
The following page is the Signature

Page. The Signature Page needs to

be given to the Grad School, but it

should not be bound with the thesis.
Don’t bind this page either!

We approve the thesis of ThanhVu H. Nguyen.

Date of Signature

Thang Bui
Associate Professor of Computer Science

Chair, Mathematics and Computer Science Programs
Thesis Advisor

Sukmoon Chang
Assistant Professor of Computer Science

Qin Ding
Assistant Professor of Computer Science

Linda Null
Assistant Professor of Computer Science
Graduate Coordinator

The Pennsylvania State University

The Graduate School

ON THE GRAPH COLORING PROBLEM AND

ITS GENERALIZATIONS

A Thesis in

Computer Science

by

ThanhVu H. Nguyen

c© 2006 ThanhVu H. Nguyen

Submitted in Partial Fulfillment

of the Requirements

for the Degree of

Master of Science

December 2006

I grant The Pennsylvania State University the non-exclusive right to use this work
for the University’s own purposes and to make single copies of the work available
to the public on a not-for-profit basis if copies are not otherwise available.

ThanhVu H. Nguyen

The thesis of ThanhVu H. Nguyen was reviewed and approved∗ by the following:

Thang Bui

Associate Professor of Computer Science

Chair, Mathematics and Computer Science Programs

Thesis Advisor

Sukmoon Chang

Assistant Professor of Computer Science

Qin Ding

Assistant Professor of Computer Science

Linda Null

Assistant Professor of Computer Science

Graduate Coordinator

∗Signatures are on file in the Graduate School.

Abstract

This thesis presents an agent-based algorithm for the NP-hard Graph Coloring
problem and its generalizations, namely the Bandwidth Coloring, Multi Coloring,
and Bandwidth Multi Coloring problems.

The main feature of the algorithm is the collaboration of agents to color the
vertices of the graph while making decisions based only on local neighborhood
information. In addition, the algorithm provides a single framework for solving
all four problems by using a preprocessing method to transform different graph
coloring problems into a common type. Other ideas such as tabu lists and greedy-
based local optimization are also adopted to accelerate the convergence rate and
improve solution quality. Experimental results show that this algorithm performs
very well compared to other existing approaches.

iii

Table of Contents

List of Figures vi

List of Tables vii

Acknowledgments viii

Chapter 1
Introduction 1

Chapter 2
The Graph Coloring Problem and Its Generalizations 3
2.1 Problem Descriptions . 3

2.1.1 The Graph Coloring Problem (GCP) 3
2.1.2 The Bandwidth Coloring Problem (BCP) 4
2.1.3 The Multi Coloring Problem (MCP) 5
2.1.4 The Bandwidth Multi Coloring Problem (BMCP) 6

2.2 Applications . 7
2.3 Existing Algorithms . 8

Chapter 3
The Agent-Based Algorithm for Graph Coloring 11
3.1 The Initialization Stage . 13

3.1.1 Preprocessing the Input Graph 13
3.1.2 The Initial Coloring . 14

3.2 The Iterative Stage . 16
3.2.1 How an Agent Moves . 17
3.2.2 How a Vertex is Colored . 18
3.2.3 Local Optimization Operation 19

iv

3.2.4 Perturbation and Stopping Condition 21
3.3 The Output Stage . 21

Chapter 4
Experimental Results 23
4.1 Results for the Graph Coloring Problem 23
4.2 Results for the Graph Coloring Generalizations 24

Chapter 5
Conclusion 33

Bibliography 34

Appendix A
Machine Benchmark 38

Appendix B
Instance Descriptions 39

Appendix C
Parameter Settings 44

v

List of Figures

2.1 GCP example. 4
2.2 BCP example. 5
2.3 MCP example. 6
2.4 BMCP example. 7
2.5 A 4-coloring on the map of the United States. 7

3.1 ABGC algorithm. 12
3.2 Transformation from BMCP to BCP. 13
3.3 The Iterative Greedy (IG) algorithm. 15
3.4 The operations of agents. 17
3.5 How a vertex is colored. 18
3.6 The Local Optimization algorithm. 20

vi

List of Tables

4.1 GCP results on 119 DIMACS graphs. 26
4.2 GCP results on 119 DIMACS graphs. 27
4.3 GCP results on 119 DIMACS graphs. 28
4.4 GCP results on 119 DIMACS graphs. 29
4.5 BCP results on 33 GEOM DIMACS graphs. 30
4.6 MCP results on 33 GEOM DIMACS graphs. 31
4.7 BMCP results on 33 GEOM DIMACS graphs. 32

A.1 Machine benchmark. 38

B.1 Summary of the 119 DIMACS graphs for GCP. 40
B.2 Summary of the 119 DIMACS graphs for GCP. 41
B.3 Summary of the 33 GEOM DIMACS graphs for the graph coloring

generalizations. 42

vii

Acknowledgments

The foremost gratefulness is owed to my advisor, Dr. Thang Bui. His guidance and
expertise provided me the much-needed encouragement and motivation throughout
this arduous, exhilarating, and fruitful research. I am convinced that his lucid
lectures are exceptional gifts to those willing to learn and regret not being able to
continue my Ph.D. study under his supervision.

I am deeply indebted for the patience and generosity in the transmission of
knowledge of all Computer Science professors with whom I have taken classes: Dr.
Sukmoon Chang, Dr. Qin Ding, Dr. Pavel Naumov, and Dr. Linda Null. My
thanks likewise go to all the thesis committee members for not only reviewing
this thesis, but also enduring its defense. I am also much obliged to Dr. Marco
Chiarandini for providing valuable technical discussions on the thesis topic and
Mr. Faisal Zaman for his constructive criticism on the report.

On a more personal basis, I wish to express an immense appreciation to Dr.
James Smith, III, my co-op supervisor at the Naval Research Laboratory, for show-
ing me the prestigious value in researching. Undeniably, the time I worked with
him at the beginning of my research career has influenced and inspired all of my
activities thereafter.

My warmest gratitude goes to my parents for their ultimate, continuous, un-
failing love and support over the years. This thesis is dedicated to them.

viii

Chapter 1
Introduction

The Graph Coloring problem (GCP) is the classic NP-hard problem of coloring

the vertices of an undirected graph with as few colors as possible, such that no two

adjacent vertices have the same color. Its corresponding decision problem, “Given

an undirected graph G = (V,E) and a number k, is there a coloring of G which uses

at most k colors?”, is NP-complete, and in fact was one of the 21 NP-complete

problems in Richard Karp’s landmark paper [21].

The Bandwidth Coloring, Multi Coloring, and Bandwidth Multi Coloring prob-

lems are well-known generalizations of GCP. These generalizations share the same

objective with the original problem in minimizing the number of colors used; how-

ever, they have more constraints placed on either the vertices, edges, or both. Like

GCP, all of these generalizations are NP-hard.

Graph colorings are ubiquitous in the modeling of many real-world applica-

tions. A wide range of practical problems such as machine assignment problems in

production scheduling, register allocation problems in operating systems, and fre-

quency assignment problems in telecommunications can be represented with graph

coloring models.

Since graph coloring problems are NP-hard, exact polynomial time solvers for

them are not expected to exist, unless P = NP . Likewise, existing approximation

algorithms for GCP in polynomial time are impractical as the margin of error can

grow quite high. Not much is known about the approximation complexities for the

generalizations. Nevertheless, the problems inspire an ample collection of heuristic

algorithms such as local search, tabu techniques, squeaky wheel optimizations,

1 Introduction 2

genetic algorithms, and ant-based algorithms.

Due to distinctive constraints in different graph coloring problems, most exist-

ing approaches are biased to a specific problem type. This is not the case with our

agent-based algorithm, which proposes a generalized framework for the original

problem as well as its variations. In addition to agents, the algorithm also uses a

variety of techniques such as local optimization and tabu lists. Extensive experi-

mental results show that our approach is very competitive with other algorithms

in both running time and solution quality.

The rest of this thesis is organized as follows. Chapter 2 describes GCP and

its generalizations, their applications, complexities, and existing approaches for

solving these problems. Chapter 3 discusses our agent-based algorithm in detail.

Chapter 4 presents and compares the experimental data to results from other

algorithms. Finally, Chapter 5 concludes the thesis and suggests future research

directions.

Portions of this thesis also appeared in [7] and [9].

Chapter 2
The Graph Coloring Problem and Its

Generalizations

2.1 Problem Descriptions

Let G = (V, E) be an undirected graph with vertex set V and edge set E. Let

k ∈ Z+; we denote by [k] the set {1, . . . , k}. Let P([k]) refer to the power set of

[k], i.e., the set of all subsets of {1, . . . , k}.
A coloring of G is an assignment of a set of colors to each vertex in G. More

formally, a k-coloring of G is a mapping f : V 7−→ P([k]), for k ∈ Z+. The term

conflict at a vertex v indicates the number of vertices adjacent to v having colors

that are inconsistent with the coloring of v, where the definition of inconsistency

depends on the specific coloring problem. A k-coloring is proper or valid if no

conflict exists among the vertices in the graph.

In the following sections, we formalize the graph coloring problem and its gen-

eralizations.

2.1.1 The Graph Coloring Problem (GCP)

GCP is the problem of finding an assignment of colors to the vertices of a graph,

using a minimum k number of colors, such that each vertex has a color, and no two

adjacent vertices have the same color. For a given graph G, the minimum k such

that G has a proper coloring is called the chromatic number of G and is denoted

2 The Graph Coloring Problem and Its Generalizations 4

by χ(G) or simply χ.

Input: An undirected graph G = (V, E).

Output: A minimum k and a mapping f : V 7−→ P([k]) such that

• ∀u ∈ V , |f(u)| = 1, and

• ∀(u, v) ∈ E, f(u) 6= f(v).

In what follows, for simplicity, whenever |f(u)| = 1, e.g., f(u) = {c}, we refer to

the color of u as c instead of the singleton set {c}.

(a) A 5-coloring (b) A 3-coloring

Figure 2.1: GCP example.

