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Abstract

Software bugs are a persistent feature of daily life�crashing web browsers, allowing

cyberattacks, and distorting the results of scienti�c computations. One approach to

improving software uses program invariants�mathematical descriptions of program

behaviors�to verify code and detect bugs. Current invariant generation techniques

lack support for complex yet important forms of invariants, such as general polyno-

mial relations and properties of arrays. As a result, we lack the ability to conduct

precise analysis of programs that use this common data structure. This dissertation

presents DIG, a static and dynamic analysis framework for discovering several useful

classes of program invariants, including (i) nonlinear polynomial relations, which are

fundamental to many scienti�c applications; disjunctive invariants, (ii) which express

branching behaviors in programs; and (iii) properties about multidimensional arrays,

which appear in many practical applications. We describe theoretical and empirical

results showing that DIG can e�ciently and accurately �nd many important invari-
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ants in real-world uses, e.g., polynomial properties in numerical algorithms and array

relations in a full AES encryption implementation.

Automatic program veri�cation and synthesis are long-standing problems in com-

puter science. However, there has been a lot of work on program veri�cation and less

so on program synthesis. Consequently, important synthesis tasks, e.g., generating

program repairs, remain di�cult and time-consuming. This dissertation proves that

certain formulations of veri�cation and synthesis are equivalent, allowing for direct

applications of techniques and tools between these two research areas. Based on

these ideas, we develop CETI, a tool that leverages existing veri�cation techniques

and tools for automatic program repair. Experimental results show that CETI can

have higher success rates than many other standard program repair methods.
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Chapter 1

Introduction

�If I have a thousand ideas and only one turns out to be good, I am

satis�ed.� � Alfred Bernhard Nobel1

Real software is buggy. Automated program analysis techniques and tools can

improve it. In this dissertation, we develop e�cient techniques and practical tools

to capture precise program invariants to understand and verify programs. We also

establish formal theories linking di�erent areas of veri�cation and synthesis, enabling

application of tools from mature �elds such as test input generation to the �eld of

automatic program repair.

1.1 Motivation

Since the invention of computers, writing correct programs has been considered a

great challenge. Generally, it takes much more time, e�ort, and money to debug,

1Swedish chemist, engineer and inventor of dynamite, who used his enormous fortune
to institute the Nobel Prizes (1833 � 1896). In context, this dissertation has two ideas:
generating powerful invariants to verify programs and applying veri�cation techniques to
synthesize program repairs.
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Chapter 1. Introduction

i.e., �nd and eliminate errors, than to actually write programs. Some reports state

software maintenance, of which debugging is a major component, accounts for as

much as 90% of the total software production cost [Seacord et al., 2003]. A recent

2013 Cambridge University study estimates the global cost of software debugging at

US $312 billion annually and �nds that software developers spend over half of their

programming time ��xing bugs� or �making code work� [Britton et al., 2013].

As software becomes omnipresent, the consequences of bugs become more signif-

icant, causing great �nancial and even human losses. Software defects range from

simple misbehaviors to costly errors, such as the Ariane-5 crash [Dowson, 1997],

and lethal catastrophes, such as the Therac-25 radiation therapy machines [Leveson,

1993]. Moreover, software today is incredibly complex, making it harder to debug.

McConnel estimates in [McConnell, 2004] that delivered industry programs contain

from 15 to 50 bugs for every 1000 lines of code. Major software projects are often

forced to ship with both known and unknown bugs because they lack the development

resources to deal with every defect [Liblit et al., 2003].

Software quality as a concern has motivated research and development on pro-

gram analysis tools to help developers create more reliable software. A 2002 NIST

report [Tassey, 2002] found that more than a third of debugging cost could be elim-

inated by enabling �earlier and more e�ective identi�cation and removal of software

defects.� The aforementioned 2013 Cambridge study claims that analysis tools can

decrease debugging time by an average of 26%, which translates to saving 13% of

total programming time and $41 billion dollars annually.

1.2 Contributions

This dissertation focuses on automatic program veri�cation and synthesis to improve

software reliability. Program veri�cation checks whether a program satis�es its spec-

2



Chapter 1. Introduction

i�cation while synthesis generates a program that meets a given speci�cation. Thus,

veri�cation can reveal errors before the program is deployed, and synthesis can relieve

developers from tedious programming details.

A popular approach to automatic veri�cation is to generate program invariants,

i.e., properties that hold of a given program, and use them to prove required speci�-

cations. Invariants can be computed using static analysis that examines the program

code directly and dynamic analysis that learns about the program by running it. Both

purely static and purely dynamic methods have drawbacks; static analysis produces

sound results, but is usually expensive while dynamic analysis is more e�cient, but

might give incorrect invariants. Moreover, current approaches lack support for chal-

lenging yet important forms of invariants, including nonlinear polynomial relations,

disjunctive invariants, and properties of data structures such as arrays.

Due to the di�culty of generating complete programs from scratch, practical

synthesis methods typically create code under speci�c templates from partially com-

plete programs. Such a template-based synthesis method can be applied to repair

programs, i.e., modifying a buggy program to pass its speci�cation. Automated pro-

gram repair is a valuable approach for reducing software cost, and synthesis holds

the promise to generate correct-by-construction repairs automatically. In general,

program synthesis and repair are becoming more popular even though these research

areas are not as mature as program veri�cation, which has witnessed signi�cant

development in the last three decades.

The thesis of this dissertation is that we can build expressive and e�cient tech-

niques to automatically discover program invariants and synthesize program repairs

by encoding these tasks as solutions to existing problem instances in the mathemat-

ical and veri�cation domains. We reduce programs invariants to a set of equations

and constraints, which can be solved by mechanical and e�cient constraint solv-

ing techniques. We also show that certain formulations of veri�cation and synthesis

3



Chapter 1. Introduction

are equivalent, facilitating the exchange of ideas and optimizations between di�er-

ent �elds. However, invariant generation and program synthesis cannot be encoded

directly as constraint solving and program veri�cation problems. Thus, we develop

theoretical work to formally connect these problems, so that solutions to constraint

solving and veri�cation problems directly map to discovered invariants and synthe-

sized programs, respectively.

1.2.1 Invariant Generation

We present and evaluate DIG (Dynamic Invariant Generator), a hybrid tool that

dynamically infers invariants from program execution traces and statically veri�es

candidate results against program code. DIG supports both conjunctive and dis-

junctive forms of nonlinear polynomial invariants. Polynomials are fundamental to

many scienti�c and engineering applications, e.g., nonlinear polynomials are use-

ful for the analysis of hybrid systems [Roozbehani et al., 2005, Sankaranarayanan

et al., 2005]. Disjunctive invariants express the semantics of conditional statements

and, thus, capture path-sensitive reasoning, such as those found in most sorting

and searching tasks. At its heart, DIG interprets nonlinear polynomial formulas as

convex geometric objects in high-dimensional space, such as hyperplanes and poly-

hedra. This representation allows the tool to employ mathematical techniques, e.g.,

equation solving and convex hull constructions, to dynamically generate conjunctive

polynomial invariants. To identify a class of disjunctive polynomial invariants, DIG

represents these relations as non-convex geometric objects using the non-standard

�max-plus� and �min-plus� algebras. For e�ciency, DIG also supports simpler forms

of invariants expressible using more restricted geometric shapes such as octagons.

Most dynamic methods have no guaranteed results; however, geometric reasoning

ensures that DIG does not overapproximate the true program invariants if they are

expressible using the supported forms. Finally, by checking candidate results with a

custom k-inductive SMT theorem prover, DIG removes spurious results and produces

4



Chapter 1. Introduction

only true invariants.

DIG also discovers complex array properties, such as nested relations among

multidimensional array variables, that appear in many practical applications. For

example, over one half of the required invariants in a real-world AES (Advanced

Encryption Standard) implementation involve relations among multidimensional ar-

rays. We �rst formalize the problem of �nding nested array relations and show its

relationship to the problem of decomposing functions. We then prove that both

problems can be solved in polynomial time in the number of array elements, but

are NP-complete in the number of arrays or functions involved. Such theoretical re-

sults establish the run-time complexity of the array nesting and function composition

problems and suggest directions to develop algorithms for solving them. To imple-

ment algorithms for �nding array relations, DIG employs equation solving, performs

reachability analysis, and then encodes the problem as a satis�ability query that

can be handled using an SMT solver. The integration of equation and SMT solvers

allows e�cient analysis of complex array properties, such as those in AES, that have

not been previously considered by either static or dynamic methods.

1.2.2 Program Repair

Program reachability, which decides if a program location is reachable, is a formula-

tion of program veri�cation that checks for the absence of program errors. Template-

based program synthesis, which constructs programs under pre-speci�ed forms to

meet a required speci�cation, is a practical approach to synthesizing programs. We

present a constructive proof that program reachability and template-based program

synthesis are equivalent. We encode a synthesis problem into a program consisting

of a special location, reachable only when code could be generated for the synthesis

problem. Conversely, we show that a reachability query can be reduced to a syn-

thesis task such that a successful synthesis indicates the reachability of the targeted

5



Chapter 1. Introduction

location. These results demonstrate a link between the two sub�elds and, thus, allow

exchange and combination of knowledge between them.

Based on these ideas, we develop CETI (Correcting Errors using Test Inputs),

a tool for automated synthesis using test input generation techniques that solve

reachability problems. CETI transforms a buggy program and its required speci�ca-

tion into a speci�c program containing a location reachable only when the original

program can be repaired. The transformed program is then used as input to an

o�-the-shelf test input generation tool to �nd test values that can reach the desired

location. Those test values correspond exactly to repairs for the original program.

Experimental case studies suggest that CETI has higher success rates than many

other standard approaches.

1.3 Organization

The rest of this dissertation is structured as follows. Chapter 2 provides an overview

of program veri�cation and synthesis, focusing on the state of the art in automatic

invariant generation, program repair, and test input generation. Chapters 3, 4, and 5

comprise the main research contributions of the dissertation. Chapter 3 presents the

invariant analysis tool DIG and describes its geometric approach to �nding poly-

nomial invariants and its use of k-induction theorem proving to verify candidate

invariants. Chapter 4 establishes the theoretical framework of function composition

and array nesting problems, and then evaluates implementation techniques in DIG

to �nd array invariants. Chapter 5 connects the program veri�cation and synthesis

problems and leverages this connection to develop the automatic repair tool CETI.

Chapter 6 suggests future directions and o�ers concluding remarks.

Parts of the research on polynomial invariants in Chapters 3 and 4 have been

published as conference papers [Nguyen et al., 2012, 2014b], which were presented

6



Chapter 1. Introduction

at the International Conference on Software Engineering in 2012 and 2014, respec-

tively. A journal version [Nguyen et al., 2014a] of Chapters 3 and 4 is in press in the

Transactions on Software Engineering and Methodology. The work on program syn-

thesis and repair, described in Chapter 5, corresponds to a conference paper [Nguyen

et al., In submission], which was recently submitted to the Symposium on the Foun-

dations of Software Engineering. These papers were co-written with Deepak Kapur,

Stephanie Forrest, and Westley Weimer. The uses of �we�, �our�, and �us� in this

dissertation refer to all four authors.

7



Chapter 2

Background and Related Work

�The history of mankind is the history of ideas.� � Luigi Pirandello1

This chapter contains the background information of program veri�cation and

synthesis. We �rst provide an overview of the research done in these areas, focusing

on invariant generation as an approach to verifying programs and program repair

as an application of program synthesis. We then review the state of the art in the

sub�elds of automatic invariant inference, program repair, and test input generation.

2.1 Program Veri�cation

Program veri�cation aims to automatically check that a computer program satis�es

a given speci�cation or formal property. Typically, formal properties are expressed

using logical formulas encoding correctness or safety requirements, such as �the imple-

mentation of the cosine function returns values between −1 and +1� or �the program

does not produce bu�er-over�ow errors.� The two main approaches to verifying pro-

1Italian short-story writer, dramatist, and novelist, who was awarded the Nobel Prize in
Literature in 1934 for his �bold and brilliant renovation of the drama and the stage,� (1867
� 1936).
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Chapter 2. Background and Related Work

grams are static, which examines the program using its static representation, e.g.,

the program code, and dynamic analysis, which learns about the program by running

it on sample inputs. There are also many fruitful combinations of static and dynamic

analyses, i.e., hybrid approaches.

