyer 2020]. Along the way, some have shown methods for conditional termination,
whereby preconditions are found that specify the portion of traces that terminate [Cook et al.
2008; Le et al. 2015]. Another active line of research has focused on flavors of ranking functions,
including piece-wise [Urban 2013], ordinals [Urban and Miné 2014], size-change [Lee et al. 2001],
and lexicographic [Bradley et al. 2005a]. Babić et al. [2007] focused on proving termination of a
restricted class of nonlinear loops, called NAW loops, which have special properties to allow their
termination to be proved via analyzing the divergence of variables influencing the loop conditions.

Bradley et al. [2005a,b] focused on the class of polynomial loops from which finite different trees
can be derived. However, the techniques could not work on examples with infinite difference trees.

if x >= 0:

while x * x <= 100:

x = 2 * x + 1

For example, to prove the termination of the program on the right,
those techniques construct a difference tree whose root is the expres-
sion 100 - x * x in the loop condition. Since the tree is infinite, they
could not prove the program’s termination. DynamiTe can derive the
ranking function 10 - x from concrete snapshots of that example, which is sufficient to prove its
termination.

A number of works have exploited dynamic information to inform termination reasoning. Nori
and Sharma [2013] showed that linear regression can be used to dynamically infer bounds of program
loops from test suites and these bounds imply termination. They then attempt to validate those
bounds and use counterexamples to improve the precision of inference. By using the disjunctive
well-foundedness in the termination proofs, DynamiTe can prove the termination of examples
in [Nori and Sharma 2013] which have a disjunctive or nonlinear bound with only simple linear
ranking functions. Nguyen et al. [2019] describe runtime contracts for enforcing termination, using
the size-change strategy for termination.
Several static techniques are able to infer polynomial resource bounds [Hoffmann et al. 2011;

Hoffmann and Hofmann 2010a,b]. The TiML functional language [Wang et al. 2017] allows a user
to specify time complexity as types and then uses type checking to verify the specified complexity.
The WISE tool [Burnim et al. 2009] uses concolic execution to search for a path policy that leads to
an execution path with high resource usage.

Non-termination. Along the line of research on proving non-termination, Gupta et al. [2008]
introduced a constraint solving technique to find recurrent sets of non-terminating loops. Later,
Chen et al. [2014] strengthened the concept of recurrent sets to łclosedž recurrent sets so that they
can reduce the non-termination problem to safety proving and support more nondeterministic
programs.

Cook et al. [2014] proved non-termination of nonlinear programs by soundly over-approximating
the programs to nondeterministic linear programs and then using Chen et al. [2014] approach to
disprove their termination. However, since the technique searches for linear recurrent sets via
Farkas’ lemma on the abstract linear programs, it cannot generate recurrent sets described by
nonlinear equations. For example, in the benchmarks from Figure 12, there were only 5 cases where
DynamiTe learned a linear recurrent set and in roughly half of the cases, DynamiTe learned a
nonlinear recurrent set, which could not be found using the Cook et al. [2014] approach. Therefore,
while we are able to leverage ongoing advances in nonlinear invariant generation techniques
(a growing area of research), the Cook et al. [2014] approach cannot. In addition, Cook et al.
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[2014] build over-approximation by using an abstract interpreter, such as Interproc, which usually
does not perform well on nonlinear programs. As shown in Section 8.3, DynamiTe can prove the
non-termination of all 4 Anant benchmarks in [Cook et al. 2014] that they cannot handle.

Frohn andGiesl [2019] utilized recurrence relation solvers to replace loopswhose non-termination
cannot be proved by loop-free transitions in finding feasible paths to a non-terminating loop. The
technique relies on recurrence relation solvers, whose supporting forms of recurrence relations are
restricted. For example, the approach cannot prove the non-termination of the p3 program in the
aforementioned nonlinear Anant benchmarks while DynamiTe can.

There are some other approaches that attempt to reason program termination and non-termination
at the same time. Harris et al. [2010] introduced a technique that maintains an over- and under-
approximation for alternatively proving termination or non-termination of a program. Le et al.
[2014] proposed a resource logic which can uniformly specify and verify preconditions of program
termination and non-termination. Later, Le et al. [2015] introduced a second-order constraint-based
technique to derive termination summary in the form of that logic automatically. However, they
cannot handle nonlinear programs.

10 CONCLUSION

We have shown that dynamic strategies for discovering invariants and sampling transitive closure
can be incorporatedwith static refinement into an overall framework for proving termination or non-
termination of nonlinear programs. DynamiTe [2020] is publicly available and the new benchmark
suites nla-term and nla-nonterm will soon be submitted to SV-COMP. While DynamiTe already
exploits concurrency by simultaneously attempting validation with CPAchecker and Ultimate, as
well as within DIG, one avenue for improvement is to parallelize ProveTNT. Another direction is to
explore how a dynamic invariant inference tool for heap-manipulating programs, like SLING [Le
et al. 2019], can be incorporated into DynamiTe to dynamically construct termination and non-
termination proofs for those programs.
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