Figure 2.1 shows two examples for GCP. The set of colors assigned to a vertex

is shown in its associated rectangular box. Notice that in GCP, each vertex has

a singleton set of colors (i.e., the cardinality of the set is 1). The example in

Figure 2.1a gives a 5-coloring since the highest color value used in this coloring is

5. Figure 2.1b presents an optimal coloring that uses 3 colors.

2.1.2 The Bandwidth Coloring Problem (BCP)

This generalization is similar to GCP, except that each edge in the input graph

has a positive integer weight, and the coloring must satisfy an extra constraint.

More precisely, the difference between the colors of the two end points of an edge

must be at least the weight of that edge.

Input: An undirected graph G = (V, E) with positive integer edge weight d(u, v),

∀(u, v) ∈ E.

2 The Graph Coloring Problem and Its Generalizations 5

Output: A minimum k and a mapping f : V 7−→ P([k]) such that

• ∀u ∈ V , |f(u)| = 1, and

• ∀(u, v) ∈ E, ∀a ∈ f(u), ∀b ∈ f(v), |a− b| ≥ d(u, v).

Note that BCP is reduced to GCP if d(u, v) = 1,∀(u, v) ∈ E.

Figure 2.2: BCP example.

Figure 2.2 displays an example for BCP with an 8-coloring using the same

format as in Figure 2.1. The numbers on the edges represent the edge weights.

Notice that not all values in the set {1, . . . , 8} are used to color the graph.

2.1.3 The Multi Coloring Problem (MCP)

This is another generalization of GCP, where each vertex in the input graph has a

positive integer weight. The goal is to find a coloring of a vertex set, using as few

colors as possible, such that each vertex is colored with not just one color, but with

a set of as many colors as the weight of that vertex. Furthermore, for any edge in

the graph, the color sets of the two end points of that edge must be disjointed.

Input: An undirected graph G = (V, E) with positive weight w(u), ∀u ∈ V .

Output: A minimum k and a mapping f : V 7−→ P([k]) such that

• ∀u ∈ V , |f(u)| = w(u), and

• ∀(u, v) ∈ E, f(u) ∩ f(v) = ∅.

2 The Graph Coloring Problem and Its Generalizations 6

Figure 2.3: MCP example.

Note that MCP is reduced to GCP if w(u) = 1,∀u ∈ V .

Figure 2.3 shows an example for MCP using an 8-coloring. The weight of the

vertex is shown in the associated oval area of that vertex. Notice that each vertex

acquires a set of as many colors as the weight of that vertex.

2.1.4 The Bandwidth Multi Coloring Problem (BMCP)

This graph coloring generalization has the constraints of both BCP and MCP.

Input: An undirected graph G = (V, E) with positive integer node weight w(u),∀u ∈
V , and positive integer edge weight d(u, v),∀(u, v) ∈ E.

Output: A minimum k and a mapping f : V 7−→ P([k]) such that

• ∀u ∈ V, |f(u)| = w(u), and

• ∀(u, v) ∈ E, ∀a ∈ f(u),∀b ∈ f(v), |a− b| ≥ d(u, v).

As the edge weights are positive, the second condition implies that ∀(u, v) ∈
E, f(u) ∩ f(v) = ∅. It should be noted that input graphs for BMCP may con-

tain self-loops. For example, d(u, u) = 3 means the colors assigned to vertex u

must have at least a difference of value 3 between any two of them. It is clear

that ∀(u, v) ∈ E and ∀u ∈ V , BMCP is reduced to MCP if d(u, v) = 1, to BCP if

w(u) = 1, and to GCP if d(u, v) = 1 and w(u) = 1.

Figure 2.4 gives an example for BMCP that uses a 13-coloring. Notice the

self-loop requires each color in the color set of the associated vertex differs from

each other by at least 2, the weight of the self-loop edge.

2 The Graph Coloring Problem and Its Generalizations 7

Figure 2.4: BMCP example.

2.2 Applications

Early versions of graph coloring problems date back to 1852, when a college student

named Francis Guthrie noticed that all counties in England can be colored using

only four colors in such a way that two counties having a common border are

never colored with the same color. It was finally proven in 1977 that at most four

colors are necessary in such planar graphs [2, 3]. Figure 2.5 shows a coloring of the

United States map. More practically, the original GCP has served as a paradigm

for numerous applications such as timetabling [30] or scheduling problems [22],

computer register allocation [1], printed circuit boards testing [15], air traffic flow

control [4], and wavelength assignment in optical network design [32].

Figure 2.5: A 4-coloring on the map of the United States.

Suppose that a school needs to schedule a set of classes for a semester. There

2 The Graph Coloring Problem and Its Generalizations 8

are classes that cannot be scheduled concurrently, possibly because a room cannot

be occupied by two classes at once, or an instructor cannot be in two places at the

same time. The objective is to assign a time period to each class such that the

total number of periods used is minimal, since a daily school schedule has a limited

number of periods (e.g., six periods in high school). GCP can be used to model

this problem as follows. A vertex is associated with each class, an edge joins two

vertices if their two associated classes cannot be held at the same time, and the

time period assigned to each class is denoted as the color of the associated vertex.

Thus, by minimizing the number of colors used in this graph, the school obtains a

class schedule with a minimal number of time periods.

More restricted applications can employ BCP, MCP, or BMCP since these

generalizations extend the constraints of GCP. For instance, BCP and MCP have

been used to model the frequency assignment problem [18] in telecommunications.

A mobile cellular network consists of a vast number of cellular phones with each

phone operating on a frequency. Phones that are too close to each other (i.e.,

within a specific radius region) cannot transmit on the same frequency due to

interference problems. In addition, certain frequency separations among these

phones must be satisfied to reduce the amount of interferences and collisions. The

goal is to minimize the number of frequencies being used. This problem can be

translated into a BCP in the following way. Each vertex is associated with an

individual phone. The phones that require distinct frequencies from each other

are joined by edges, and these edges have weights corresponding to the necessary

separation distance in the frequencies of the phones. The color assigned to a

vertex denotes the frequency of the associated phone. A minimal coloring for this

graph achieves the objective of minimizing the number of frequencies in the mobile

cellular network.

Under similar conditions, the assignment problem in which each phone having

multiple frequencies can be modeled by BMCP [27].

2.3 Existing Algorithms

GCP and its generalizations belong to the NP-hard class of problems, and thus,

exact polynomial time algorithms for solving them are not expected to exist, unless

2 The Graph Coloring Problem and Its Generalizations 9

P = NP [5].

Approximation algorithms are the next attempt in the case of non-existent

exact algorithms. Approximation algorithms run in polynomial time, but can only

produce an answer within a certain range of the optimal solution. For GCP, the

chromatic number, χ, can be approximated within O
(
|V | (log log |V |)2

(log |V |)3
)

in polynomial

time [16]. However, unless P = NP , χ is known not to be approximable within

|V |1/7−ε for any ε > 0.

There is no established approximation algorithm for BCP, MCP, or BMCP. In

fact, not much is known about the approximation complexities of the generalized

graph coloring problems overall.

Because exact and approximation algorithms that run in polynomial time do

not exist for graph colorings in general, most of the focus has been on designing

heuristic algorithms for these problems. Heuristic algorithms do not guarantee

the solution quality; nevertheless, they normally produce excellent solutions in

practice.

Among the most prominent heuristic approaches for the classic GCP are con-

structive methods [6, 22], iterative methods [13], local search methods [26], tabu

search methods [17], genetic algorithms [31], and ant-based algorithms [9, 10, 11,

12, 31]. Conversely to the abundance of approaches for GCP, innovations for solv-

ing the generalizations are few. The two most well-cited heuristic algorithms for

the graph coloring generalizations are Prestwich’s local search and constraint prop-

agation [28] and Lim et al.’s Squeaky Wheel Optimization combined with Tabu

Search [25].

At the 2002 Graph Coloring Computational Symposium held in New York (Cor-

nell University), Prestwich presented two algorithms [28] for solving the graph col-

oring problems based on stochastic local search with the space-pruning techniques

from constraint programming. The first algorithm, Forward Checking Neighbor-

hood Search (FCNS), is a hybrid of the DSATUR backtracker [6] and the IM-

PASSE local search algorithm [23, 26]. FCNS is intended specifically for GCP and

BCP. To solve BMCP, Prestwich produced another local search and constraint

propagation-based algorithm called SATURN. The backtracking and constraint

propagation technique in SATURN was based on a Boolean satisfiability (SAT)

algorithm called Davis-Logemann-Loveland (DLL). Moreover, the original DLL

2 The Graph Coloring Problem and Its Generalizations 10

was extended into an integer linear program (ILP) model when used in SATURN.

We note that [28] does not mention MCP.

Although FCNS achieved very good solutions for BCP, specific parameter tun-

ings were mandatory and depended on different inputs. SATURN, even with the

tunings, was unsuccessful among large BMCP graphs. It could not run on half of

the tested instances as the ILP model in SATURN consumes an enormous amount

of memory. Not much can be said about the performance of FCNS on GCP,

as [28] did not provide enough details for this problem. Nonetheless, FCNS and

SATURN were among the first endeavors at solving GCP and its generalizations

using a universal approach based on backtracking and local constraint search.

In 2003, Lim et al. proposed an algorithm focusing on the graph coloring

generalizations using the Squeaky Wheel Optimization (SWO) technique [24].

This approach is laudable for being compatible with the classic GCP, in addition

to all of the three generalizations. While outperforming SATURN in BMCP, the

preliminary SWO version was not comparable with FCNS in BCP. In 2005, Lim

et al. integrated a Tabu Search (TS) optimization [25] to their previous SWO

approach. The new algorithm, SWOTS, noticeably enhanced the results of BMCP,

but did not improve the quality of others. Not many details were supplied by these

SWO-based algorithms for GCP.

In Chapter 3, we present a generalized approach for solving GCP and its vari-

ations.

Chapter 3
The Agent-Based Algorithm for

Graph Coloring

This chapter describes our agent-based algorithm for the graph coloring problems.

The algorithm implements a generalized framework for solving GCP as well as

its generalizations. This generic approach embraces code reusability, and hence,

allows us to concentrate on a single robust design yet preserves compatibility with

different problems.