2.1.1 Static and Dynamic Program Analysis

Programs can be studied using static analysis, which inspects the program code with-

out executing the program. Some static methods associate mathematical meanings

to programs to analyze them formally and, thus, achieve sound results on all pos-

sible program behaviors. These formal methods for program veri�cation have been

used to validate safety-critical software. For example, the Astrée [Blanchet et al.,

2003, Cousot et al., 2005] static analyzer has been applied to verify the absence

of run-time errors in both the Airbus A340/A380 avionic systems and the docking

software used in vehicles transporting payloads to the International Space Station.

Moreover, industrial hardware and software manufacturers such as IBM, Intel and

Microsoft have been developing and employing formal veri�cation tools to improve

the quality of their products [Ball et al., 2004, Kaivola et al., 2009, Schubert et al.,

2011, Woodcock et al., 2009].

Formal static analysis can produce sound results, but it is computationally ex-

pensive and often does not scale up to complex programs. In contrast, dynamic

analysis learns about programs from traces gathered from program executions over

sample inputs. The accuracy of these results depends on the quality and complete-

ness of the test inputs. However, by focusing on �nite program traces, dynamic

analysis is generally e�cient and scales well to large programs. For these reasons,

dynamic methods have received considerable attention in practice. An oft-quoted

rule of thumb is that at least �fty percent of a commercial software project's budget

is devoted to dynamic methods for testing software.
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The major methods for formal program veri�cation are model checking and theo-

rem proving. The primary method for dynamic program checking is software testing.

• Model Checking. Given a model of a program, a model checker exhaustively

checks if all reachable states of the model satisfy a property. If the prop-

erty is not satis�ed, the checker returns useful information for debugging, e.g.,

input values (counterexamples) that cause the violation. The approach, intro-

duced by Clark and Emmerson [Clarke et al., 1986, 1999], has been applied

successfully to many medium-sized �nite-state programs, e.g., hardware de-

signs or communication protocols [Bryant, 1986, Carbonell, 2006]. However,

the method faces the state explosion problem, an exponential growth in state

space when dealing with larger programs such as typical imperative programs

with in�nite states. To cope with this problem, model checking often employs

approximations such as bounding the number of loop iterations [Biere et al.,

1999] or representing large programs using smaller �nite-state models [Clarke

et al., 1994].

• Theorem Proving. A way to overcome the aforementioned state-explosion prob-

lem is to encode a program and a required property into a veri�cation condition,

i.e., a logical formula whose validity implies the correctness of the program with

respect to the property. For imperative programs, formal rules from Floyd-

Hoare logic [Floyd, 1967, Hoare, 1969] are often used to generate veri�cation

condition formulas. These formulas are then validated using a constraint solver

such as a SAT (satis�ability) or SMT (Satis�ability Modulo Theories) solver2.

Recent advances in constraint solving (also referred to as automatic theorem

proving) allow for the e�cient and automatic veri�cation of complex formu-

2SAT solvers [Eén and Sörensson, 2004, Moskewicz et al., 2001] determine the satis�-
ability of formulas with boolean values while SMT solvers [De Moura and Bjørner, 2008,
Dutertre and de Moura, 2006] operate on expressive formulas involving numerical variables
or data structures such as lists and arrays.
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las [Jovanovi¢ and De Moura, 2012]. However, this approach is not entirely

automatic because the Floyd-Hoare method requires the user to annotate the

program with asserted properties at various program locations, e.g., properties

of loops and pre-/post-conditions of functions in the program.

• Dynamic Software Testing. In contrast to formal methods that verify a program

using a formal speci�cation, this dynamic approach tests a program using a

test-suite or input-output speci�cation, i.e., a set of �nite pairs of inputs and

expected outputs of the program. The process involves running the program on

the test inputs and comparing the results to expected outputs de�ned by the

programmer or by a reference program that is known to be correct. The results

can also be examined to show presence of certain types of fatal errors such

as division by zero and null-pointer dereferencing. Testing is the traditional

and most popular approach to �nding program defects before the software is

deployed. However, as noted by Dijkstra that �testing can be used to show the

presence of bugs, but never to show their absence� [Dahl et al., 1972], testing

easily leaves bugs because it can observe only a limited number of program

behaviors from �nite tests.

The demand for good test inputs leads to research interests in test input gen-

eration, an active software testing �eld that aims to create high-coverage test

inputs to �nd deep errors in complex software. Test inputs can be generated

using both static and dynamic methods, e.g., concolic testing [Burnim and Sen,

2008, Cadar et al., 2008a, Sen and Agha, 2006] combines static and dynamic

analyses to create program path constraints that can be solved for inputs exe-

cuting those program paths. Essentially, these test input generation techniques

can be viewed as heuristics for solving the program reachability problem [Ab-

dulla and Potapov, 2013] that checks if a particular program state containing

an error is reachable. We review the state of the art in test input generation

in Section 2.3.2.
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2.1.2 Invariant Generation

A property met at a program location on every program execution is called an invari-

ant property of that program location. For example, a loop invariant is a property

that must hold when entering a loop. Program invariant generation aims to au-

tomatically discover invariant properties at certain program locations. Generated

invariants are typically used to automate and guide formal program veri�cation pro-

cesses. For example, theorem proving techniques based on Floyd-Hoare logic can use

discovered properties such as loop invariants to prove correctness of programs. Model

checkers can employ invariants to prune the search space and reduce the state explo-

sion problem. Program correctness can also be veri�ed with invariants, by generating

su�ciently strong invariants to imply the required property. In addition to program

veri�cation, invariants are useful in other phases of programming, including docu-

mentation, design, coding, testing, debugging, optimization, and maintenance [Ernst,

2000, Kataoka et al., 2001, Perkins et al., 2009]. In short, discovering invariants is

critical for both program veri�cation and general software development [Ernst et al.,

2007, Jones et al., 1993, Karr, 1976], and it has been an active research area since

the 1970s [Dershowitz and Manna, 1978, German and Wegbreit, 1975, Karr, 1976,

Katz and Manna, 1976, Suzuki and Ishihata, 1977, Wegbreit, 1974].

The main approaches to statically and dynamically generating invariants are

abstract interpretation and dynamic invariant inference, respectively.

• Abstract Interpretation. The abstract interpretation framework, introduced by

P. Cousot and R. Cousot [Cousot and Cousot, 1976, 1977, Cousot and Halb-

wachs, 1978], automatically computes an invariant property that abstracts or

overapproximates the set of (potentially in�nite) reachable program states. The

method starts from a weak invariant representing an initial approximation and

gradually improves the invariant based on the structure of the program until no
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more improvements can be made (a �xed point). The resulting invariant is then

used to prove the absence of errors: if the overapproximation of the reachable

states does not intersect the set of bad states, then the program is guaranteed

to never reach a bad state, and thus, is safe. Abstract interpretation, with the

capability of handling in�nite-state programs automatically, has been employed

to verify mission-critical systems such as the Airbus avionic systems [Cousot

et al., 2005]. However, the abstraction process can lead to loss of information

and produce false positives, i.e., the analysis may detect an error that does not

actually exist. Thus, a major research direction in this area is to �nd abstract

domains that can be implemented e�ciently and are su�ciently expressive to

retain key information from the original program. Techniques implementing

abstracting interpretation also need to design an appropriate widening heuris-

tic operator for fast convergence and termination [Cortesi, 2008, Cortesi and

Zanioli, 2011, Cousot and Cousot, 1992].

• Dynamic Invariant Inference. A dynamic invariant detector [Ernst, 2000, Ernst

et al., 2007, Perkins and Ernst, 2004] is typically initialized with a pre-de�ned

collection of invariant templates postulated to be useful and likely to occur in

programs. The detector �lters out invalid templates based on observed pro-

gram traces and returns the remainders as candidate invariants. Depending on

the completeness of given traces, dynamic invariant analysis can produce spu-

rious invariants that match some observations, but are not sound with respect

to general program behaviors. Moreover, the approach has limited support for

invariants that are inexpressible using the pre-de�ned templates. Examples of

such invariants include general polynomial relations over numerical variables

and properties of the array data structure. However, dynamic invariant tech-

niques are generally e�cient and scale well to large programs. Recently, for

example, dynamically generated invariants have been used to prevent security

attacks in Mozilla Firefox [Perkins et al., 2009].
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The above classi�cation of static and dynamic program analyses does not im-

ply that these approaches are mutually exclusive. In fact, there has been fruitful

cross-fertilization leading to hybrid methods such as the aforementioned �concolic�

testing method to create program inputs. In this dissertation, we combine static

and dynamic analyses to create sound and e�cient techniques to generate expressive

program invariants.

2.2 Program Synthesis

Program synthesis, which aims to automatically generate a program to meet a given

speci�cation [Manna andWaldinger, 1980, Srivastava et al., 2013], has been a �dream�

of programming research since the 1960s [Manna and Waldinger, 1979, Solar-Lezama,

2008] and was considered by Pnueli in 1989 as �one of the most central problems in

the theory of programming� [Pnueli and Rosner, 1989]. By construction, automated

synthesis creates programs that are provably correct with respect to given speci�ca-

tions, relieving the tedium and error associated with low-level programming details

and pushing the problem of correctness to the speci�cation level. Moreover, syn-

thesis could discover new non-trivial programs that are di�cult for programmers to

build [Srivastava et al., 2010]. In general, the goal of synthesis is that the user should

be able to tell the computer what to do and let the synthesizer discover how to do

it correctly and e�ciently.

Despite the promise of signi�cantly easing programming and veri�cation, less

research e�ort has been directed toward synthesis in comparison to program veri�-

cation. Fully automatic synthesis is notoriously di�cult, as Manna and Waldinger

pointed out in 1979 that �programming is one the most demanding of human activi-

ties, and is among the last tasks that computers will do well� [Manna and Waldinger,

1979]. Researchers in the �eld realized that a synthesizer is unlikely to have the �intu-

ition� to discover algorithms and implementation techniques whose original discovery
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had challenged the ingenuity of the brightest minds in the �elds. Consequently, prac-

tical synthesis approaches incorporate human insights to guide the synthesis process.

Indeed, the success of synthesis depends on a proper synergy between the user and

the synthesizer.

2.2.1 Deductive and Template-based Synthesis

Two well-known program synthesis approaches are deductive synthesis, which gener-

ates a program from a constructive proof of a given speci�cation, and template-based

synthesis, which automatically synthesizes partial programs from given templates.

• Deductive Synthesis. This method, pioneered by Manna and Waldinger [Manna

and Waldinger, 1980, 1971], extracts a program from the satis�ability proof of

a formula encoding the required speci�cation, e.g., ∀x. ∃y. pre(x)⇒ post(x, y),

where x and y are the input and expected output from a given test-suite speci�-

cation. The synthesizer iteratively applies deductive rules to prove the formula

and generates concrete program constructs corresponding to the proof rules.

For example, a case split rule in the proof leads to a conditional branch and

an induction rule leads to program loops. Deductive synthesis is not auto-

matic because it involves the user's assistance in the proof process. However,

with proper human-assistance, the method can be powerful and practical. For

example, it has been used to synthesize an adaptive network protocol from

formal speci�cations [Bickford et al., 2001] and an airlift scheduler for the Air

Force [Emerson and Burstein, 1999].

• Template-based Synthesis. Template-based synthesis [Solar-Lezama, 2008, Sri-

vastava, 2010, Srivastava et al., 2013] is a popular approach to generating codes

automatically for partially complete programs. To reduce the search space, the

approach creates code from speci�c templates instead of attempting to generate
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arbitrary code. A synthesis template expresses speci�c forms of program con-

structs, but it also includes template parameters representing low-level details

to be �lled in by the synthesis process. The synthesizer �rst maps the synthe-

sis templates and the required speci�cation into a logical formula, and it then

applies a constraint solver to �nd values for the parameters that satisfy the for-

mula. Instantiating the synthesis templates with those values yields a complete

program meeting the required speci�cation. Template-based synthesis has been

applied to create various sorting and geometric algorithms [Solar-Lezama, 2008,

Srivastava et al., 2013]. Recently, it has been employed to synthesize patches

to �x program errors [Könighofer and Bloem, 2013, Nguyen et al., 2013].

2.2.2 Program Repair

Program repair is a form of program synthesis that aims to automatically modify a

program failing a given speci�cation so that it passes that speci�cation. Automatic

program repair has tremendous value because debugging continues to be a mostly

manual, time-consuming, and, thus, expensive task in software development and

maintenance. For example, developers take 28 days on average to address security-

critical defects and new general defects are reported faster than developers can handle

them [Turner et al., 2006]. This has driven automatic repair tools to leverage cheap

and abundant computer cycles to reduce costs and the burden on developers. Since

automated program repair was demonstrated on real-world problems in 2009, interest

in the �eld has grown steadily with multiple novel repair techniques proposed.