The principle idea of our Agent-Based Algorithm for Graph Coloring (ABGC)

is having a group of agents color the graph. Individual agents work on portions

of the graph and together form a coloring for the entire graph. This is distinctive

from the traditional Ant Colony Optimization algorithms, where each agent (or

ant) finds a complete solution to the problem [14]. Thus, our method encourages

cooperation among agents and promotes possibilities for parallel implementation.

Another difference in our approach is that the agents do not utilize pheromone as

a memory device. In limited experience, we found that adding pheromone to this

particular algorithm takes more time and gives no visible quality improvement.

Other techniques such as tabu lists and local optimization are also included to

help the agents in finding good solutions.

ABGC comprises three main stages: initialization, iteration, and output. In

the initialization stage, the algorithm reads the input, applies a preprocessing

technique as needed, and finds an initial coloring. Next, a new goal is set that

attempts to use fewer colors than what the initial coloring offers for the graph.

3 The Algorithm Framework 12

The iteration stage features the agents exploring and coloring the graph through

successive cycles. Furthermore, this stage contains local optimization to refine

the solutions and periodic perturbation to escape local optima. The best coloring

found is archived during the running process and finally returned in the output

stage.

Figure 3.1 shows the abstract level of ABGC. While the major concepts are gen-

eralized for all the mentioned problems, several internal operations are optimized

to the specific graph coloring type. For instance, GCP has fewer constraints than

the generalizations; hence, its coloring scheme is much simpler. The algorithm

details are discussed in the subsequent sections.

ABGC(G = (V, E), d, w) //the function weights d, w are optional (for the generalizations)
1 //Initialization Stage
2 preprocess G if the instance belongs to MCP or BMCP
3 currentColoring ← an initial coloring found by the algorithm described in subsection 3.1.2
4 maxK ← the largest color in currentColoring
5 attemptK ← α ∗maxK //attempt new goal, α < 1
6 re-color vertices having colors greater than attemptK
7 update the total conflict in G
8
9 //Iterative Stage

10 for cycle = 1 to nCycles do
11 AgentsOp(G)
12 update the total conflict in G
13 if totalConflict is zero then
14 lColoring ← LocalOpt(currentColoring) //not necessary for GCP
15 if lColoring uses fewer colors than currentColoring then
16 currentColoring ← lColoring
17 end-if
18 maxK ← the largest color in currentColoring
19 bestColoring ← currentColoring
20 attemptK ← maxK − 1
21 re-color vertices having colors greater than attemptK
22 update the total conflict in G
23 end-if
24 perform perturbation operation periodically to escape local optima
25 end-for
26
27 //Output Stage
28 return bestColoring and maxK

Figure 3.1: ABGC algorithm.

3 The Algorithm Framework 13

3.1 The Initialization Stage

After reading the input graph, the algorithm may apply a preprocessing step on

the input. This procedure, given in subsection 3.1.1, effectively eliminates the

dissimilarities in the generalizations by transforming a BMCP or MCP instance

into a BCP equivalent. Accordingly, the algorithm only needs to solve BCP since

all the generalizations are converted to the format of this problem. Note that this

preprocessing step is not necessary for GCP or BCP.

3.1.1 Preprocessing the Input Graph

(a) The original BMCP graph. (b) Each vertex a of weight w(a) is
transposed into a clique ca of size
w(a) with each edge in the clique hav-
ing weight d(a, a).

(c) If (a, b) ∈ E in the original graph,
then each vertex in clique ca also con-
nects to each vertex in cb with an
edge of weight d(a, b).

(d) The new BCP graph after the
transformation.

Figure 3.2: Transformation from BMCP to BCP.

For instances in MCP or BMCP, where each vertex has a positive integer weight,

we apply a transformation derived from the one used in [25] to the input graph

3 The Algorithm Framework 14

to transform it into an instance of GCP or BCP. A vertex a of weight w(a) is

transposed into a clique ca of size w(a), with each edge in the clique having an

edge weight equal to d(a, a). Moreover, if (a, b) is an edge in the original graph,

then we also connect each vertex in ca to each vertex in cb and assign such an edge

the weight d(a, b). Figure 3.2 demonstrates how the preprocessing step transforms

a BMCP instance into an equivalent BCP instance.

We note that this transformation takes exponential time if vertex weight w(a)

is exponential in the number of vertices in the graph. However, the approach

is reasonable in practice as the number of vertices in the graph is much more

than the weights in real-world applications. For example, the number of different

frequencies assigned to a cell phone is much less than the number of cell phones.

Our next objective is to quickly find an upper bound on the optimal solution

of the input graph. For this purpose, we run the algorithm described in subsec-

tion 3.1.2 to find an initial coloring.

3.1.2 The Initial Coloring

After preprocessing the input graph as needed, ABGC resorts to a greedy-based

algorithm to determine an initial coloring upon which the agents can work. The

initial coloring generated from this greedy algorithm is valid, although not nec-

essarily optimal or even good. In fact, except for a few trivial graph instances,

the agents can always improve upon the initial coloring. We conjecture that the

agents are more fruitful when building upon such coloring than when starting from

ground zero.

For GCP, we create a greedy-based algorithm based on MXRLF [9], which

combines features from the RLF [22] and XRLF [19] methods. The algorithm

uses successively larger colors, starting with 1, to color vertices of the graph. For

each color x, the algorithm selects a set of vertices to be colored with x. Let W ,

the white list, be a set of candidate vertices for color x, and B, the black list,

be the list of vertices that cannot be colored with x. During its coloring process,

MXRLF selects vertices from the white list and avoids those from the black list.

For each color x, the algorithm initializes W to contain all uncolored vertices and

B as empty. The first vertex chosen is the one with maximum degree from W .

3 The Algorithm Framework 15

After that vertex is colored, its adjacent vertices cannot have the same color and

therefore are black listed (i.e., they are moved from W to B). The algorithm then

sequentially selects the next vertex from W having the highest number of adjacent

vertices in B. Ties are broken arbitrarily. The selection continues until W is

empty or the number of selected vertices reaches a size limit of λ [19]. The current

color number, x, is next incremented (i.e., to 2), and this process repeats until all

vertices in G are colored. As our intention was to quickly find an upper bound on

the optimal solution, we omitted the exhaustive search method for building the

coloring from the XRLF algorithm [19].

IterativeGreedy(G = (V, E), d)
1 initialize the current coloring C empty
2 while there is any uncolored vertex in G do
3 u ← an uncolored vertex selected at random or based on max degree
4 forbiddenSet(u) ← ∅ //initialize the forbiddenSet of u
5 for each vertex v that is adjacent to u do
6 if v already has a color then
7 update the set of forbidden colors, forbiddenSet(u)
8 based on the color of v and the weight of the edge (u, v)
9 end-if

10 end-for
11 assign u a color selected based from forbiddenSet
12 and the rule described in Section 3.2.2
13 end-while
14 return the current coloring C

Figure 3.3: The Iterative Greedy (IG) algorithm.

For the generalized coloring problems (more specifically, BCP), a greedy-based

algorithm, given in Figure 3.3, called IterativeGreedy (IG), is employed. At each

step of the algorithm, IG selects a vertex to color next. Selection is done in a

random manner or based on the vertex degree, i.e., the vertex of highest degree

is selected first among the uncolored vertices. When a vertex u is selected to be

colored, IG applies the same scheme as in ABGC. This coloring scheme is described

in Section 3.2.2.

ABGC uses IG to find an initial coloring as follows. First, IG runs with the

highest degree selection scheme. The coloring of this run is kept. Next, the al-

gorithm runs IG 20 times with the random selection scheme. These colorings are

3 The Algorithm Framework 16

also saved. Finally, the best coloring found among the 21 runs is returned as the

initial coloring for ABGC.

The algorithm sets the initial coloring found as the current coloring of G and

then attempts to have the agents find a better coloring. Assuming maxK is the

largest color in the current coloring (the initial coloring), an initial number of colors

available to the agents for coloring the graph is set to be attemptK = dα ∗maxKe,
where α < 1. The parameter α and others to follow are specified in Appendix C.

The current coloring is changed into an attemptK -coloring by assigning randomly

selected colors in the [1 . . . attemptK] interval to vertices with colors greater than

attemptK. Note that this adjustment may violate some constraints and conse-

quently invalidates the current coloring of G. The current coloring may now have

conflict. Nonetheless, it uses fewer colors than what the initial coloring gives.

Hence, by resolving all conflict in G without using more than attemptK colors, the

agents would have a better coloring, i.e., a valid attemptK -coloring.

3.2 The Iterative Stage

The iterative stage contains repeating cycles in which the agents resolve the con-

flict on the graph in an attempt to find a valid attemptK -coloring. Within each

cycle, the agents move and re-color the portions of the graph close to their current

locations, using only the set of currently available colors, {1, . . . , attemptK}. The

attemptK -coloring goal is found whenever the current coloring of the graph satis-

fies all the constraints specified by the problem. When this occurs, the algorithm

breaks from the cycle, saves the current coloring, attempts a new objective by re-

ducing the attemptK number of colors, creates a new set of available colors for the

agents, and starts a new cycle. On the other hand, if a valid coloring cannot be

obtained for a specific time period, the algorithm may perturb the current coloring

to deter it from getting trapped in a local optimum. This process reiterates until

the terminating criteria are met.

Figure 3.4 captures the main operations of agents. In the following subsections

we examine various parts of the iterative stage thoroughly.

3 The Algorithm Framework 17

AgentsOp(G = (V, E))
1 for agent = 1 to nAgents do
2 if there is no conflict in G then break
3 agent clears its recentlyVisited tabu list
4 agent is placed on a max-conflict based vertex of G
5 agent colors its current vertex
6 for move = 1 to nMoves do
7 agent moves to a neighboring vertex by taking two steps
8 agent colors its current vertex
9 agent updates its recentlyVisited tabu list

10 end-for
11 end-for

Figure 3.4: The operations of agents.

3.2.1 How an Agent Moves

In each cycle, an agent is initially placed at a random vertex and attempts to color

that location and its vicinity. To do this, the agent takes two steps, i.e., traverses

along a path of length two, and subsequently colors the vertex upon which it lands.

The process of taking a number of steps then coloring the vertex is called a move.

Within a cycle, each agent makes nMoves moves.

In the first step of a move, the agent selects and moves to a random adjacent

vertex. In the second step, the agent decides on an adjacent vertex having the

highest conflict among all adjacent vertices and moves there. Ties are broken

arbitrarily. If there is no conflict among the adjacent vertices after the first step,

the agent is relocated to the vertex that has the highest conflict in the entire graph.

Again, ties are broken arbitrarily. All agents stop moving when there is no conflict

remaining, and the algorithm prepares for the next cycle by reducing the number

of available colors by one.

Additionally, each agent also has a tabu list containing its recently visited

vertices. The tabu list is implemented to help the agent move away from its recent

visits. Whenever an agent selects a vertex to move to, it always avoids vertices that

are in its current tabu list. The agent also places vertices that it has just visited

on its current tabu list. This tabu list has a fixed size, δ, and consequently when

the list is full, the new vertex replaces the oldest one. The reason for having the

random first step in a move and the tabu list is to induce search space exploration

3 The Algorithm Framework 18

and alleviate the possibility of being trapped in a local optimum. With an increase

in running time, we can gain some improvement in the procedure by allowing each

agent to take more than two steps per move. The above algorithm in Figure 3.4

can be easily extended to accommodate this option.

3.2.2 How a Vertex is Colored

Within each cycle, an agent colors only a limited local area of the graph without

any global knowledge of the graph and uses only colors from the set of attemptK

available colors. The purpose of re-coloring a vertex is to resolve any conflict to

zero, if possible. Figure 3.5 captures the main ideas of the coloring scheme.

ColorVertex(u)
1 determine forbiddenSet from the adjacent vertices of u
2 compute the occurrence rate of the members in forbiddenSet
3 eligibleSet ← {1, . . . , attemptK} − forbiddenSet
4 if eligibleSet is empty then
5 assign u the least occurred color from forbiddenSet
6 else
7 decompose eligibleSet into a union of intervals
8 assign u the color that is the median of the largest interval
9 end-if

10 update the conflict at u

Figure 3.5: How a vertex is colored.

To color a vertex u, a set of eligible colors that can be used to color u is

determined. For each vertex v adjacent to u, a set of colors that is in conflict with

the color of v is formed. This set of conflicting colors is computed by examining

the color of v and the weight of the edge (u, v). For example, if the color of v is 9

and d(u, v) is 3, then to achieve zero conflict, the coloring of u cannot be in the set

{7, 8, 9, 10, 11}. The conflicting color sets of the adjacent vertices of u form a union

called the set of forbidden colors, forbiddenSet. Note for GCP, the weight of any

edge is one, therefore the forbiddenSet of u simply contains the colors of the vertices

adjacent to u. This is the same process as that of determining the set of forbidden

colors in the IG algorithm of Figure 3.3. In addition, the algorithm monitors how

frequently each member in the set of forbidden colors occurs. Specifically, every

3 The Algorithm Framework 19

color in forbiddenSet has an occurrence rate proportional to the number of the

conflicting color sets of adjacent vertices containing that color.

Once the set of forbidden colors has been computed, the set of eligible colors,

eligibleSet, can be easily obtained by taking the difference between the set of for-

bidden colors and the set of all colors, i.e., {1, . . . , attemptK}. These are the colors

that resolve the conflict at u to zero.

In the case when the set of eligible colors is empty, the color that causes the least

conflict with the adjacent vertices of u, i.e., the color with the lowest occurrence

rate, is selected. Ties are broken arbitrarily.

For GCP, when there exists several choices among the available colors satisfying

the requirement, the algorithm picks a random one for u. A more complicated

coloring scheme is used for the generalizations (specifically BCP). If the cardinality

of the set of eligible colors is greater than one, then it can be viewed as a union

of intervals. Next, the algorithm selects the color that is the median of the largest

interval in the set of eligible colors. If there is more than one interval of the

largest size, one of those intervals is chosen at random. Furthermore, when two

medians are available, one of them is chosen at random. For example, if the set of

eligible colors is {1, 2, 3, 4, 5, 8, 9, 11, 12, 13, 14, 15}, then this is the same as [1 . . . 5]∪
[8 . . . 9]∪ [11 . . . 15]. One of the intervals [1 . . . 5] or [11 . . . 15] is selected at random,

say, the latter. Therefore, the chosen color is 13, the median of [11 . . . 15]. This

selection scheme allows later vertices to have more room to meet their constraints,

i.e., the set of eligible colors will be larger for neighboring vertices.

After the coloring of u, the conflict at this vertex is updated, and the agent

adds u to its tabu list. Since the list has a fixed size, the newest vertex replaces

the oldest one in the case when the list is full. Note that the agent does not have

knowledge of the total conflict for the entire graph.

3.2.3 Local Optimization Operation

When the agents identify a valid coloring, it is usually near a local optimum.

However, because agents cannot perform deterministic hill-climbing, a local opti-

mization is often used to bring this solution to a nearby local optimum.

For the generalized coloring problems, we implement a local optimization al-

3 The Algorithm Framework 20

gorithm that performs a compression-like operation to the interval of used colors.

This algorithm is not necessary for GCP. The colorings found by the agents for

GCP are already in very compacted form since the colors for the adjacent vertices

only need to differ from each other by one.

The local optimization in Figure 3.6 is applied to the valid coloring whenever

one is found by the agents. Using ideas from the IterativeGreedy algorithm in

Figure 3.3, the local optimization algorithm first sorts the vertex set into decreasing

order of vertex colors, i.e., the colors given in the input coloring. The algorithm

subsequently erases all vertex colors from the graph and starts coloring the vertices

one at a time in the order of the sorted vertex set, i.e., vertices that have higher

color numbers in the original input coloring will be selected first. For each vertex

to be colored, the algorithm computes a set of forbidden colors in the same manner

as in the algorithm given by Figure 3.3. The vertex is consequently colored using

the smallest color number that is not in the forbidden set. Finally, the algorithm

terminates and returns the coloring that it found.

LocalOpt(C) //C is a valid coloring
1 sort the vertices in decreasing order of color numbers from the input coloring C
2 erase the coloring C
3 for each vertex u in the sorted order do
4 forbiddenSet(u) ← ∅ //initialize the forbiddenSet of u
5 for each vertex v that is adjacent to u do
6 if v already has a color then
7 update forbiddenSet(u)
8 based on the color of v and the weight of the share edge (u, v)
9 end-if

10 end-for
11 assign u a color selected based from forbiddenSet
12 and the rule described in Section 3.2.2
13 end-while
14 return the coloring C

Figure 3.6: The Local Optimization algorithm.

If the coloring returned by the local optimization algorithm is better than the

current best coloring, it replaces the current best coloring. Otherwise, it is dis-

carded. We note that colorings obtained by repetitively executing the IterativeGreedy

algorithm followed by the local optimization operation alone are never as good as

3 The Algorithm Framework 21

those obtained by ABGC. In other words, the explorations of agents discover po-

tential solutions, which are then enhanced by the exploitations from the local

optimization.

3.2.4 Perturbation and Stopping Condition

At any time during the algorithm, whenever there is no conflict found in the current

coloring, a new goal is set by reducing the number of available colors, attemptK,

by one. Next each vertex with color greater than attemptK is assigned a randomly

selected color in the interval [1 . . . attemptK]. At this point the current coloring

may be an invalid one, i.e., the total conflict is non-zero. The algorithm now starts

a new cycle. Notice that even though pheromone was not utilized as a memory

device in this algorithm, the coloring of cycle i+1 is based on how the agents color

in cycle i.

Greedy-based algorithms, such as ABGC, have a natural tendency to get trapped

in a plateau or a local optimum. To mitigate this problem, we add a jolt procedure

analogous to making random jumps in the search space to get out of a local opti-

mum. More specifically, the jolt operation perturbs the current coloring if agents

have not been able to improve the number of colors used for the last nJoltCycles

consecutive cycles. Vertices that have conflict in the top β% are selected, and

their neighbors are randomly re-colored using γ% of the current set of available

colors. The intention of the jolt operation is to cause enough disturbance in the

current coloring to escape the local optimum, but not enough to create havoc in

the coloring that has been built up to that point.

The algorithm stops after it has run for a preset number of cycles, nCycles,

or if it has not made any improvement for a number of nBreakCycles consecutive

cycles. All parameters are defined in Appendix C.

3.3 The Output Stage

At the end, ABGC simply returns the best coloring stored throughout the course

of the program. The largest color in this coloring, maxK, denotes the quality of

the solution, i.e., a smaller maxK value corresponds to a better result quality.

3 The Algorithm Framework 22

In Chapter 4, we present and compare the performance of ABGC to other

algorithms.

Chapter 4
Experimental Results

In this chapter, we describe the results of running ABGC on a collection of bench-

mark graphs and compare them against other algorithms. We used graph instances

from DIMACS [8] (Center for Discrete Mathematics and Theoretical Computer Sci-

ence, Rutgers, New Jersey) to evaluate our algorithm. Our ABGC algorithm was

implemented in C++ and ran on a 3.0 GHz Pentium 4 PC with 2 GB of RAM using

the Linux operating system. Since benchmarks are often performed on disparate

platforms, the DIMACS community offers the dfmax utility for the comparison

of different machines. Table A.1 in Appendix A reports the computation time of

ABGC running on dfmax.

4.1 Results for the Graph Coloring Problem

For GCP, we tested our algorithm on 119 DIMACS benchmark graphs belonging

to various categories given at [8]‡. These varieties of graphs fall under different

categories. Tables B.1 and B.2 in Appendix B give a summary on these benchmark

graphs.

Stochastic algorithms involving random variables may yield a dissimilar out-

come on each run; thus, they are often tested in a number of trials to obtain more

accurate result statistics, such as average solution quality, running time, etc. For

‡ [8] is a website maintained at Penn State Harrisburg. In addition to archiving the contents
of the several DIMACS Challenge Series, it provides updates and bug fixes that were not in the
original website.