Two main approaches to program repair are generate-and-validate, which cre-

ates multiple candidate repairs and checks them against given speci�cations, and

constraint-based repair, which generates correct-by-construction repairs.

• Generate-and-validate. Given a program that has an error, which violates a
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test-suite speci�cation consisting of inputs and expected outputs, this method

�rst localizes the error to a small code region, then generates multiple re-

pair candidates (e.g., using stochastic search) for the suspicious code region,

and �nally validates these candidates against the speci�cation. Genetic algo-

rithms are a well-known search method that has been successfully employed to

�nd repairs for complex applications. A genetic algorithm-based repair tech-

nique [Weimer et al., 2009] searches for repairs using genetic operators includ-

ing deleting existing program statements and inserting or swapping statements

from other parts of the program. To reduce the search space, the technique con-

structs repairs only from extant code and, thus, lacks the ability to introduce

new code, which might be necessary to repair programs.

Instead of using genetic algorithm, other techniques apply random mutations

on repair templates to create repairs of speci�c forms [Debroy and Wong, 2010,

Kim et al., 2013]. Some techniques employ dynamically inferred invariants to

help guide the repair process, e.g., deriving repairs that minimize di�erences

between expected and unexpected invariants mined from passing and failing

program runs [Dallmeier et al., 2009, Perkins et al., 2009, Wei et al., 2010].

• Constraint-based Repair. This approach applies template-based program syn-

thesis to automatic program repair [Bloem et al., 2013, Gopinath et al., 2011,

Jin et al., 2011, Nguyen et al., 2013]. Once the defect has been localized to

a speci�c code region, the synthesizer replaces statements in that region us-

ing synthesis templates. Next, the synthesizer applies symbolic or concolic

execution techniques to encode the program with synthesis templates and its

required speci�cation into a satis�ability formula. Finally, the synthesizes em-

ploys a constraint solver to �nd values that satisfy the formula. These values

correspond to repairs to the original buggy program, allowing it to satisfy the

given speci�cation. Several studies have shown that constraint-based repair

has higher success-rate than genetic algorithm-based techniques and produces
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program repairs faster [Bloem et al., 2013, Nguyen et al., 2013].

There has been more research on program veri�cation than on program synthesis,

even though both are long-standing problems in computer science research. In this

dissertation, we prove that certain formulations of the veri�cation and synthesis

problems are equivalent, and this connection creates opportunities for collaboration

between researchers in these �elds. To demonstrate the connection, we develop a

technique for automatic program repair using an o�-the-shelf test input generation

tool.

2.3 Related Work

This research focuses on using invariants to verify programs and using test input gen-

eration techniques to synthesize program repairs. In this section, we review related

work in automatic invariant inference, program repair, and test input generation.

We also highlight the main di�erences among these techniques and those developed

in this dissertation.

2.3.1 Invariant Generation

As mentioned in Section 2.1.2, the main static and dynamic approaches to invariant

generation are abstract interpretation and dynamic invariant inference, respectively.

Some work, including our invariant detection tool DIG introduced in Section 1.2,

combine both static and dynamic analyses to e�ciently discover sound and expressive

program invariants.

Static Invariant Inference

Rodríguez-Carbonell et al. [Carbonell, 2006, Rodríguez-Carbonell and Kapur, 2007]

provide an abstract interpretation framework to generate conjunctions of nonlinear
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polynomial equalities. They �rst observe that a set of polynomial invariants forms

the algebraic structure of an ideal, then compute the polynomial invariants using

Gröbner basis and operations over the ideals, based on the structure of the program

until reaching a �xed point. The technique can analyze precisely only programs with

assignments and loop guards that are expressible as polynomial equalities. To ensure

termination when analyzing programs with nested loops, the method uses a widen-

ing operator that pre-speci�es an a priori bound on polynomial degrees. Related

work [Carbonell and Kapur, 2007] from the same authors removes the requirement

for upper bounds on polynomial degrees but is restricted to programs with non-nested

loops. These techniques do not support the conjunctive inequalities, disjunctive poly-

nomial relations, or array invariants considered in this dissertation.

Allamigeon et al. [Allamigeon, 2009, Allamigeon et al., 2008] use abstract inter-

pretation to approximate disjunctive program properties under the max and min-plus

domains. The method �rst computes a formula representing an initial approximation

of the program state space and gradually improves that approximation based on the

program structure until a �xed point is reached. In addition, the method uses an

ad hoc widening operator to ensure termination similar to other abstract interpreta-

tion approaches for inferring disjunctive invariants such as [Popeea and Chin, 2007,

Sankaranarayanan et al., 2006].

Recent static analysis work by Kapur et al. [Kapur et al., 2013] uses quanti�er

elimination, rather than abstract interpretation, to produce sound loop invariants

using the octagonal [Miné, 2006] and max-plus forms Allamigeon [2009]. The tech-

nique uses table look-ups to modify geometric objects representing invariant relations

based on the program structure, e.g., to determine how an inequality is changed after

an assignment a = a + 10. The tabular approach has a lower theoretical time com-

plexity than traditional abstract interpretation for certain forms of invariants, e.g.,

octagonal inequalities. Currently, this work focuses on speci�c program constructs

19



Chapter 2. Background and Related Work

for e�ciency. For example, the analysis supports assignments and guards that are

restricted to linear expressions.

A high-level di�erence between DIG and these static techniques is that DIG fo-

cuses on inferring invariants dynamically from program traces. However, our work on

polynomial invariants is inspired by abstract interpretation, and thus, DIG supports

and extends many forms of polynomial relations that are considered by static meth-

ods, e.g., octagonal inequalities, nonlinear inequalities, and disjunctive relations. We

also introduce additional forms of polynomial invariants, e.g., the weak max-plus re-

lations, that allow static techniques to be practically applied to more general classes

of programs. To achieve sound results, we augment dynamic analysis with theorem

proving, which veri�es candidate invariants statically against the program code.

Dynamic Invariant Inference

Daikon, the canonical example of dynamic invariant analysis developed by Ernst

et al. [Ernst, 2000, Ernst et al., 2000a, 2001, 2007, Perkins and Ernst, 2004], infers

candidate invariants from traces and templates. By default, Daikon reports invariants

at the entry and exit points of functions, although it is possible to extract invariants

from other locations by manual instrumentation. Daikon provides a large list of

assorted invariant templates that are considered to be useful to programmers, but

it also supports user-supplied invariants. For polynomial relations, the tool can �nd

linear relations over at most three variables, e.g., x + 2y − 3z + 4 = 0, and has a

small number of �xed nonlinear templates such as x = y2. Daikon can �nd simple

disjunctive information using �splitting� conditions [Ernst et al., 2000b]. Given a

predicate c, Daikon �rst obtains the invariants a and b when c and ¬c are true,

respectively, and it then combines these results to yields the disjunctive invariant

if c then a else b. Relations among arrays have limited support in Daikon, e.g.,

the relations A[i] = B[C[i]], A[i] = 2B[i] + C[5] + 7 are not considered.
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There is related work on dynamic methods for �nding invariants for debugging,

e.g., the detected properties are used to �nd certain type of errors. The Diduce

tool analyzes what happens when an error occurs by examining the di�erences be-

tween previous and current values of variables [Hangal and Lam, 2002]. Statistical

debugging [Liblit et al., 2005], a fault localization technique, looks for relations, e.g.,

{<,=, >}, between two variables or a variable and a constant. The Spin model

checker can also �nd relations over two variables [Vaziri and Holzmann, 1998]. In

general, these approaches �nd invariants that are relatively simple compared to those

provided by Daikon.

DIG considers more general forms of polynomial and array invariants than those

supported by Daikon and the other dynamic approaches. Instead of using traces to

�lter out pre-de�ned templates, DIG applies geometric techniques to compute poly-

nomial relations directly from program traces, and thus, it can capture more precise

invariants. Moreover, the nonconvex geometric algorithm presented in Chapter 3

does not depend on manually-provided splitting conditions and generates powerful

disjunctive invariants directly from traces. DIG also supports complex array proper-

ties, such as the nested form of array relation introduced in Chapter 4, that are not

considered by the other static or dynamic invariant approaches.

Hybrid of Static and Dynamic Analyses

Nimmer and Ernst [Nimmer and Ernst, 2001] integrate Daikon with the ESC/Java

static checker framework [Flanagan et al., 2002], allowing them to validate candidate

invariants using Floyd-Hoare logic. This work is very similar in motivation and archi-

tecture to DIG. Key di�erences include: DIG detects richer forms of invariants, e.g.,

disjunctive invariants; DIG veri�es invariants with respect to full program correct-

ness (�rather than proving complete program correctness, ESC detects only certain

types of errors� [Nimmer and Ernst, 2001, Sec. 2]), and DIG's empirical evaluation
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(Section 3.6) shows that it proves over four times as many non-redundant invari-

ants valid and considers over four times as many benchmark kernels as Daikon and

ESC/Java).

Recently, Sharma et al. [Sharma et al., 2013a] combine dynamic and static analy-

ses to detect sound equality invariants in program loops. They �rst use the algorithm

developed in Section 3.2.1 and published in [Nguyen et al., 2012] to compute polyno-

mial equalities from traces, and they then apply SMT solving to verify the candidate

invariants. Counterexamples to candidate invariants are iteratively used to produce

new traces to generate better candidate invariants. They prove that the candidate

equalities are sound and that the approach terminates after a �nite number of it-

erations. This technique does not support inequalities or disjunctive polynomial

relations. An interesting area of future work would be extending this technique to

include inequality and disjunctive invariants generated by DIG, which also can be

checked for satis�ability using SMT solvers.

Sharma et al. [Sharma et al., 2013b] propose an approach based on machine

learning to �nding disjunctive polynomial invariants. The method operates on traces

representing good and bad program states: good traces are obtained by running the

program on random inputs and bad traces correspond to runs on which an assertion

or post-condition is violated. They use a probably approximately correct machine

learning model [Valiant, 1985] to �nd candidate invariants expressed as a predicate,

which separates the good and bad traces. For e�ciency, they restrict attention to

the octagon domain and search only for predicates that are arbitrary boolean combi-

nations of octagonal inequalities. Finally, they use induction to check the candidate

invariants with an SMT solver. While we share their focus on disjunctive invariants,

a key di�erence between their work and ours is their results depend on existing an-

notated program assertions. By contrast, we do not make such assumptions about

the input program, and DIG generates these assertions automatically.
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Uses of k-induction

The above methods from Nimmer et al. and Sharma et al., as well most work using

Floyd-Hoare logic, employ the standard technique of mathematical induction to ver-

ify detected invariants against program code. Chapter 3 presents a custom theorem

prover called KIP (k-Inductive Prover), which based on k-induction, a stronger form

of induction. We use KIP to prove dynamically inferred invariants (Section 3.5). The

application of k-induction is becoming popular for proving invariants represented by

logical formulas that may not admit standard induction. For example, Sheeran et

al. apply k-induction to verify hardware designs using SAT solvers [Sheeran et al.,

2000]; the PKIND model checker of Kahsai and Tinelli [Kahsai and Tinelli, 2011,

Kahsai et al., 2011] uses k-induction and SAT/SMT solvers to verify synchronous

programs in the Lustre language; and recently, Donaldson et al. [Donaldson et al.,

2011] apply k-induction to imperative programs with multiple loops.

A main distinction between the design of KIP and these approaches is that KIP

o�ers four of the properties (SMT, lemma learning, redundancy elimination, and

parallelism), which we found were critical for e�ciently verifying large numbers of

candidate invariants over programs with complex properties, such as nonlinear arith-

metic. Moreover, we note that the programs and candidate invariants evaluated in

Chapter 3 could serve as a benchmark suite for the evaluation of such theorem provers

because they include hundreds of valid and invalid formulas involving nonlinear arith-

metic, many of which are k-inductive.

2.3.2 Program Repair and Test Input Generation

A key contribution of this dissertation is the equivalence theorem presented in Chap-

ter 5 between the reachability formulation of program veri�cation and template-based

synthesis. This result allows automatic program repair and synthesis approaches to
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take advantage of powerful, o�-the-shelf test input generation tools that �nd inputs

to reach certain program locations. For example, the repair tool CETI described in

Chapter 5 applies the symbolic execution tool KLEE [Cadar et al., 2008a] to generate

test inputs that map directly to program repairs. In this section, we review the state

of the art in automatic program repair and test input generation.