4 Experimental Results 24

each of these 119 graphs, we ran ABGC for 100 times (trials). Of the 119 graphs,

there are 63 graphs with best-known bound on the chromatic numbers. Our algo-

rithm found matching bound for 57 out of these 63 graphs. There are six graphs

for which our algorithm got poorer results, but are within one of the best-known

bound.

Tables 4.1, 4.2, 4.3, and 4.4 give experimental results on the 119 graphs. For

each instance, we listed the name of the graph, the best-known bound on the

chromatic number (χ∗), the best (ηmin), the worst (ηmax), the average (ηavg), the

standard deviation (σ), and the average running time in seconds (τavg) of the results

produced by our algorithm in 100 trials. The running times for a number of graphs

were too small to be recorded and therefore recorded as 0.00. Graphs without best-

known bound on the chromatic number have the corresponding entries marked with

‘–’. The boldfaced values represent the results found by our algorithm that match

the best-known bound on the chromatic numbers.

We did not compare the results of GCP against other algorithms since many

of them did not use the same set of graph instances from DIMACS. Furthermore,

we found no existing algorithms in the literature run on such a comprehensive

set of graphs compared to ours. This collection of 119 graphs is the entire list

of available DIMACS instances made for GCP. In fact, several large graphs, for

example, qg.order100 with 990,000 vertices and 10,000 edges, even caused problems

to a few utilities provided on the DIMACS website.

4.2 Results for the Graph Coloring Generaliza-

tions

We tested ABGC for the generalizations using 33 geometric (GEOM) benchmark

graphs available at [8]. For each graph, the Bandwidth Coloring problem requires

an edge weight function, the Multi Coloring problem requires a vertex weight func-

tion, and the Bandwidth Multi Coloring problem requires both weight functions.

Thus, there are 99 graph instances in total. Information about these graphs is

summarized in Table B.3, Appendix B.

For each of the instances, we ran our algorithm for 100 trials. Tables 4.5, 4.6,

4 Experimental Results 25

and 4.7 provide detailed information on the trials using a similar format as in

the GCP trials. In addition, these tables also include comparison data of ABGC

against previous algorithms. The boldfaced value denotes the best result quality

among the considered algorithms. The columns with the following header notations

list the best results (i.e., ηmin) achieved by the corresponding algorithms.

• FCNS: Prestwich’s algorithm for GCP and BCP [28]

• SATURN: Prestwich’s algorithm for BMCP [28]

• SWO: Lim et al.’s Squeaky Wheel Optimization algorithm [24]

• SWOTS: Lim et al.’s Squeaky Wheel Optimization algorithm hybridized

with Tabu Search [25]

• ABGC: Our agent-based algorithm, ABGC

For the Bandwidth Coloring problem, our results matched or surpassed all

results from SWO and SWOTS, but were not as good as those of FCNS. As

pointed out in FCNS, their algorithm demands certain parameters to be tuned for

each graph or class of graphs. That is not the case for our ABGC algorithm.

Our results matched those of SWO-based algorithms in all 33 cases for the

Multi Coloring problem. No results were provided by [28] for MCP. These graph

instances for MCP are relatively simple for either ABGC or SWO-based algorithms.

For each of these instances, ABGC obtained the standard deviation value of zero

in all the trials.

For the Bandwidth Multi Coloring, both ABGC and SWO-based algorithms

prevailed over SATURN, which failed to run in half of the instances. Where re-

sults were not available, we marked the corresponding entries with ‘–’. Compared

against the algorithms of SWO and SWOTS, ABGC performed better in the ma-

jority of the larger graphs while it did worse in a few smaller ones.

4 Experimental Results 26

Instances 100 runs per instance
χ∗ ηmin ηmax ηavg σ τavg (secs)

1-FullIns 3 – 4 4 4.00 0.00 0.03
1-FullIns 4 – 5 5 5.00 0.00 0.35
1-FullIns 5 – 6 6 6.00 0.00 4.53
1-Insertions 4 4 5 5 5.00 0.00 0.12
1-Insertions 5 – 6 6 6.00 0.00 1.75
1-Insertions 6 – 7 7 7.00 0.00 16.85
2-FullIns 3 – 5 5 5.00 0.00 0.06
2-FullIns 4 – 6 6 6.00 0.00 2.10
2-FullIns 5 – 7 7 7.00 0.00 22.86
2-Insertions 3 4 4 4 4.00 0.00 0.02
2-Insertions 4 4 5 5 5.00 0.00 0.79
2-Insertions 5 – 6 6 6.00 0.00 13.81
3-FullIns 3 – 6 6 6.00 0.00 0.23
3-FullIns 4 – 7 7 7.00 0.00 9.36
3-FullIns 5 – 8 8 8.00 0.00 51.34
3-Insertions 3 4 4 4 4.00 0.00 0.08
3-Insertions 4 – 5 5 5.00 0.00 3.14
3-Insertions 5 – 6 6 6.00 0.00 28.20
4-FullIns 3 – 7 7 7.00 0.00 0.56
4-FullIns 4 – 8 8 8.00 0.00 17.66
4-FullIns 5 – 9 9 9.00 0.00 125.94
4-Insertions 3 3 4 4 4.00 0.00 0.13
4-Insertions 4 – 5 5 5.00 0.00 10.14
5-FullIns 3 – 8 8 8.00 0.00 1.08
5-FullIns 4 – 9 9 9.00 0.00 26.12
abb313GPIA – 9 10 9.53 0.50 55.23
anna 11 11 11 11.00 0.00 1.25
ash331GPIA – 4 5 4.18 0.38 15.74
ash608GPIA – 4 5 4.31 0.46 24.61
ash958GPIA – 4 5 4.43 0.50 39.20
david 11 11 11 11.00 0.00 0.44

Table 4.1: GCP results on 119 DIMACS graphs.

4 Experimental Results 27

Instances 100 runs per instance
χ∗ ηmin ηmax ηavg σ τavg (secs)

DSJC1000.1 – 21 22 21.47 0.50 51.96
DSJC1000.5 – 91 93 91.95 0.52 199.21
DSJC1000.9 – 228 233 230.85 0.99 416.77
DSJC125.1 – 5 6 5.51 0.50 0.84
DSJC125.5 – 17 18 17.75 0.43 1.75
DSJC125.9 – 44 44 44.00 0.00 2.62
DSJC250.1 – 8 9 8.50 0.50 4.78
DSJC250.5 – 28 30 29.18 0.41 12.27
DSJC250.9 – 72 73 72.36 0.49 23.57
DSJC500.1 – 13 13 13.00 0.00 21.99
DSJC500.5 – 50 52 51.13 0.39 79.94
DSJC500.9 – 127 129 128.38 0.58 125.66
DSJR500.1 – 12 12 12.00 0.00 13.99
DSJR500.1c – 85 86 85.17 0.38 112.44
DSJR500.5 – 128 130 129.23 0.47 114.47
fpsol2.i.1 65 65 65 65.00 0.00 54.00
fpsol2.i.2 30 30 30 30.00 0.00 46.53
fpsol2.i.3 30 30 30 30.00 0.00 41.72
games120 9 9 9 9.00 0.00 0.68
homer 13 13 13 13.00 0.00 17.44
huck 11 11 11 11.00 0.00 0.23
inithx.i.1 54 54 54 54.00 0.00 77.26
inithx.i.2 31 31 31 31.00 0.00 63.76
inithx.i.3 31 31 31 31.00 0.00 63.37
jean 10 10 10 10.00 0.00 0.29

Table 4.2: GCP results on 119 DIMACS graphs.

4 Experimental Results 28

Instances 100 runs per instance
χ∗ ηmin ηmax ηavg σ τavg (secs)

latin square 10 – 100 103 101.48 0.64 305.21
le450 15a 15 15 15 15.00 0.00 31.52
le450 15b 15 15 15 15.00 0.00 28.00
le450 15c 15 15 21 19.74 1.81 41.70
le450 15d 15 15 21 17.02 1.42 42.66
le450 25a 25 25 25 25.00 0.00 28.71
le450 25b 25 25 25 25.00 0.00 27.14
le450 25c 25 26 26 26.00 0.00 39.55
le450 25d 25 26 26 26.00 0.00 40.71
le450 5a 5 5 6 5.32 0.47 16.15
le450 5b 5 5 6 5.44 0.50 16.40
le450 5c 5 5 5 5.00 0.00 20.44
le450 5d 5 5 5 5.00 0.00 20.71
miles1000 42 42 42 42.00 0.00 2.55
miles1500 73 73 73 73.00 0.00 5.11
miles250 8 8 8 8.00 0.00 0.57
miles500 20 20 20 20.00 0.00 1.53
miles750 31 31 31 31.00 0.00 1.95
mug100 1 4 4 4 4.00 0.00 0.25
mug100 25 4 4 4 4.00 0.00 0.35
mug88 1 4 4 4 4.00 0.00 0.17
mug88 25 4 4 4 4.00 0.00 0.16
mulsol.i.1 49 49 49 49.00 0.00 7.30
mulsol.i.2 31 31 31 31.00 0.00 5.69
mulsol.i.3 31 31 31 31.00 0.00 5.86
mulsol.i.4 31 31 31 31.00 0.00 5.81
mulsol.i.5 31 31 31 31.00 0.00 5.85
myciel3 4 4 4 4.00 0.00 0.01
myciel4 5 5 5 5.00 0.00 0.01
myciel5 6 6 6 6.00 0.00 0.05
myciel6 7 7 7 7.00 0.00 0.43
myciel7 8 8 8 8.00 0.00 2.29

Table 4.3: GCP results on 119 DIMACS graphs.

4 Experimental Results 29

Instances 100 runs per instance
χ∗ ηmin ηmax ηavg σ τavg (secs)

qg.order30 30 30 30 30.00 0.00 44.31
qg.order40 40 40 40 40.00 0.00 71.91
qg.order60 60 60 60 60.00 0.00 226.36
qg.order100 100 100 100 100.00 0.00 1534.70
queen10 10 – 11 11 11.00 0.00 0.99
queen11 11 11 12 13 12.02 0.14 1.34
queen12 12 – 13 14 13.40 0.49 1.84
queen13 13 13 14 15 14.66 0.48 2.56
queen14 14 – 16 16 16.00 0.00 3.59
queen15 15 – 17 17 17.00 0.00 4.90
queen16 16 – 18 18 18.00 0.00 6.45
queen5 5 5 5 5 5.00 0.00 0.01
queen6 6 7 7 7 7.00 0.00 0.03
queen7 7 7 7 7 7.00 0.00 0.06
queen8 12 12 12 12 12.00 0.00 0.53
queen8 8 9 9 9 9.00 0.00 0.14
queen9 9 10 10 10 10.00 0.00 0.37
school1 nsh – 14 14 14.00 0.00 16.87
school1 – 14 14 14.00 0.00 23.75
wap01a – 43 43 43.00 0.00 158.15
wap02a – 42 43 42.80 0.40 145.21
wap03a – 45 46 45.60 0.49 514.93
wap04a – 44 45 44.86 0.35 476.18
wap05a – 50 50 50.00 0.00 67.49
wap06a – 42 43 42.86 0.35 85.69
wap07a – 43 44 43.32 0.47 169.88
wap08a – 42 44 43.02 0.32 175.84
will199GPIA – 7 7 7.00 0.00 22.44
zeroin.i.1 49 49 49 49.00 0.00 8.81
zeroin.i.2 30 30 30 30.00 0.00 8.58
zeroin.i.3 30 30 30 30.00 0.00 8.23

Table 4.4: GCP results on 119 DIMACS graphs.

4 Experimental Results 30

Algorithms 100 runs per instance (ABGC)
Instances FCNS SWO SWOTS ABGC ηmax ηavg σ τavg (secs)

geom20 21 21 21 21 21 21.00 0.00 0.03
geom20a 20 22 22 20 24 21.61 0.77 0.03
geom20b 13 14 14 13 14 13.11 0.31 0.04
geom30 28 29 29 28 29 28.04 0.20 0.07
geom30a 27 32 32 27 32 29.10 1.30 0.09
geom30b 26 26 26 26 27 26.07 0.26 0.13
geom40 28 28 28 28 29 28.08 0.27 0.11
geom40a 37 38 38 37 42 38.60 0.92 0.18
geom40b 33 34 34 33 38 35.17 1.39 0.25
geom50 28 28 28 28 31 28.17 0.53 0.24
geom50a 50 52 52 50 56 52.08 1.40 0.39
geom50b 35 38 38 36 44 38.92 1.64 0.39
geom60 33 34 34 33 35 33.50 0.54 0.39
geom60a 50 53 53 50 57 52.05 1.21 0.65
geom60b 43 46 46 43 51 46.44 1.58 0.83
geom70 38 38 38 38 42 38.33 0.63 0.66
geom70a 62 63 63 62 71 65.76 2.28 0.84
geom70b 48 54 54 50 58 53.72 1.46 1.02
geom80 41 42 42 41 45 42.09 0.94 0.70
geom80a 63 66 66 63 76 69.01 2.59 1.26
geom80b 61 65 65 63 74 67.62 1.92 1.60
geom90 46 46 46 46 51 46.88 1.05 0.92
geom90a 64 69 69 66 75 69.82 1.88 1.85
geom90b 72 77 77 74 85 78.96 2.28 2.57
geom100 50 51 51 50 60 52.24 1.42 1.23
geom100a 70 76 76 72 81 75.53 1.89 2.75
geom100b 73 88 88 76 93 82.52 2.16 3.59
geom110 50 53 53 50 54 52.14 0.96 1.48
geom110a 74 82 82 75 83 79.02 1.58 3.35
geom110b 79 88 88 84 97 89.05 2.30 4.22
geom120 60 62 62 59 67 61.79 1.46 1.67
geom120a 84 92 92 86 95 90.04 1.75 3.93
geom120b 87 98 98 90 102 96.43 2.15 5.90

Table 4.5: BCP results on 33 GEOM DIMACS graphs.

4 Experimental Results 31

Algorithms 100 runs per instance (ABGC)
Instances FCNS SWO SWOTS ABGC ηmax ηavg σ τavg (secs)

geom20 – 28 28 28 28 28.00 0.00 3.33
geom20a – 30 30 30 30 30.00 0.00 3.49
geom20b – 8 8 8 8 8.00 0.00 0.13
geom30 – 26 26 26 26 26.00 0.00 3.27
geom30a – 40 40 40 40 40.00 0.00 8.65
geom30b – 11 11 11 11 11.00 0.00 0.42
geom40 – 31 31 31 31 31.00 0.00 8.46
geom40a – 46 46 46 46 46.00 0.00 15.51
geom40b – 14 14 14 14 14.00 0.00 2.40
geom50 – 35 35 35 35 35.00 0.00 14.63
geom50a – 61 61 61 61 61.00 0.00 43.05
geom50b – 17 17 17 17 17.00 0.00 4.09
geom60 – 36 36 36 36 36.00 0.00 16.59
geom60a – 65 65 65 65 65.00 0.00 53.30
geom60b – 22 22 22 22 22.00 0.00 3.31
geom70 – 44 44 44 44 44.00 0.00 32.56
geom70a – 71 71 71 71 71.00 0.00 62.29
geom70b – 22 22 22 22 22.00 0.00 3.63
geom80 – 63 63 63 63 63.00 0.00 50.61
geom80a – 68 68 68 68 68.00 0.00 75.08
geom80b – 25 25 25 25 25.00 0.00 4.64
geom90 – 51 51 51 51 51.00 0.00 67.68
geom90a – 65 65 65 65 65.00 0.00 73.99
geom90b – 28 28 28 28 28.00 0.00 7.37
geom100 – 60 60 60 60 60.00 0.00 88.28
geom100a – 81 81 81 81 81.00 0.00 127.87
geom100b – 30 30 30 30 30.00 0.00 7.99
geom110 – 62 62 62 62 62.00 0.00 111.81
geom110a – 91 91 91 91 91.00 0.00 198.22
geom110b – 37 37 37 37 37.00 0.00 14.00
geom120 – 64 64 64 64 64.00 0.00 136.94
geom120a – 93 93 93 93 93.00 0.00 308.78
geom120b – 34 34 34 34 34.00 0.00 13.63

Table 4.6: MCP results on 33 GEOM DIMACS graphs.

4 Experimental Results 32

Algorithms 100 runs per instance (ABGC)
Instances FCNS SWO SWOTS ABGC ηmax ηavg σ τavg (secs)

geom20 159 149 149 149 158 150.86 2.17 6.85
geom20a 175 169 169 169 176 170.78 1.55 11.27
geom20b 44 44 44 44 46 44.38 0.56 0.24
geom30 168 160 160 160 169 160.99 1.44 9.49
geom30a 235 211 209 210 225 214.94 3.04 25.39
geom30b 79 77 77 77 79 77.59 0.53 1.24
geom40 189 167 167 167 176 167.65 1.24 24.57
geom40a 260 214 213 214 226 216.37 1.91 66.72
geom40b 80 76 74 74 87 77.53 2.35 3.04
geom50 257 224 224 224 232 225.39 1.55 57.48
geom50a 395 326 318 317 336 325.68 3.48 379.48
geom50b 89 87 87 85 99 89.22 2.06 4.54
geom60 279 258 258 258 264 259.15 1.28 64.39
geom60a – 368 358 357 369 363.47 2.42 203.23
geom60b 128 119 116 117 140 125.59 4.81 10.64
geom70 310 279 273 267 278 271.77 1.76 110.96
geom70a – 478 469 470 488 478.27 3.49 276.63
geom70b 133 124 121 121 131 125.61 2.02 12.46
geom80 – 394 383 382 393 387.76 2.31 157.88
geom80a – 379 379 367 382 372.92 3.22 239.61
geom80b 152 145 141 139 147 142.43 1.56 18.01
geom90 – 335 332 332 339 335.60 1.78 180.91
geom90a – 382 377 378 417 388.28 8.91 387.54
geom90b – 157 157 150 164 155.96 2.60 22.50
geom100 – 413 404 405 416 409.10 2.45 292.10
geom100a – 462 459 440 461 449.46 4.27 548.34
geom100b – 172 170 164 178 171.26 2.70 27.85
geom110 – 389 383 378 391 384.47 2.76 405.16
geom110a – 501 494 487 502 493.61 3.24 1069.85
geom110b – 210 206 208 228 213.25 3.48 43.86
geom120 – 409 402 398 408 401.84 2.36 790.21
geom120a – 564 556 548 565 556.44 3.67 1660.62
geom120b – 201 199 198 209 203.49 2.62 41.26

Table 4.7: BMCP results on 33 GEOM DIMACS graphs.

Chapter 5
Conclusion

In this thesis, we studied the classic Graph Coloring problem (GCP) and its gen-

eralizations, namely Bandwidth Coloring, Multi Coloring, and Bandwidth Multi

Coloring. These problems are standard models for numerous real-world applica-

tions and accordingly motivate people to solve them.

The research in this thesis proposes an agent-based algorithm called ABGC for

GCP and its variations. The algorithm features agents making decisions to color

portions of the graph based on surrounding information, and this collaboration

produces the coloring of the entire graph.

Another notable advantage of ABGC is its generic framework. Compared

to other algorithms that are either designed to solve each individual problem or

solve multiple problems, but only effectively solve one of the problems, ABGC

covers GCP and the three generalizations. Moreover, the algorithm is very flexible

due to its compatibility with a variety of graph categories. Additional techniques

such as graph preprocessing, tabu lists, and greedy-based local optimization also

contribute support to the agents. Experimental results show that our algorithm is

very competitive with other algorithms.

In possible future work, we envision a pheromone concept to lock the critical

colors of several portions on the graph. A general distributed framework is also

desirable for agent-based algorithms because it allows separate groups of agents to

run on different computer clusters and exchange data periodically.

Bibliography

[1] Allen, M., G. Kumaran, and T. Liu, “A Combined Algorithm for Graph-

Coloring in Register Allocation,” Proc. Computational Symposium on Graph

Coloring and its Generalizations. Ithaca, New York, USA, 2002, pp. 110–111.