Automatic Program Repair

Due to the pressing demand for reliable software, automatic program repair has

steadily gained research interests and produced many novel repair techniques. Syn-

thesis repair methods generate constraints and solve them to produce patches that

are correct by construction, i.e., guaranteed to adhere to a speci�cation or pass a

test suite. For example, AFix generates correct �xes speci�cally for single variable

atomicity violations [Jin et al., 2011]. Gopinath et al. [Gopinath et al., 2011] encode

a buggy program and its speci�cation into a constraint, which is solvable using a SAT

solver. SemFix uses symbolic execution to create repair constraints with templates

and solve them to produce program repairs [Nguyen et al., 2013]. The FoREn-

SiC project employs several template-based repair techniques including concolic ex-

ecution [Könighofer and Bloem, 2013], equivalence-based checking [Könighofer and

Bloem, 2013], and counterexample guided re�nement [Bloem et al., 2013, Könighofer

and Bloem, 2011]. Jobstmann et al. [Jobstmann et al., 2005] model the task of re-

pairing a program with LTL speci�cations as a game and uses a model checker to

�nd a winning strategy corresponding to a success repair.

In contrast, generate-and-validate repair approach generates multiple repair can-

didates using stochastic search, and veri�es them against given speci�cations. For

example, GenProg [Forrest et al., 2009, Le Goues et al., 2012, Le Goues et al., 2012,

Nguyen et al., 2009, Weimer et al., 2009, 2010] employs genetic programming to mod-

ify suspicious code regions. Debroy and Wong [Debroy and Wong, 2010] produce new
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program variants by applying mutation operators to suspicious program expressions.

PAR [Kim et al., 2013] leverages human expertise to repair programs by applying

common repair patterns learned from human-created patches. Several techniques

capture program behaviors (invariants) at run time to guide the repair process. For

example, Pachika derives repairs by analyzing di�erences between expected and un-

expected behaviors mined from passing and failing program runs [Dallmeier et al.,

2009]; Clearview detects invariants from program runs to identify errors and cre-

ates binary repairs satisfying desired program invariants [Perkins et al., 2009], and

AutoFix-E extracts invariants from program runs and exploits Ei�el program con-

tracts to create candidate repairs [Wei et al., 2010].

Test Input Generation

The sub�eld of test input generation has produced many practical techniques to

generate high coverage test data for complex software. Fuzz testing techniques [For-

rester and Miller, 2000, Miller et al., 1990] create test values by randomly mutating

well-formed inputs of a program. Concolic execution approaches combine dynamic

and static analyses to generate program constraints that can be solved with a SAT or

SMT constraint solver. The DART [Godefroid et al., 2005], CUTE/jCute [Sen and

Agha, 2006], and CREST [Burnim and Sen, 2008] techniques combine random testing

and symbolic execution to generate test inputs for C and Java programs. CUTE and

jCute in particular can �nd test inputs and thread schedules for multithreaded pro-

grams. EXE [Cadar et al., 2008b] and KLEE [Cadar et al., 2008a] perform concrete

and dynamic execution, model memory, and employ a variety of constraint solving

optimizations to achieve high code coverage. These two tools are designed for testing

complex systems software, such as network servers, �le systems, device drivers and

library code. Microsoft developed SAGE [Godefroid et al., 2008] to discover bugs

in x86 binaries and PEX [Tillmann and de Halleux, 2008] as an add-in tool for the

Visual Studio .NET framework. Other organizations, such as NASA [Anand et al.,
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2007], IBM [Artzi et al., 2008], and Fujitsu [Li et al., 2011] have also developed test

input generation tools. Software model checkers such as BLAST [Beyer et al., 2007]

and SLAM [Ball and Rajamani, 2002] are also applicable to generating test inputs by

representing them as counterexamples that violate program correctness properties.
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Chapter 3

Polynomial Invariants

�Where there is matter, there is geometry.� � Johannes Kepler1

The following chapters present the research results of this dissertation. This

chapter and the next are devoted to the topic of invariant generation. This chapter

covers the generation and veri�cation of polynomial invariants using geometric con-

cepts, while Chapter 4 focuses on the generation of array invariants. Parts of this

chapter have been published previously in [Nguyen et al., 2012, 2014a,b].

3.1 Introduction

A polynomial is an algebraic expression of the form c0t1 + · · · + cntn, where each

coe�cient ci is either real-valued and each monomial ti is a single variable with a

non-negative exponent or a product of variables, each with non-negative exponents.

Polynomial relations, such as equalities and inequalities among polynomials, are

important throughout mathematics and science. Two famous polynomial equations

1German mathematician, astronomer, and astrology, who is best known for the laws of
planetary motion (1571 � 1630).
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include the Pythagorean theorem for right triangles x2 = y2 + z2 and Einstein's

famous mass-energy relationship e = mc2.

In computer science, polynomial relations among numerical program variables

appear in many computer algorithms and applications. For example, the gcd of x, y is

nx+my, and the location of the chosen pivot in a binary search is l+u ≥ 2p ≥ l+u−1.

Polynomial relations can also be used to model pointer/array arithmetic and other

memory related properties in programming languages like C [Cousot et al., 2005].

Thus, many algorithms for checking bu�er over�ow errors and memory leaks in

C programs require reasoning over polynomial relations [Allamigeon, 2009, Miné,

2004]. For these reasons, polynomial relations are often considered by both static

and dynamic invariant techniques. In fact, the main research focus of the abstract

interpretation framework introduced in Chapter 2 is on �nding di�erent forms of

polynomial invariants.

The form of a polynomial invariant, e.g., the type of relations among the poly-

nomials, determines the information the invariant captures and suggests its compu-

tational complexity. Important forms of polynomial invariants include the type of

polynomials, the relation among polynomials, and the boolean connection among

formulas representing polynomial relations.

• Type of Polynomial. The degree of a monomial in a polynomial is the sum

of the exponents of the variables appearing in that monomial. The degree

of a polynomial is the highest degree of its monomials, e.g., the polynomial

2x3y4 +y5 +9 has degree 7. A polynomial is linear if its degree is 1 and is non-

linear if the degree is ≥ 2. Linear relations are used in several classical data

�ow analysis techniques, including constant propagation, copy propagation,

and common subexpression elimination [Gulwani, 2005]. Nonlinear relations

are more complex, but appear in many scienti�c, engineering, and safety-critical

applications. For example, the commercial static analyzer Astrée mentioned
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in Chapter 2 implements the ellipsoid abstract domain to represent and ana-

lyze a class of quadratic inequality invariants.2 Nonlinear invariants have also

been found useful in the analysis of hybrid systems [Roozbehani et al., 2005,

Sankaranarayanan et al., 2005].

• Relational Operator. Equality (=) and inequality (≥) are two widely used forms

of polynomial relations. Most constraint solving problems focus on �nding

values for variables that satisfy a given set of polynomial equalities and/or

inequalities. Linear equations can be solved e�ciently in polynomial time using

a standard Gaussian elimination technique [Farebrother, 1988]. The problem

of linear optimization (programming), which �nds the best values satisfying

a set of linear inequalities, is often handled using exponential-time techniques

such as Simplex [Cormen et al., 2001, Nelder and Mead, 1965] and Fourier-

Motzkin [Dantzig, 1998, Dantzig and Curtis Eaves, 1973].

• Boolean Connection. Polynomial invariants are commonly represented using

logical formulas using conjunctive or disjunctive forms. A formula in conjunc-

tive form is a conjunction or a set of polynomial relations, e.g., a = b ∧ x = y.

Most abstract interpretation techniques rely on convex geometry to generate

conjunctive polynomial relations. In contrast, a disjunctive formula is a dis-

junction of polynomial relations, e.g., a = b ∨ x = y. Disjunctive invariants,

which represent the semantics of program branching, are crucial to many pro-

grams such as sorting and searching algorithms. However, these invariants

are more di�cult to analyze because general disjunctive forms of polynomial

relations are not expressible using classical convex shapes.

Existing invariant approaches usually do not achieve soundness, e�ciency, and

expressive power simultaneously. Sound and e�cient static approaches target rel-

2The ellipsoid domain [Feret, 2004] for this case is expressed by the quadratic form
x2 + axy + y2 ≥ k where 1 > b > 0 and 4b > a2.
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atively simple invariants, while e�cient dynamic approaches �nd invariants under

restricted templates but are not guaranteed to be sound. For example, the afore-

mentioned Astrée analyzer and Interproc [Jeannet, 2014], a popular static analyzer

that employs di�erent abstract domains, consider only conjunctive polynomial in-

variants, and, thus, lack expressive power. The dynamic tool Daikon reviewed in

Chapter 2 detects only conjunctive linear relations over, at most, three variables and

has limited support for nonlinear polynomials or disjunctive invariants.

In this chapter, we present and evaluate DIG (Dynamic Invariant Generator),

a hybrid invariant analysis tool that e�ciently and correctly generates expressive

polynomial invariants. DIG combines dynamic geometric inference for complex poly-

nomial invariants with static analysis for validating invariants by formal proof. DIG

supports both conjunctive and disjunctive forms of nonlinear polynomials by repre-

senting these relations as geometric objects in high-dimensional space. DIG inter-

prets conjunctive polynomial relations as convex geometric shapes such as hyper-

planes and polyhedra. DIG represents certain forms of disjunctive relations, which

are not expressible using classical convex polyhedra, as convex polyhedra in the non-

standard max - and min-plus algebras. Finally, by verifying candidate invariants with

a custom theorem prover against the program code, DIG removes spurious invariants

and returns only true invariants. In short, DIG achieves soundness, e�ciency, and

expressive power simultaneously by leveraging the observation that it is easier to

infer complex candidate invariants dynamically and verify them statically.

In the remainder of this section, we provide a motivating example, present an

overview of DIG, and list our contributions to the generation of polynomial invariants.

3.1.1 Motivating Example

We use an example program to highlight the important insights underlying DIG and

to motivate key design decisions. The cohen program in Figure 3.1 implements the
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def cohen(x, y):

q = 0; r = x

while r >= y:

a = 1; b = y

while r >= 2*b:

[L] a = 2*a; b = 2*b

r = r-b

q = q+a

return q

x y a b q r

15 2 1 2 0 15
15 2 2 4 0 15
15 2 1 2 4 7

...

4 1 1 1 0 4
4 1 2 2 0 4

...

Figure 3.1: Cohen integer division algorithm and its traces at location L on inputs (x =
15, y = 2) and (x = 4, y = 1). From such traces, DIG generates three nonlinear invariants
b = ya, x = qy + r, and r ≥ 2ya.

integer division algorithm by Cohen [Cohen, 1990], which takes as input two integers

x, y and returns the integer q as the quotient of x and y. We consider invariants

at location L, the head of the inner while loop. The table in Figure 3.1 consists of

several sets of trace values from the six variables {a, b, q, r, x, y} in scope at L for

inputs (x = 15, y = 2) and (x = 4, y = 1).

From such traces, DIG identi�es three nonlinear relations b = ya, x = qy+ r, r ≥

2ya. These relations are program invariants that describe precisely the semantics

of the inner while loop in Cohen's algorithm. In particular, the nonlinear equality

x = qy + r asserts that the dividend x equals the divisor y times the quotient q plus

the remainder r.

To obtain these nonlinear invariants, DIG �rst generates terms ti to represent

monomials up to a certain degree over the variables {a, b, q, r, x, y}. For equality

relations, an equation template of the form c1t1 + · · ·+ cntn = 0 is created from the

terms ti. DIG then instantiates the template with the traces from Figure 3.1 to obtain

a set of equations, which the tool then solves for the unknowns ci using a standard

equation solver. This allows DIG to identify the two equations b = ya, x = qy+ r at

location L from the execution traces of cohen. For inequality relations, DIG creates
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INV GENERATOR
polynomial relations

disjunctive relations

�at array relations

nested array relations

Candidate
Invariants

PROVER
k-induction

SMT solving

lemma learning

weak invs pruning

multi processing

Program
Invariants

Program
CodeProgram

Traces

Figure 3.2: An overview of DIG. The generator �nds di�erent types of candidate invariants
from input traces. The prover distinguishes between true and spurious invariants using the
program code.

points from terms using the execution traces, builds a convex hull enclosing the

points, and �nally extracts the facets of the hull. These facets represent inequalities

of the form c1t1 + · · · + cntn ≥ 0 and, thus, allow DIG to obtain inequalities such

as r ≥ 2ya. These nonlinear invariants cannot be discovered by current dynamic

analysis tools such as Daikon and are also challenging for methods based on static

analysis.