[2] Appel, K. and W. Haken “Solution of the Four Color Map Problem,” Scientific

American, 237(4), 1977, pp. 108–121.

[3] Appel, K., W. Haken, and J. Koch, “Every Planar Map is Four Colorable,”

Illinois Journal of Mathematics, 21, 1977, pp. 429–567.

[4] Barnier, N. and P. Brisset, “Graph Coloring for Air Traffic Flow,” CPAIOR’02:

Fourth International Workshop on Integration of AI and OR Techniques

in Constraint Programming for Combinatorial Optimisation Problems, Le

Croisic, France, 2002, pp. 133–147.

[5] Bellare, M., O. Goldreich, and M. Sudan, “Free Bits, PCPs and Non-

Approximability – Towards Tight Results,” SIAM Journal on Computing,

27(3), 1998, pp. 804–915.

[6] Brelaz, D., “New Methods to Color the Vertices of a Graph,” Communications

of the ACM, 22(4), 1979, pp. 251–256.

[7] Bui, T. N. and T. H. Nguyen, “An Agent-Based Algorithm for Generalized

Graph Colorings,” Proc. 8th Annual Conference on Genetic and Evolutionary

Computation Conference, Seattle, WA, 2006, pp. 19–26.

BIBLIOGRAPHY 35

[8] Bui, T. N. and T. H. Nguyen, Penn State Harrisburg’s Dimacs Instances

Archive, http://cs.hbg.psu.edu/txn131/. Last access: 09/25/2006.

[9] Bui, T. N., T. H. Nguyen, C. Patel, and K. T. Phan, “An Ant-Based Al-

gorithm for Coloring Graphs,” to appear in the Journal of Discrete Applied

Mathematics.

[10] Comellas, F. and J. Ozon, “Graph Coloring Algorithms for Assignment Prob-

lems in Radio Networks,” Proc. International Workshop on Applications of

Neural Networks to Telecommunications, Stockholm, Sweden, 1995, pp. 49–

56.

[11] Comellas, F. and J. Ozon, “An Ant Algorithm for the Graph Coloring Prob-

lem,” ANTS’98 – From Ant Colonies to Artificial Ants: First International

Workshop on Ant Colony Optimization, Brussels, Belgium, 1998.

[12] Costa, D. and A. Hertz, “Ants Can Colour Graphs,” Journal of Operational

Research Society, 48, 1997, pp. 295–305.

[13] Culberson, J. and F. Luo, “Exploring the k-colorable landscape with Iterated

Greedy,” Cliques, Coloring and Satisfiability – Second DIMACS Implementa-

tion Challenge 1993, American Mathematical Society, 26, 1996, pp. 245–284.

[14] Dorigo, M. and G. Di Caro, “The Ant Colony Optimization Meta-Heuristic,”

New Ideas in Optimization, McGraw-Hill, London, England, 1999, pp. 11–32.

[15] Garey, M. R., D. S. Johnson, and H. C. So, “An Application of Graph Coloring

to Printed Circuit Testing,” IEEE Transactions on Circuits and Systems, 23,

1976, pp. 591–599.

[16] Halldórsson, M. M., “A Still Better Performance Guarantee for Approximate

Graph Coloring,” Information Processing Letters, 45, 1993, pp. 19–23.

[17] Hertz, A. and D. de Werra, “Using Tabu Search Techniques for Graph Color-

ing,” Computing, 39(4), 1987, pp. 345–351.

[18] Jin, M. H., H. K. Wu, J. T. Horng, and C. H. Tsai, “An Evolutionary

Approach to Fixed Channel Assignment Problem with Limited Bandwidth

BIBLIOGRAPHY 36

Constraint,” Proc. IEEE International Conference on Communications (ICC

2001), 7, Helsinki, Finland, 2001, pp. 2100–2104.

[19] Johnson, D. S., C. R. Aragon, L. A. McGeoch, and C. Schevon, “Optimiza-

tion by Simulated Annealing: An Experimental Evaluation; Part II, Graph

Coloring and Number Partitioning,” Operations Research, 39(3), 1991, pp.

378–406.

[20] Joslin, D. E. and D. P. Clements, “Squeaky Wheel Optimization,” Journal of

Artificial Intelligence Research, 10, 1999, pp. 353–373.

[21] Karm, R. M., “Reducibility Among Combinatorial Problems,” Complexity of

Computer Computations, Proc. Sympos. IBM Thomas J. Watson Res. Center,

Yorktown Heights, NY, 1972, pp. 85–103.

[22] Leighton, F. T., “A Graph Coloring Algorithm for Large Scheduling Prob-

lems,” Journal of Research of the National Bureau of Standards, 84(6), 1979,

pp. 489–506.

[23] Lewandowski, G., A. Condon, “Experiments with Parallel Graph Coloring

Heuristics and Applications of Graph Coloring, Cliques, Coloring and Satisfia-

bility,” Cliques, Coloring and Satisfiability – Second DIMACS Implementation

Challenge 1993, American Mathematical Society, 26, 1996, pp. 309–334.

[24] Lim, A., X. Zhang, and Y. Zhu, “A Hybrid Method for the Graph Coloring

Problem and Its Generalizations,” 5th Metaheuristics International Confer-

ence, Kyoto, Japan, 2003.

[25] Lim, A., Y. Zhu, Q. Lou, and B. Rodrigues, “Heuristic Methods for Graph

Coloring Problems,” Proc. ACM Symposium on Applied Computing, New

York, NY, 2005, pp. 933–939.

[26] Morgenstern, C., “Distributed Coloration Neighborhood Search Coloring and

Satisfiability,” Cliques, Coloring and Satisfiability – Second DIMACS Imple-

mentation Challenge 1993, American Mathematical Society, 26, 1996, pp. 335–

357.

[27] Park, E. J., Y. H. Kim, and B. R. Moon. “Genetic Search for Fixed Channel

Assignment Problem with Limited Bandwidth,” Proc. Genetic and Evolution-

ary Computation Conference, San Francisco, CA, 2002, pp. 1772–1779.

[28] Prestwich, S. D., “Constrained Bandwidth Multicoloration Neighborhoods,”

Computational Symposium on Graph Coloring and Generalizations, Cornell

University, Ithaca, New York, 2002.

[29] Trick, M. A., COLOR02/03/04: Graph Coloring and its Generalizations,

http://mat.gsia.cmu.edu/COLOR04/. Last access: 09/25/2006.

[30] de Werra, D., “An Introduction to Timetabling,” European Journal of Oper-

ational Research, 19(2), 1985, pp. 151–162.

[31] White, T., B. Pagurek, and F. Oppacher, “ASGA: Improving the Ant System

by Integration with Genetic Algorithms,” Proc. 3rd Annual Conference on

Genetic Programming, Madison, WI, 1998, pp. 610–617.

[32] Zymolka, A., A. Koster, and R. Wessaly, “Transparent Optical Network De-

sign with Sparse Wavelength,” Proc. 7th IFIP Working Conference on Optical

Network Design and Modelling, Budapest, Hungary, 2003, pp. 61–80.

Appendix A
Machine Benchmark

The DIMACS archive website [8] provides the benchmark utility dfmax for the

comparison of machines. We report here the results obtained after recompiling

dfmax on the machine that runs our algorithm.

Machine Specs
CPU: 3GHz, Ram: 2GB, OS: Linux, Lang: C++

Instances Time (Secs) Best
User Sys Real Result

r100.5.b 0.00 0.00 0.00 4 57 35 5 61 34 3 62 90
r200.5.b 0.03 0.00 0.00 113 86 147 66 14 134 32

127 161 186 70
r300.5.b 0.25 0.00 0.00 279 222 116 17 39 127

190 158 196 288 263 54
r400.5.b 1.59 0.00 1.00 370 108 27 50 87 275 145

222 355 88 306 335 379
r500.5.b 5.84 0.00 6.00 345 204 148 480 16 336 76

223 260 403 141 382 289

Table A.1: Machine benchmark.

Appendix B
Instance Descriptions

This appendix summarizes the DIMACS instances used to benchmark our algo-

rithm. The name of the instances, their categories (CAT), vertices (V), and edges

(E) are shown in the tables below. For each instance, the tables also display

the best-known bound on its chromatic number (χ∗), if known, otherwise ‘–’ is

displayed. Note that the instances used to test the generalized graph coloring

problems have no known bound on their chromatic numbers. Brief descriptions of

the categories are also given below.

DSJ: (From David Johnson) Random graphs used in his paper with Aragon,

McGeoch, and Schevon, “Optimization by Simulated Annealing: An Ex-

perimental Evaluation; Part II, Graph Coloring and Number Partitioning”,

Operations Research, 31, 378–406 (1991). DSJC are standard (n, p) random

graphs. DSJR are geometric graphs, with DSJR..c being complements of

geometric graphs.

CUL: (From Joe Culberson) Quasi-random coloring problem.

REG: (From Gary Lewandowski) Problem based on register allocation for vari-

ables in real codes.

LEI: (From Craig Morgenstern) Leighton graphs with guaranteed coloring size.

A reference is F.T. Leighton, Journal of Research of the National Bureau of

Standards, 84: 489–505 (1979).