3.1.2 Overview of DIG

Figure 3.2 gives an overview of DIG (Dynamic Invariant Generator), an invariant

analysis tool that generates invariants from input traces consisting of values from

numerical or array variables (covered in Chapter 4). First, terms are created to

represent variables whose values are captured in the traces. Depending on the type

of the variables, DIG next generates polynomial relations and/or array relations over

the terms. Finally, DIG uses a theorem prover to remove redundant and incorrect

candidate invariants.
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Nonlinear Terms

DIG uses terms to represent nonlinear properties over program variables and other

information of interest. From a set V of variables and a degree d, a set T of terms is

created to represent monomials up to degree d from V . For instance, the set T of ten

terms {1, r, y, a, ry, ra, ya, r2, y2, a2} contains all monomials up to degree 2 over the

variables {r, y, a}. Nonlinear relations over program variables can now be speci�ed

as linear relations over terms, which allows us to generate nonlinear invariants from

existing techniques for linear constraint solving.

In addition to monomials, the user can manually de�ne terms to capture other

desirable properties, e.g., t1 = r
y
, t2 = ya, t3 = mod(r, 256). Users can also query DIG

for relations among a speci�c set of terms, e.g., only inequalities among {r, y, a2}.

These customizations allow DIG to identify speci�c relations among potentially in-

teresting terms and reduce the overall complexity of the process.

Post-processing

DIG uses three techniques, pruning, �ltering, and static checking, to help remove

redundant and spurious invariants:

• Pruning. To reduce the number of candidate invariants, DIG removes any

invariants that are logical implications of other invariants. For instance, if

both relations x = y and x2 = y2 are found, then DIG suppresses the latter

because it is implied by the former. These redundant invariants arise because

DIG treats each term as an independent variable for the purpose of �nding

nonlinear polynomials. For example, if t1 = x, t2 = y, t3 = x2, t4 = y2 then

x = y implies x2 = y2; however, their corresponding term relations, t1 = t2 and

t3 = t4, have no direct relation. To check an implication, DIG uses an SMT

solver to show the negation of that implication is unsatis�able.
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• Filtering. DIG uses a subset of the random input traces for invariant generation

and the remaining traces to check the resulting invariants. A program invariant

holds for any set of traces, thus, it is likely that DIG can �nd that same invariant

using a smaller subset of the available traces. The candidate invariant, which

is obtained using a subset of traces and might not be true for all observed

traces, is then veri�ed against the remaining traces and removed if it fails for

any of them. This strategy improves the run time of DIG because it is more

expensive to generate a complex relation than to verify that relation holds over

input traces.

• Static Checking. DIG uses a custom theorem prover based on k-induction

and constraint solving to validate candidate invariants when the program code

is available. The design and implementation of the prover are discussed in

Section 3.5.

We note that existing strategies from other approaches could also be integrated

with techniques used in DIG. For example, if DIG's algorithms were incorporated

into Daikon, then most of Daikon's optimization techniques [Perkins and Ernst, 2004]

could be applied directly to DIG's generated invariants. As an example, the static

analysis work reported in [Sharma et al., 2013a] has integrated ideas from DIG to

generate sound equality invariants.

3.1.3 Contributions

We make the following contributions to the generation of polynomial invariants in

this chapter:

• Geometric Invariant Inferring (Section 3.2). We develop DIG, a dynamic tool

that leverages geometric concepts for polynomial invariant analysis. We for-

mulate the problem of generating conjunctions of equalities and inequalities to
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the tasks of solving linear questions and constructing polyhedra, respectively.

This formulation treats relations over numerical program variables as geomet-

ric shapes in multidimensional space, i.e., trace data as points, equations as

hyperplanes, and inequalities as convex polyhedra. We also consider simpler

geometric shapes, such as octagons, which are more tractable because they

encode less expressive polynomial relations.

• Disjunctive Invariants (Section 3.3). We present a technique to infer certain

disjunctive polynomial invariants by constructing convex max and min-plus

polyhedra over trace points. We also introduce a novel restricted class of max

and min-plus invariants, called �weak� invariants, that strike a balance between

expressive power and computational complexity. Weak invariants express use-

ful max and min-plus relations and can be computed e�ciently.

• Algorithmic Analysis (Section 3.4). We formally analyze the complexity of all

presented algorithms. Using geometric reasoning, we prove an underapproxi-

mation property of polynomial invariants that is guaranteed in DIG, but not

in other dynamic invariant analyses.

• Automatic Theorem Proving (Section 3.5). We develop KIP, a theorem prover

based on iterative k-induction proving and constraint solving, to verify polyno-

mial invariants against program code. When parallelized, KIP e�ciently and

correctly processes many complex and potentially spurious invariants.

• Experimental Evaluation (Section 3.6). We evaluate DIG and KIP on di�cult

kernels involving nonlinear arithmetic and abstract arrays. Experimental re-

sults show that these tools are e�cient, both at learning complex polynomial

invariants and at proving them correct.
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3.2 Inferring Conjunctive Invariants Dynamically

At a high level, DIG treats numerical trace data as points in Euclidean space and

computes geometric shapes enclosing these points. For example, the trace values of

the two variables v1, v2 are points in the (v1, v2)-plane. DIG then determines if these

points lie on a line, represented by a linear equation of the form c0+c1v1+c2v2 = 0. If

such a line does not exist, DIG builds a bounded convex polygon from these points.

The edges of the polygon are represented by linear inequalities of the form c0 +

c1v1 + c2v2 ≥ 0. The technique generalizes to equations and inequalities among three

or more variables by constructing hyperplanes and polyhedra in a high-dimensional

space.

DIG takes as input the set V of numerical variables that are in scope at location L,

the associated tracesX, and a maximum degree d, and returns the set (a conjunction)

of possible polynomial relations among the variables in V whose degree is at most

d. The post-processing techniques described in Section 3.1.2 are then applied to the

obtained relations to suppress redundant relations and to remove spurious invariants.

3.2.1 Equality Invariants

DIG treats polynomial equalities as unbounded geometric shapes, e.g., lines and

planes, to obtain a conjunction of equality invariants of the form

c1t1 + · · ·+ cntn = 0, (3.1)

where ci are real-valued and ti are terms.

Figure 3.3 outlines DIG's algorithm for �nding equality invariants from the inputs:

set V of variables, set X of traces, and max degree d. First, we create T terms

representing monomials over the input variables V up to degree d (see Section 3.1.2).

The equation template F given in Equation (3.1) is formed using these terms. Next,
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procedure findEqs(V,X, d)
T ← genTerms(V, d)
F ← genTemplate(T )
E ← genEqts(F ,X)
S ← solve(E)
return S . return equalities of the form given in Equation (3.1)

Figure 3.3: Algorithm for �nding polynomial equations from the inputs: set V of variables,
set X of traces, and max degree d. The algorithm consists of four steps: creating terms
over the input variables(genTerms), using terms to form an equation template (genTem-
plate), instantiating the template with input traces to obtain a set of linear equations
(genEqts), and solving equations for the unknown coe�cients, which map to concrete
equality invariants (solve).

we obtain a set of linear equations E = {e1, . . . , e|X|} by instantiating F with the

traces in X. Finally, we solve E for the unknown coe�cients ci. The nontrivial

solutions for ci, if any, suggest relations among the terms in T .

The nontrivial solutions of E for the unknown coe�cients ci have the form ci = vi.

The values vi are free variables that range over the reals. The terms in the template

F that have zero-valued coe�cients are not related because the only way to satisfy

equations in E is by setting the coe�cients of these terms to zero. In contrast, terms

that have coe�cients sharing some free variable v are related. To �nd relations

among the terms sharing the variable v, we �x v to a concrete value, e.g., v = 1 and

other v′ to 0, and instantiate F with v = 1 and v′ = 0. This step is repeated for each

shared variable v to obtain relations among terms sharing v.

Example 3.2.1. We demonstrate how DIG discovers the nonlinear equalities b = ya

and x = qy+ r for the cohen program from Figure 3.1. For illustration purposes, we

focus on the case where d = 2, in which DIG generates quadratic equations.

For the six variables {a, b, q, r, x, y}, together with degree d = 2, DIG creates the

set T = {1, a, . . . , y2} of monomials of degree ≤ 2 containing 28 terms. T is then

used to form the template F : c1 + c2a+ · · ·+ c28y
2 = 0 with 28 unknown coe�cients
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ci to be solved for. Next, F is instantiated with the traces in X to form the set E of

equations. For example, instantiating F with the values (a = 1, . . . , y = 2) from the

�rst trace in Figure 3.1 gives the equation c1 + c2 + · · ·+ 4c28 = 0. Solving E for the

unknowns ci results in the solution:

c3 = v1, c5 = v3, c6 = −v3, c11 = −v2,

c12 = v2, c13 = −v1, c15 = −v2 c22 = v3,

and all other ci = 0.

To �nd the relation between the terms t3 and t13, whose coe�cients c3 and c13

share the value v1, DIG sets v1 = 1 and v2 = v3 = 0 (since the terms t3, t13 are

not related by the values v2, v3). The template F , when being instantiated with

(v1 = 1, v2 = 0, v3 = 0), gives the relation t3− t13 = 0, which is b = ay because t3 = b

and t13 = ay. After repeating this process for all shared variables, DIG achieves the

equations:

t3 = b, t13 = ya, → b = ay,

t5 = r, t6 = x, t22 = qy → x = qy + r,

t11 = ra, t12 = xa, t15 = bq → xa = ra+ bq.

These generated equations are true invariants; however, the relation xa = ra+ bq

is redundant because it can be obtained from the other two equations b = ay and

x = r + qy by substitution. The post-processing step described in Section 3.1.2

suppresses these redundant invariants using theorem proving. The resulting set of

equations for the cohen program after post-processing is {b = ya, x = r + qy}.

3.2.2 Inequality Invariants

DIG interprets inequalities among terms as geometric shapes over points created

from program traces. Figure 3.4 illustrates several shapes supported by DIG in

two-dimensional space. Figure 3.4a shows a set of points created from input traces.
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a b c d e

Figure 3.4: (a) A set of points in 2D and its approximation using the (b) polyhedral, (c)
octagonal, (d) zonal, and (e) interval regions.

Figures 3.4b, 3.4c, 3.4d, and 3.4e approximate the area enclosing these points using

the polygonal, octagonal, zonal, and interval shapes that are represented by the

conjunctions of inequalities of the forms c1v1+c2v2 ≥ c, ±v1±v2 ≥ c, v1−v2 ≥ c, and

±v ≥ c, respectively. In principle, these forms of relations are sorted in decreasing

order of expressive power and computational cost. For instance, interval inequalities

are less expressive than zonal inequalities, and the cost of computing an interval,

i.e., the upper and lower bound of a variable, is lower than the computation of the

convex hull of an zone. The number of generated invariants representing the facets

also varies for di�erent shapes; a polygon can have an unbounded number of facets

(edges) whereas an octagon, a zone, and an interval region over two variables have

at most eight, six, and four edges, respectively.

General (Polyhedral) Inequalities

DIG �nds inequality invariants of the form

c1t1 + · · ·+ cntn ≥ 0, (3.2)

where ci are real-valued and ti are terms. These general inequalities can also express

octagonal inequalities (two terms with {−1, 0, 1} integral coe�cients) and interval

inequalities (single terms with unit coe�cients).

Figure 3.5 outlines two techniques for �nding general inequalities. Both tech-

niques yield sound relations with respect to input traces; however the deduction
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procedure findIeqs(V,X, d, ieqs (optional))
if ieqs = ∅ then

T ← genTerms(V, d)
P ← genPoints(T,X)
H ← createPolyhedron(P ) . construct a polyhedron over points
S ← extractFacets(H)

else
eqts← findEqs(V,X, d) . �nd equalities using the algorithm in Figure 3.3
S ← deduceIeqs(eqts, ieqs)

return S . return inequalities of the form given in Equation (3.2)

Figure 3.5: Algorithm for �nding polynomial inequalities. The convex hull technique con-
sists of four steps: creating terms to represent products of program variables (genTerms),
instantiating points from terms using input traces (genPoints), building a convex poly-
hedron enclosing the points (createPolyhedron), and extracting its facets to represent
inequalities among terms (extractFacets). When additional information is available,
the deduction technique combines the discovered equations (findEqs) with the given in-
formation to deduce new inequalities (deduceIeqs).

method, with the help of additional information, runs much faster. We now illus-

trate how both techniques produce the nonlinear inequality r ≥ 2ay in the cohen

program given in Figure 3.1.

Using Polyhedra

After obtaining the set T of terms, we use the traces in X to create points in |T |-

dimensional space and compute the convex hull of these points to represent a poly-

hedron H. The bounded convex polyhedron H can be described by a set of linear

inequalities of the form given in Equation (3.2). This is called the half-space repre-

sentation of a polyhedron. The facets of H, corresponding to the solutions of the

set of linear equalities, represent the inequalities among the terms in T . Figure 3.4b

depicts a 2D polyhedron (polygon) that has �ve facets.

Building a convex polyhedron in high-dimensional space is expensive as discussed

in Section 3.4.1. Moreover, program invariants often involve only a small subset of
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all possible program variables, e.g., the relation b − ay = 0 involves only {a, b, y},

even though all six variables in scope were considered. Based on this observation,

we consider several heuristics, such as iteratively searching for invariants involving

all possible combinations of a small, �xed number of variables.

Example 3.2.2. For the cohen program, DIG �rst generates possible inequalities

that contain at most three out of the six variables {a, b, q, r, x, y}. There are
(
6
3

)
= 20

combinations that contain three variables, one of which is {r, y, a}. To �nd nonlinear

inequalities, terms of degree d are built on the variables under consideration. With

d = 2, DIG generates the set T = {1, r, y, a, ry, ra, ya, r2, y2, a2} of terms.

The terms in T are instantiated with the traces inX to form a set P of points. For

instance, the �rst trace in Figure 3.1 gives the point [1, 15, 2, 1, 30, 15, 2, 225, 4, 1] in

10-dimensional space, corresponding to the terms in T . The convex polyhedron H is

then constructed to enclose the points in P . One of the facets ofH corresponds to the

inequality r ≥ 2ya. The inequalities represented by other facets are also valid with

respect to the input traces, although they might be spurious invariants. Section 3.4.2

provides additional discussion on spurious invariants. The static theorem proving

technique in Section 3.5 distinguishes between true and false invariants.

Deduction From Loop Conditions

The convex hull technique for general inequalities can be computationally expensive

depending on the numbers of terms and trace points. Consequently, we develop an

alternative technique using deduction to �nd inequalities of the form given in Equa-

tion (3.2) if additional information is available. More speci�cally, if some inequalities

are asserted at location L, then we can use them, together with the discovered equal-

ities from Section 3.2.1, to deduce new nontrivial inequalities. For instance, if the

location L is the head of a loop, then L can be reached if and only if the loop condi-

tions are met. Such loop conditions are an example of additional information, which
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can be given as input from the user (or automatically mined from the source code

as in the cohen program) to facilitate the process of generating additional invari-

ants. Deduction is related to the strategy of adding known facts or proved results as

lemmas in interactive theorem provers such as PVS [Owre et al., 1992].

Example 3.2.3. For the running cohen example, DIG generates the set of equations

{b = ay, x = qy + r} representing possible invariants at location L as described in

Section 3.2.1. The head of the inner loop at location L is reached only when the

condition of that loop r ≥ 2b is met, thus, r ≥ 2b is also an invariant at L. New

and nontrivial inequalities can be deduced from this additional information using

deduction, term rewriting, and substitution. In the current implementation, DIG

pairs inequalities from the loop conditions with the obtained equations to deduce

new inequalities. For the running example, r ≥ 2ay is deduced from the pair (r ≥

2b, b = ay), and x ≥ qy + 2b is deduced from (r ≥ 2b, x = qy + r). Hence, deduction

�nds the inequalities r ≥ 2ya and x ≥ qy + 2b among the variables {a, b, q, r, x, y},

both of which are program invariants at location L in the cohen program.

Deduction could theoretically produce many results by combining discovered

equalities and loop conditions. However, the technique is e�cient in our experi-

ments because the numbers of loop conditions and generated equality invariants are

small (one or two guards at most loops and fewer than four equalities at a particular

program location). Our experience shows that deduction allows for e�ective inequal-

ity invariant discovery that otherwise would require the more expensive convex hull

method or would not be possible in the case of incomplete traces.
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3.2.3 Weak Inequality Invariants

To avoid building complex polyhedra in high dimensions, DIG supports simpler

(weaker) inequalities representing simpler geometric shapes such as octagons.3 By

balancing expressive power with computational cost, octagonal relations are espe-

cially useful in practice for detecting bugs in �ight-control software, performing array

bound and memory leak checks [Cousot et al., 2005, Miné, 2004].

DIG builds an octagon, a polygon with eight edges in 2D, depicted in Figure 3.4c,

over trace points to obtain a conjunction of eight inequalities of the form

c1t1 + c2t2 ≥ k, (3.3)

where t1, t2 are terms, c1, c2 ∈ {−1, 0, 1} are coe�cients, and k is real-valued.

Given the points {(x1, y1), . . . , (xn, yn)}, we compute the half-space representation

of an octagon enclosing these points, i.e., the set of eight linear relations {u1 ≥ x ≥

l1, u2 ≥ y ≥ l2, u3 ≥ x− y ≥ l3, u4 ≥ x+ y ≥ l4}, as follows:

u1 = max(xi), l1 = min(xi),

u2 = max(yi), l2 = min(yi),

u3 = max(xi − yi), l3 = min(xi − yi),

u4 = max(xi + yi), l4 = min(xi + yi).

The algorithm to �nd octagonal invariants from inputs X, V, d is similar to one listed

in Figure 3.5, where the createPolyhedron function computes octagonal invari-

ants for each pair of terms in T . The post-processing techniques from Section 3.1.2

also apply to the obtained invariants.

Like general inequalities, octagonal inequalities can also represent interval in-

equalities, e.g., u1 ≥ x ≥ l1, u2 ≥ y ≥ l2 as illustrated in Figure 3.4a. However,

3This approach is inspired by the abstract interpretation framework in static analysis
introduced in Section 2.1.1, which �nds simpler forms of inequalities, such as those in
Figure 3.4, to avoid the cost of computing general polyhedra [Miné, 2004].
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octagonal relations are less expressive than general relations due to the restriction to

two terms with speci�c integral coe�cients. For instance, octagonal relations cannot

represent the inequality t1 ≤ 2t2, where t1 = r, t2 = ya, in the cohen program due

to the coe�cient 2. However, the inequality r ≥ −2ay can be obtained through

octagonal relations by using a term to representing 2ya.

Example 3.2.4. Consider the below C code fragment flatten that puts the contents

of a 2-dimensional array A[M ][N ] into a 1-dimensional array B[MN ].

for (i = 0; i < M; ++i){

for (j = 0; j < N; ++j){

k = i*n+j;

[L]

B[k] = A[i][j];

}

}

The nonlinear relation 0 ≤ k ≤ MN − 1 at location L is essential for the safety of

flatten and is identi�ed by DIG using octagonal constraints with terms representing

quadratic polynomials over variables. The array relation A[i][j] = B[iN + j], which

asserts the correctness of flatten, is also generated by DIG using the technique

described in Chapter 4.

3.3 Inferring Disjunctive Invariants Dynamically

Convex geometric shapes can represent conjunctions, but not disjunctions, of poly-

nomial relations. Disjunctive invariants are more di�cult to analyze, but are also

crucial to many programs. For example, after if (p) a = 1; else a = 2; neither

a = 1 nor a = 2 is an invariant, but (p ∧ a = 1) ∨ (¬p ∧ a = 2) is an invariant.

Thus, disjunctive invariants capture path-sensitive reasoning, such as those in any

non-trivial program.
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def ex1(x):

y = 5

if x > y:

x = y

while[L] x <= 10:

if x >= 5:

y = y+1

x = x+1

assert y == 11

x y

-1 5
...

...
5 5
6 6
...

...
11 11

x

y

0 5 11

0

5

11

Figure 3.6: Program ex1, the observed traces on input x = −1, and the geometric repre-
sentation of its invariant (x < 5 ∧ y = 5) ∨ (5 ≤ x ≤ 11 ∧ x = y) at location L.

To capture disjunctive information, we build convex hulls for a special type of

nonconvex polyhedra in the max-plus algebra. Max-plus algebra [Allamigeon et al.,

2008, Kapur et al., 2013] is analogous to standard algebra, but operates over the reals

and −∞ with max and + as the additive and multiplicative operators, respectively.

A max-plus polyhedron is a set of relations of the form max(c0, c1+v1, . . . , cn+vn) ≥

max(d0, d1 + v1, . . . , dn + vn) over program variables vi with coe�cients ci, di ∈ R ∪

{−∞}. For instance, the max-plus polyhedron max(x, y) ≥ max(−∞, z) encodes

the disjunctive information (x < y ∧ y ≥ z) ∨ (x ≥ y ∧ x ≥ z) or simply y ≥

z ∨ x ≥ z. Dually, we also consider min-plus polyhedra and combine max and

min-plus polyhedra to capture if-and-only-if information.

Motivating Example

We illustrate the approach with a simple example program containing a disjunctive

invariant. Figure 3.6 shows program ex1, adapted from Gulwani and Jojic [Gulwani,

2007]. Program ex1 �rst initializes y to 5 and ensures x ≤ y, then enters a loop that

increments y conditionally on the value of x. Figure 3.6 also shows the trace values

for x, y at location L on input x = −1, and it depicts the nonconvex region (a bent
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line) covering these trace points. Validating the post-condition y == 11 requires

analyzing the semantics of the loop by identifying the invariants at location L.

From the given trace data, existing tools such as Daikon can generate only con-

junctive invariants such as:

y ≥ x,

11 ≥ x,

11 ≥ y ≥ 5.

These relations are not expressive enough to capture the disjunctive dependency

between x and y, and they fail to prove the desired post-condition.

By building a max-plus polyhedra over the trace points in Figure 3.6, DIG obtains

relations that simplify to:

11 ≥ x ≥ −1,

11 ≥ y ≥ 5,

0 ≥ x− y ≥ −6,

(x < 5 ∧ 5 ≥ y) ∨ (x ≥ 5 ∧ x ≥ y),

where the last relation is disjunctive. Next, DIG uses a custom k-inductive theorem

prover to statically verify these candidate invariants against the program code given

in Figure 3.6 using and removes the spurious relations x ≥ −1 and x− y ≥ −6. The

rest are true invariants at L.

We note that the invariant y ≥ x is not directly k-inductive. However, by using

the previously proven results y ≥ 5 and (x < 5 ∧ 5 ≥ y) ∨ (x ≥ 5 ∧ x ≥ y) as

lemmas, the prover also veri�es this relation y ≥ x. Further, the prover shows that

11 ≥ x is redundant (i.e., implied by other proved results) and can be removed. The

remaining invariants are:

11 ≥ y ≥ 5,

0 ≥ x− y,
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(x < 5 ∧ 5 ≥ y) ∨ (x ≥ 5 ∧ x ≥ y).

Intuitively, the code in Figure 3.6 has two phases: either x < 5 (at which point

the if inside the while loop is not true and y remains 5), or x is between 5 and 11

(at which point the if inside the while loop is true, and y = x because they are

both incremented). The inferred invariants are logically equivalent to the encoding

of that intuitive explanation:

(x < 5 ∧ y = 5) ∨ (5 ≤ x ≤ 11 ∧ y = x).

They are also the precise invariants of the loop and can prove the post-condition y

== 11. This example requires that both the dynamic analysis and the static prover

be expressive and e�cient enough to infer disjunctive invariants and prove them

correct. We describe these methods in detail in the remainder of the section.

3.3.1 Max-plus Algebra

As discussed earlier, programs containing loops or conditional branches are not ade-

quately modeled by purely conjunctive invariants. Figure 3.6 depicts the nonconvex

region de�ned by the loop invariant (x < 5 ∧ y = 5) ∨ (5 ≤ x ≤ 11 ∧ x = y) in

the ex1 program. Such disjunctive information cannot be expressed as a conjunc-

tion of polynomial relations, including octagonal or even general polyhedral forms.

Although some disjunctive invariants can be simulated using polynomials of higher

order, e.g., (a = 0) ∨ (b = 0) is equivalent to a × b = 0, this approach generates

terms with impractically high degrees and computational cost, especially when there

are more than two disjunctions. Thus, the representation of disjunctive information

requires a fundamentally di�erent approach.

To model disjunctive invariants, we use relations representing max-plus polyhe-

dra [Allamigeon and Katz, 2013, Allamigeon et al., 2008], i.e., nonconvex hulls that

are convex in a max-plus algebra [Daniel-Cavalcante et al., 2006, Heidergott and
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van der Woude, 2006]. Max-plus formulas allow disjunctions of zonal relations over

two variables [Cousot et al., 2005, Miné, 2004], i.e., inequalities of the forms ±v ≥ c

and v1 − v2 ≥ c. Formally, max-plus relations have the form

max(c0, c1 + v1, . . . , cn + vn) ≥ max(d0, d1 + v1, . . . , dn + vn), (3.4)

where vi are program variables, ci, di are real numbers or −∞, and max(t0, . . . , tm)

returns the largest term ti, e.g., max(x, y) ≡ if x > y then x else y. The max

operator allows max-plus formulas to encode certain disjunctions. For example, the

max-plus relation max(0, x−5, y−∞) = max(−∞, x−∞, y−5), i.e., max(0, x−5) =

max(y − 5), encodes the disjunction (5 > x ∧ y = 5) ∨ (5 ≤ x ∧ x = y), or

y = 5 ∨ x = y.4

Table 3.1 compares linear algebra with max-plus algebra. Max-plus relations

are analogous to linear relations, but use (max,+) instead of the (+,×) of stan-

dard arithmetic. These operators allow max-plus relations to form geometric shapes

that are nonconvex in the classical sense. For example, the max-plus relation (x =

y) ∨ (y = 5) represents a nonconvex region consisting of two lines x = y and y = 5.