B Instance descriptions 40

Instances CAT V E χ∗ Instances CAT V E χ∗

1-FullIns 3 CAR 30 100 – le450 15d LEI 450 16750 15
1-FullIns 4 CAR 93 593 – le450 25a LEI 450 8260 25
1-FullIns 5 CAR 282 3247 – le450 25b LEI 450 8263 25
1-Insertions 4 CAR 67 232 4 le450 25c LEI 450 17343 25
1-Insertions 5 CAR 202 1227 – le450 25d LEI 450 17425 25
1-Insertions 6 CAR 607 6337 – le450 5a LEI 450 5714 5
2-FullIns 3 CAR 52 201 – le450 5b LEI 450 5734 5
2-FullIns 4 CAR 212 1621 – le450 5c LEI 450 9803 5
2-FullIns 5 CAR 852 12201 – le450 5d LEI 450 9757 5
2-Insertions 3 CAR 37 72 4 miles1000 SGB 128 3216 42
2-Insertions 4 CAR 149 541 4 miles1500 SGB 128 5198 73
2-Insertions 5 CAR 597 3936 – miles250 SGB 128 387 8
3-FullIns 3 CAR 80 346 – miles500 SGB 128 1170 20
3-FullIns 4 CAR 405 3524 – miles750 SGB 128 2113 31
3-FullIns 5 CAR 2030 33751 – mug100 1 MIZ 100 166 4
3-Insertions 3 CAR 56 110 4 mug100 25 MIZ 100 166 4
3-Insertions 4 CAR 281 1046 – mug88 1 MIZ 88 146 4
3-Insertions 5 CAR 1406 9695 – mug88 25 MIZ 88 146 4
4-FullIns 3 CAR 114 541 – mulsol.i.1 REG 197 3925 49
4-FullIns 4 CAR 690 6650 – mulsol.i.2 REG 188 3885 31
4-FullIns 5 CAR 4146 77305 – mulsol.i.3 REG 184 3916 31
4-Insertions 3 CAR 79 156 3 mulsol.i.4 REG 185 3946 31
4-Insertions 4 CAR 475 1795 – mulsol.i.5 REG 186 3973 31
5-FullIns 3 CAR 154 792 – myciel3 MYC 11 20 4
5-FullIns 4 CAR 1085 11395 – myciel4 MYC 23 71 5
abb313GPIA HOS 1557 53356 – myciel5 MYC 47 236 6
anna SGB 138 493 11 myciel6 MYC 95 755 7
ash331GPIA HOS 662 4181 – myciel7 MYC 191 2360 8
ash608GPIA HOS 1216 7844 – qg.order30 GOM 900 26100 30
ash958GPIA HOS 1916 12506 – qg.order40 GOM 1600 62400 40
david SGB 87 406 11 qg.order60 GOM 3600 212400 60

Table B.1: Summary of the 119 DIMACS graphs for GCP.

SCH: (From Gary Lewandowski) Class scheduling graphs, with and without

study halls.

LAT: (From Gary Lewandowski) Latin square problem.

SGB: (From Michael Trick) Graphs from Donald Knuth’s Stanford GraphBase.

These can be divided into:

Book Graphs: Given a work of literature, a graph is created where each

node represents a character. Two nodes are connected by an edge if the

B Instance descriptions 41

Instances CAT V E χ∗ Instances CAT V E χ∗

DSJC1000.1 DSJ 1000 49629 – qg.order100 GOM 10000 990000 100
DSJC1000.5 DSJ 1000 249826 – queen10 10 SGB 100 1470 –
DSJC1000.9 DSJ 1000 449449 – queen11 11 SGB 121 1980 11
DSJC125.1 DSJ 125 736 – queen12 12 SGB 144 2596 –
DSJC125.5 DSJ 125 3891 – queen13 13 SGB 169 3328 13
DSJC125.9 DSJ 125 6961 – queen14 14 SGB 196 4186 –
DSJC250.1 DSJ 250 3218 – queen15 15 SGB 225 5180 –
DSJC250.5 DSJ 250 15668 – queen16 16 SGB 256 6320 –
DSJC250.9 DSJ 250 27897 – queen5 5 SGB 25 160 5
DSJC500.1 DSJ 500 12458 – queen6 6 SGB 36 290 7
DSJC500.5 DSJ 500 62624 – queen7 7 SGB 49 476 7
DSJC500.9 DSJ 500 112437 – queen8 12 SGB 96 1368 12
DSJR500.1 DSJ 500 3555 – queen8 8 SGB 64 728 9
DSJR500.1c DSJ 500 121275 – queen9 9 SGB 81 1056 10
DSJR500.5 DSJ 500 58862 – school1 nsh SCH 352 14612 –
fpsol2.i.1 REG 496 11654 65 school1 SCH 385 19095 –
fpsol2.i.2 REG 451 8691 30 wap01a KOS 2368 110871 –
fpsol2.i.3 REG 425 8688 30 wap02a KOS 2464 111742 –
games120 SGB 120 638 9 wap03a KOS 4730 286722 –
homer SGB 561 1628 13 wap04a KOS 5231 294902 –
huck SGB 74 301 11 wap05a KOS 905 43081 –
inithx.i.1 REG 864 18707 54 wap06a KOS 947 43571 –
inithx.i.2 REG 645 13979 31 wap07a KOS 1809 103368 –
inithx.i.3 REG 621 13969 31 wap08a KOS 1870 104176 –
jean SGB 80 254 10 will199GPIA KOS 701 6772 –
latin square 10 LAT 900 307350 – zeroin.i.1 REG 211 4100 49
le450 15a LEI 450 8168 15 zeroin.i.2 REG 211 3541 30
le450 15b LEI 450 8169 15 zeroin.i.3 REG 206 3540 30
le450 15c LEI 450 16680 15

Table B.2: Summary of the 119 DIMACS graphs for GCP.

corresponding characters encounter each other in the book. Knuth cre-

ates the graphs for five classic works: Tolstoy’s Anna Karenina (anna),

Dicken’s David Copperfield (david), Homer’s Iliad (homer), Twain’s

Huckleberry Finn (huck), and Hugo’s Les Misérables (jean).

Game Graphs: A graph representing the games played in a college football

season can be represented by a graph where the nodes represent each

college team. Two teams are connected by an edge if they played each

other during the season. Knuth gives the graph for the 1990 college

football season.

Miles Graphs: These graphs are similar to geometric graphs in that nodes

B Instance descriptions 42

Instances CAT V E Instances CAT V E
geom20 GEO 20 40 geom80 GEO 80 429
geom20a GEO 20 57 geom80a GEO 80 692
geom20b GEO 20 52 geom80b GEO 80 743
geom30 GEO 30 80 geom90 GEO 90 531
geom30a GEO 30 111 geom90a GEO 90 879
geom30b GEO 30 111 geom90b GEO 90 950
geom40 GEO 40 118 geom100 GEO 100 647
geom40a GEO 40 186 geom100a GEO 100 1092
geom40b GEO 40 197 geom100b GEO 100 1150
geom50 GEO 50 177 geom110 GEO 110 748
geom50a GEO 50 288 geom110a GEO 110 1317
geom50b GEO 50 299 geom110b GEO 110 1366
geom60 GEO 60 245 geom120 GEO 120 893
geom60a GEO 60 339 geom120a GEO 120 1554
geom60b GEO 60 426 geom120b GEO 120 1611
geom70 GEO 70 337
geom70a GEO 70 529
geom70b GEO 70 558

Table B.3: Summary of the 33 GEOM DIMACS graphs for the graph coloring
generalizations.

are placed in space with two nodes connected if they are close enough.

These graphs, however, are not random. The nodes represent a set of

United States cities and the distance between them is given by road

mileage from 1947. These graphs are also due to Knuth.

Queen Graphs: Given an n by n chessboard, a queen graph is a graph

on n2 nodes, each corresponding to a square of the board. Two nodes

are connected by an edge if the corresponding squares are in the same

row, column, or diagonal. Unlike some of the other graphs, the coloring

problem on this graph has a natural interpretation: given such a chess-

board, is it possible to place n sets of n queens on the board so that no

two queens of the same set are in the same row, column, or diagonal?

The answer is yes if and only if the graph has coloring number n.

MYC: (From Michael Trick) Graphs based on the Mycielski transformation.

These graphs are difficult to solve because they are triangle free (clique num-

ber 2) but the coloring number increases in problem size.

MYC: (From Kuzunori Mizuno) Graphs that are almost 3-colorable, but have a

B Instance descriptions 43

hard-to-find four clique embedded.

HOS: (From Shahadat Hossain) Graphs obtained from a matrix partitioning

problem in the segmented columns approach to determine sparse Jacobian

matrices.

CAR: (From M. Caramia and P. Dell’Olmo) k-Insertion graphs and Full Insertion

graphs are a generalization of Myciel graphs with inserted nodes to increase

graph size but not density.

KOS: (From Arie Koster) From real-life optical network design problems. Each

vertex corresponds to a lightpath in the network; edges correspond to inter-

secting paths.

GOM: (From Carla Gomes) Latin squares (standard encoding).

GEO: (From Michael Trick) Points are generated in a 10,000 by 10,000 grid and

are connected by an edge if they are close enough together. Edge weights

are inversely proportional to the distance between nodes. Node weights are

uniformly generated. The GEOMn instances are sparse, while GEOMa and

GEOMb instances are denser. GEOMb requires fewer colors per node.

Appendix C
Parameter Settings

Important parameters used in the algorithm are described in this section. We

obtained these parameters by testing the algorithm on a few graphs such as circles,

lines, trees, caterpillars, and grids. These parameters were not tuned for any

particular classes of graphs. The objective is to balance performance and running

time. We assume that n = |V | is the cardinality of the vertex set.

nAgents is the number of agents in the group and was set to 20% of the number

of vertices in the graph. For efficiency reason we do not allow nAgents to

exceed 100.

nCycles is the number of cycles in the entire coloring process and was set to be

min{6n, 4000}.

nMoves is the number of vertices an agent can visit before it stops. This value is

defined as follows:

nMoves =

n/4, if nAgents < 100

20 + n
nAgents , otherwise

nJoltCycles is the number of cycles during which the value of attemptK has not

improved, before a jolt is applied to the coloring creating a perturbation of

the current coloring configuration. This value was set to max{n/2, 600}.

45

nBreakCycles is the number of cycles during which the value of attemptK has

not improved before the algorithm is terminated. This value was set to

max{5n/2, 1600}.

α is the percentage of the colors from initial coloring that is made available for

the agents to use begin with. This value was set to 80%.

β is the top conflicted percentage of the coloring to be shuffled in the perturbation

operation. This value was set to 10%.

γ is the percentage of the current set of available colors that the perturbation

operation uses for re-coloring. This value was set to 80%.

δ is the length of the tabu list of recently visited vertices. An agent avoids

revisiting those vertices in its tabu list to allow a more diverse exploration

of the graph. This value was set to nMoves/3.

λ is the maximum size of the vertex set selected to be assigned with a color

number in MXRLF. This value was set to 0.7n.