Moreover, the structure of max-plus relations produces a relatively unusual geomet-

ric shapes. Table 3.1 depicts the three possible shapes of a max-plus line in 2D.

In general dimensions, two points are always connected by lines that run parallel,

perpendicular, or at a 45 degree angle to all the coordinate axes. A bounded convex

max-plus polyhedron consists of these connections and the area surrounded by them.

Table 3.1 illustrates an example of a max-plus convex hull, i.e., a bounded convex

polyhedron, consisting of �ve lines connecting the �ve marked points. Although a

max-plus convex hull is not convex in the classical sense, it is convex in the max-plus

sense because it contains max-plus lines between any pair of its points.
4Because max(v0, v1 − ∞, v2, . . . , vn) = max(v0, v2, . . . , vn), we often drop −∞ max-

arguments for presentation purpose. We also abbreviate max-plus notations, e.g.,
max(x, y) ≥ z for max(x, y, z − ∞,−∞) ≥ max(x − ∞, y − ∞, z,−∞) and x ≥ 9 for
max(9, x − ∞, y − ∞) ≥ max(−∞, x, y − ∞). An equality is also used to express the
conjunction of two inequalities, e.g. max(x, y) = z for max(x, y) ≥ z ∧ z ≥ max(x, y).
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Linear Max-plus

Domain R R ∪ {−∞}
Addition + max
Multiplication × +
Zero element 0 −∞
Unit element 1 0

Relation form c0 + c1t1 + · · ·+ cntn ≥ 0
max(c0, c1 + v1, . . . , cn + vn) ≥
max(d0, d1 + v1, . . . , dn + vn)

Line shapes

Convex hull examples

Table 3.1: Comparison between linear algebra and max-plus algebra. Max-plus lines have
three possible shapes: max(x + a, b) ≥ y (top), max(y + a, b) ≥ x (right), and max(x +
a, y + b) ≥ 0 (left). All max-plus convex hulls are built using these lines.

In general, a bounded max-plus polyhedron can have �nitely many facets repre-

sented by max-plus relations. For example, even a 2D complex polygon may contain

multiple edges. Thus, a disjunctive formula representing a max-plus polyhedron has

no �xed bounds on the number of disjuncts. However, constructing a max-plus poly-

hedron in high dimensions is computationally expensive as shown in Section 3.4.1.

In Section 3.3.3, we introduce a simpler form of max-plus relations that strikes a

reasonable compromise between e�ciency and expressiveness.

3.3.2 Max-plus Invariants

DIG infers max-plus invariants dynamically using an algorithm similar to that used

for general inequality invariants described in Section 3.2.2. Figure 3.7 outlines the

main steps of the algorithm for generating max-plus inequalities.
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procedure findMaxPlus(V,X, d)
T ← genTerms(V, d)
P ← genPoints(T,X)
H ← createMaxPlusPoly(P ) . construct a max-plus convex hull over points
S ← extractFacets(H)
return S . return polynomial relations of the form given in Equation (3.4)

Figure 3.7: Algorithm for �nding (max-plus) disjunctive inequalities from the inputs: set
V of variables, set X of traces, and max degree d. The main steps of the algorithm are:
using terms to represent products of program variables (genTerms), instantiating points
from terms using input traces (genPoints), creating a max-plus convex hull enclosing
the points (createMaxPlusPoly), and extracting its facets, which are represented by
max-plus relations among terms (extractFacets).

Similar to the process of generating general invariants, DIG employs heuristics

to search iteratively for max-plus invariants containing all possible combinations of

a small, �xed number of variables. The tool considers max-plus relations over triples

of program variables that represent max-plus polyhedra in three-dimensional space.

DIG also supports nonlinear max-plus relations by using terms to represent nonlinear

polynomials over variables. However, the number of possible terms is exponential

in the number of degrees as shown in Section 3.4.1 and, thus, DIG targets linear

max-plus relations by default for e�ciency.

Example 3.3.1. We illustrate how DIG derives the invariant (x < 5 ∧ y = 5) ∨ (5 ≤

x ≤ 10 ∧ x = y) at location L in program ex1 in Figure 3.6. The trace values for

x, y in Figure 3.6 form a set of eleven points, e.g., the �rst is (−1, 5). DIG then

computes a max-plus polyhedron over these points. The half-space representation of

that polyhedron consists of the max-plus relations:

11 ≥ x ≥ −1

11 ≥ y ≥ 5

0 ≥ x− y ≥ −6

max(0, x− 5) ≥ y − 5

The conjunction 0 ≥ x − y ∧ 11 ≥ x ∧ max(x − 5, 0) ≥ y − 5, which forms the
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nonconvex region in Figure 3.6, is logically equivalent to the invariant (x < 5 ∧ 5 =

y) ∨ (5 ≤ x ≤ 11 ∧ x = y).

Because x has no lower bound, x ≥ −1 and x−y ≥ −6 are spurious relations. The

post-processing step in Section 3.1.2 removes these spurious invariants if given addi-

tional traces, such as running ex1 on x = −5. More generally, the static technique

in Section 3.5 formally veri�es candidate invariants and removes spurious results.

3.3.3 Weak Max-plus Invariants

We introduce and de�ne a weaker form of max-plus relations that retains much

expressive power, but avoids the high computational cost of computing a general

max-plus polyhedron. To the best of our knowledge, this is the �rst attempt to

consider a simpler form of max-plus inequalities for invariant generation and program

analysis.

We de�ne a weak max-plus relation to be of the form:

max(c0, c1 + v1, . . . , ck + vk) ≥ vj + d,

vj + d ≥ max(c0, c1 + v1, . . . , ck + vk),
(3.5)

where vi are program variables, vj ∈ {v1, . . . , vn}, ci ∈ {0,−∞}, d is a real numbers

or −∞, and k is constant, e.g., k = 2. Unlike general max-plus relations of the form

given in Equation (3.4), weak max-plus relations have some restrictions:

• They restrict the values of the coe�cients ci to {0,−∞}. The general form

allows ci ∈ R ∪ {−∞}.

• They �x the number of variables k to a small constant. The general form allows

n variables.

• They allow only one unknown parameter d. The general form allows d0 . . . dn.
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General Max-plus Weak Max-plus

Figure 3.8: General max-plus and weak max-plus shapes

Weak max-plus relations are thus a strict subset of general max-plus relations.

For example, the weak max-plus form cannot general max-plus relations like max(x+

7, y) ≥ z or max(x, y) ≥ max(z, w), but it does support zonal relations like x− y ≥

10, x = y and disjunctive relations like max(x, y) ≥ z and max(x, 0) ≥ y + 7.

Geometrically, weak max-plus relations represent a restricted class of general

max-plus polyhedra. Figure 3.8 compares the shapes of general max-plus relations

with those of weak max-plus relations. While general max-plus lines have the possible

three shapes, weak max-plus lines have only two shapes represented by the formulas

max(x, b) ≥ y and max(y, b) ≥ x. That is, weak max-plus shapes include only lines

that run in parallel or at a 45 degree angle. Lines with a perpendicular shape cannot

occur because their formula, max(x, y) ≥ 0, is inexpressible using the weak max-plus

form.

Algorithm for Computing Weak Max-plus Convex Hulls

The advantage of the above restrictions is that they admit an e�cient algorithm

to compute the weak max-plus convex hull over a set of �nite points in a �xed k

dimensions, e.g., k = 2. The algorithm �rst enumerates all possible weak relations

over k variables and then �nds the unknown parameter d in each relation from the

given points. The resulting set of relations is the half-space representation of the weak

max-plus polyhedron enclosing the points. In general, the number of weak max-plus

relations enumerated over k variables is O(k2k+2), and the number of facets of a weak
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max-polyhedron thus has a �xed upper bound for each k. For example, k = 2 has at

most 32 facets. This �xed number of facets is more manageable than the unbounded

number of facets of a general max-plus polyhedron.

Note that this algorithm does not apply to the general max-plus form because

the coe�cients ci are not enumerable over the reals, and the problem becomes more

complex when more than one unknown is involved. For instance, it is nontrivial to

compute the unknowns c, d in the max-plus relation max(c, x) ≥ y + d because the

values of c and d depend on each other.

Example 3.3.2. The following illustrates how DIG �nds the weak max-plus polyhe-

dron enclosing the points {(x1, y1), . . . , (xn, yn)} in the two-dimensional plane. First,

DIG enumerates relations of the weak max-plus form by instantiating the coe�cients

ci over {0,−∞}. For the form max(c0, c1 + x, c2 + y) ≥ x+ d, the tool obtains eight

max-plus relations (two choices each for three coe�cients):

max(0, x, y) ≥ x+ d, . . .

max(0, x) ≥ x+ d, −∞ ≥ x+ d

The eight additional max-plus relations for each of the other three forms max(c0, c1+

x, c2 + y) ≥ y + d, x+ d ≥ max(c0, c1 + x, c2 + y), y + d ≥ max(c0, c1 + x, c2 + y) are

obtained similarly. Redundant relations can be removed (e.g., max(y, 0) ≥ x implies

max(x, y, 0) ≥ x).

Next, DIG computes the parameter d in each of the 32 obtained relations using

the given points {(x1, y1), . . . , (xn, yn)}. For instance, max(y, 0) ≥ x + d has d =

min(max(yi, 0) − xi) and x + d ≥ max(y, 0) has d = max(max(yi, 0) − xi). The

resulting relations form an intersecting region that represents a bounded weak max-

plus polygon over the given points.
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a b

Figure 3.9: (a) Three possible shapes of a min-plus line segment and (b) a min-plus poly-
hedron built over four points.

3.3.4 General and Weak Min-plus Invariants

DIG �nds min-plus inequalities of the form

min(c0, c1 + v1, . . . , cn + vn) ≥ min(d0, d1 + v1, . . . , dn + vn), (3.6)

where vi are program variables and ci, di ∈ R∪{∞}. Similar to its max-plus dual, a

min-plus polyhedron is a formed by the intersection of �nite min-plus lines. However,

min and max-plus relations describe di�erent forms of disjunction information and

have di�erent geometric shapes. For example, the relation min(x, y) = z encodes

the disjunction (x < y ⇒ x = z) ∧ (x ≥ y ⇒ y = z) that is not expressible using

a max-plus relation. Figure 3.9 depicts the min-plus version of the shapes shown in

Table 3.1.

A conjunction of max and min-plus invariants can describe information that is

inexpressible using either max or min-plus relations alone. Consider the ex2 program

in Figure 3.10, which has the invariant y ≤ 10 ⇔ b = 0 at location L. By building

max and min-plus polyhedra over the traces given in Figure 3.10, DIG obtains the

relations 1 ≥ b ≥ 0, max(y − 10, 0) ≥ b, and b + 10 ≥ min(y, 11). Given 1 ≥ b ≥ 0,

the max-plus relation implies b = 0 ⇒ y ≤ 10, and the min-plus relation implies

b 6= 0 ⇒ y > 10. These disjunctions are logically equivalent to the if-and-only-if

condition y ≤ 10⇔ b = 0.
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def ex2(x):

if x >= 0:

y = x+1

else:

y = x-1

b = y > 10

[L]

return b

x y b

-50 -51 0
-33 -34 0
9 10 0
10 11 1
12 13 1
40 41 1

Figure 3.10: Program ex2 and its trace data at location L for several input values.

As a dual to the weak max-plus relations introduced in Section 3.3.3, we de�ne

weak min-plus relations to be of the form:

min(c0, c1 + v1, . . . , ck + vk) ≥ vj + di,

vj + di ≥ min(c0, c1 + v1, . . . , ck + vk),
(3.7)

where vi are program variables, vj ∈ {v1, . . . , vn}, ci ∈ {0,−∞}, di ∈ R ∪ {−∞},

and k is constant. The algorithm for building weak min-plus polyhedra over �nite

points is similar to the one for weak max-plus polyhedra as given in Section 3.3.3.

3.4 Algorithmic Analysis

In this section, we �rst give the computational complexity of DIG's algorithms for

generating di�erent forms of invariants. We then show that the convex hull method

generates precise inequality invariants, but it also generate spurious results if the

program invariants do not appear in the traces.

3.4.1 Computational Complexity

Figure 3.2 summarizes the time complexity of DIG's algorithms for generating dif-

ferent forms of polynomial invariants as a function of the number of traces |X| and

terms |T |, where terms are used to represent polynomials over variables as described
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Invariant Type Form Complexity

Equality (3.1) O(|T |3)
Polyhedral (general) inequality (3.2) O(|X|

|T |
2 )

Octagonal inequality (3.3) O(|X||T |2)
Max/Min-plus inequality (3.4) O(|X||T |2(|X|+ |T |)|T |)
Weak Max/Min-plus inequality (3.5) O(|X|2|T |)

Table 3.2: Time complexity of polynomial invariant generation algorithms. T represents
the set of terms and X the set of traces.

in Section 3.1.2. Given a set V of numerical variables and a positive degree d, the

set T of terms representing monomials over V up to degree d has size
(|V |+d

d

)
. The

number of terms thus increases exponentially in the number of variables and degrees.

• Equalities. To �nd equality invariants of the form given in Equation (3.1),

DIG applies a standard equation solver using Gaussian elimination over the

|T | independent equations instantiated from the traces in X as shown in Sec-

tion 3.2.1. The complexity of Gaussian elimination to solve |T | linear equations

for |T | unknowns is O(|T |3) [Farebrother, 1988]. Hence, generating invariants

representing equations among |T | terms takes O(|T |3).

• General Inequalities. As described in Section 3.2.2, DIG builds polyhedra to

obtain polyhedral (general) invariants of the form given in Equation (3.2).

Constructing a convex polyhedron over |X| points in |T | dimensions has a the-

oretical exponential upper bound Θ(|X|b
|T |
2
c) [de Berg et al., 1997]. Thus, the

cost of generating general inequalities is O(|X|
|T |
2 ), exponential in the number

of terms (because each new term essentially de�nes a new variable representing

a new dimension).

In the case of inequalities among a �xed number k of terms over program

variables, the heuristic described in Section 3.2.2 builds polyhedra for all term

combinations of size k. The complexity of such a heuristic is O(
(|T |

c

)
|X|k),
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which is polynomial in |X| and |T | because k is �xed.

• Octagonal Inequalities. To avoid the high cost of building general polyhedra

in high-dimensional space, DIG �nds octagonal invariants of the form given

in Equation (3.3) representing inequalities between two terms. The algorithm

given in Section 3.2.3 �rst instantiates each pair of terms with the traces in

X to obtain the set of |X| points in two dimensions, and it then applies the

min,max operations on these points. These two operations run in linear time

in |X|, thus identifying the octagonal inequalities for each pair of terms takes

O(|X|). There are O(|T |2) such pairs from the set of terms T ; hence generating

octagonal relations for all pairs of terms takes O(|X||T |2).

• Max/Min Inequalities. DIG constructs max-plus polyhedra as shown in Sec-

tion 3.3.2 to obtain max-plus inequalities of the form given in Equation(3.4).

DIG uses the algorithm in [Allamigeon, 2009, Allamigeon et al., 2008], which

takes O(|X||T |2(|X|+ |T |)|T |), to build a max-plus polyhedron over |X| points

in |T | dimensions. Thus, the cost of �nding max-plus inequalities is exponential

in the number of terms, similar to general inequality computations.

The technique in Section 3.3.4 builds min polyhedra for �nding min inequalities

of the form given in Equation (3.6) and has the equivalent complexity.

• Weak Max/Min Inequalities. For weak max-plus inequalities of the form given

in Equation (3.5), DIG enumerates weak relations over terms and computes un-

known parameters in these relation using trace points as shown in Section 3.3.3.

The number of enumerated relations over k terms is O(k2k+2) and the time to

�nd the single parameter d in each relation is linear in the number of points.

Thus, constructing a weak max-plus polyhedron over |X| points in |T | dimen-

sions takes O(|X|2|T |), polynomial in the number of points when |T | is constant

and is exponential in the number of dimensions when |T | is not �xed. Note
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that even this worst case is still smaller than O(|X||T |2(|X| + |T |)|T |), the

complexity of building a general max-plus polyhedron as given above.

The computation of weak min inequalities of the form given in Equation (3.7)

has the same complexity.

After generating polynomial invariants, DIG �lters these candidate results against

additional traces. The �ltering technique in Section 3.1.2 takes O(|X||T |) to instan-

tiate and check a polynomial relation among |T | terms over |X| traces.

3.4.2 Underapproximation Property and Spurious Invariants

The convex hull method described in Sections 3.2 and 3.3 merit additional discussion

because it generates candidate invariants that underapproximate the true program

invariants that are expressible using the considered inequality forms. However, if

the program invariants do not fall under the considered forms, then the convex

hull method can create a complex polyhedron whose facets represent many spurious

invariants.

Underapproximation

A dynamically inferred invariant can either be equivalent to, underapproximate (i.e.,

be a spurious invariant that is too strong and does not always hold), or overapproxi-

mate (i.e., be too weak and possibly not useful) the program invariant. For instance,

when the template x ≤ y is used to infer the program invariant x ≤ y − 10, then

this template, an overapproximation of the program invariant, is returned as the

candidate invariant. We show that this overapproximation situation cannot happen

in DIG, i.e., the tool only generates candidate inequalities that are equivalent to

or underapproximate the program invariant. This property is useful because it can

be used to detect program errors. The violation of this property, i.e., the inferred
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invariant strictly overapproximates the program invariant, indicates that the pro-

gram invariant fails for some observed traces and, thus, the program has a bug. For

example, consider the below flatten code in Section 3.2.3 with an o�-by-one error.

for (i = 0; i < M; ++i){

for (j = 0; j <= N; ++j){ //bug , should be j < N

k = i*n+j;

[L]

B[k] = A[i][j];

}

}

Depending on the given traces, DIG may generate at L the octagonal relation 0 ≤ k ≤

MN + 5, which is an overapproximation of the program invariant 0 ≤ k ≤MN − 1.

This indicates an error because DIG would never generate such a relation unless the

value k = MN + 5 is in the traces, i.e., a counterexample that violates the program

invariant.

Theorem 3.4.1 (Underapproximation Theorem). If a program invariant belongs to

an inequality form supported by DIG, then a candidate inequality generated from DIG

using convex hulls is guaranteed to either be equivalent to or underapproximate the

program invariant.

Proof. The above theorem states that if F is the program invariant (i.e., a conjunc-

tion of inequalities of the form given in Equation (3.2), (3.3), (3.4), (3.5), (3.6), or

(3.7) representing a bounded convex object in multidimensional space), then the

candidate invariant F ′ of that form is equivalent to or underapproximates F , i.e.,

F ′ ⇒ F .

This underapproximation property is established using the facts that the observed

traces are a subset of all possible traces and that a convex hull of a set of points is the
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smallest convex set containing those points. First, the geometric object represented

by F encloses all trace points because F is the true program invariant that holds for

all program traces. Next, the candidate invariant F ′ has the same form as F (i.e., F

has the same geometric shape as F ), but encloses only a subset of the program trace

points. Finally, because F ′ is computed as the convex hull of that subset of trace

points, the geometric object represented by F ′ is enclosed in the object represented

by F . Thus, F ′ ⇒ F .

The underapproximation property F ′ ⇒ F also holds if the form of F ′ is more

expressive than the form of F . However, this property is not guaranteed if the form

of F ′ is less expressive than the form of F . For example, in Fig. 3.4, a program

invariant representing an octagon (Fig. 3.4c) overapproximates a candidate invariant

representing a polygon (Fig. 3.4b) and underapproximates a candidate invariant

representing an interval (Fig. 3.4e).

Observe that equivalence, i.e., F = F ′, is achieved when the observed traces con-

sist of the extreme points describing the form of the program invariant. For instance,

DIG can �nd the exact inequalities representing an octagon from any set of traces

consisting of the eight extreme points of that octagon. Similarly, DIG also generates

the correct equalities when given su�cient traces describing the program invariant,

e.g., three distinct points for a plane. As mentioned in Chapter 2, the generation

of test inputs to obtain such desirable traces is an popular research area that have

many active projects. In particular, we can take advantage of an entire body of

work on generating test inputs speci�cally for dynamic invariant detection [Gupta

and Heidepriem, 2003, Harder et al., 2003, Xie and Notkin, 2003].

We note that the underapproximation property also holds for equalities of the

form given in Equation (3.1) generated by DIG, as proved in [Sharma et al., 2013a].

60



Chapter 3. Polynomial Invariants

Spurious Invariants

The convex hull method has high computational complexity because complex poly-

hedra with multiple facets in high dimensions might be generated depending on the

given trace points. Importantly, if the traces do not precisely capture the program

invariant, then the polyhedron will consist of many facets representing spurious in-

equalities. For instance, if x, y can take any value over the reals, then an n-facet

polygon computed over any set of traces for x, y produces n spurious invariants be-

cause no bounded polygons can capture the unbounded ranges of x, y.

Although �ltering (Section 3.1.2) reduces spurious invariants by removing facets

of the polyhedron (i.e., widening it), the modi�ed polyhedron may still retain facets

representing spurious relations. Thus, DIG does not automatically invoke the con-

vex hull method for general inequalities. The convex hull method described in Sec-

tion 3.2.2 is e�ective when the user of DIG has certain expectations about the pro-

gram invariants. The user can change the parameter d in Algorithm 3.7 to generate

higher degree relations (e.g., d = 2 for quadratic relations) and can also manually

de�ne terms to capture other desirable properties. For example, a user with knowl-

edge about the form of the desired invariants might hypothesize a spherical form

c1x
2 + c2y

2 + c3z
2. With that as input, DIG searches for that exact form (i.e.,

computes the coe�cients ci, di) from the polyhedron built over the trace points of

the terms representing the nonlinear polynomials x2, y2, z2. In addition to reducing

computational cost, the use of weaker polyhedral form in DIG helps mitigate the

number of spurious invariants, e.g., the octagonal form of invariants in Section 3.2.3

admits exactly eight candidate invariants. In Section 3.5, we present a more general

technique based on theorem proving, which distinguishes between true and spurious

invariants using the program code.

In contrast to the convex hull construction, methods using equation solving give
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few spurious equalities because equalities are stricter constraints than inequalities.

For example, we can always compute a convex polygon representing many inequalities

over any set of �nite points in 2D, but we can have at most a line representing an

equality over these points. Moreover, assuming traces are obtained from random

program inputs, it is unlikely that a large set of traces would exhibit random false

equalities.

3.5 Proving Invariants Statically

As discussed in Chapter 2, dynamic invariant generation is e�cient but not sound.

To address this limitation, we next show how to augment dynamic invariant genera-

tion with static theorem proving and produce sound program invariants. Speci�cally,

we describe an automatic theorem prover that DIG uses to verify candidate invari-

ants. The theorem prover, called KIP (k-Inductive Prover), is based on iterative

k-induction and uses constraint solving to verify candidate invariants. In this ap-

proach, k+1 base cases are speci�ed, and all k+1 previous instances are available for

proving the inductive step (e.g., [Donaldson et al., 2011]). This additional power al-

lows KIP to prove many invariants that are not provable with standard 0-induction.

KIP leverages recent advances in SMT solving [De Moura and Bjørner, 2008, Jo-

vanovi¢ and De Moura, 2012, Nuzzo et al., 2010] and can e�ciently analyze formulas

encoding complex programs and properties such as nonlinear arithmetic. The ar-

chitecture of KIP supports parallel checking of invariants, dramatically improving

e�ciency.

Example 3.5.1. Consider the sqrt program in Figure 3.11, which computes the

square root of an integer using only addition. From observed traces at location L,

DIG generates candidate loop invariants such as t = 2a+ 1, 4s = t2 + 2t+ 1, s = (a+

1)2, s ≥ t and 9989 ≥ x using the geometric techniques described in Section 3.2. KIP

successfully distinguishes true and false invariants from these results. Speci�cally,
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def sqrt(x):

assert x >= 0

a = 0; s = 1; t = 1;

while[L] s <= x :

a = a + 1

t = t + 2

s = s + t

return a

Figure 3.11: A program computing square root using only addition.

the prover identi�es t = 2a + 1 and 4s = t2 + 2t + 1 as inductive invariants and

s = (a + 1)2 as a 1-inductive invariant (i.e., would not be proved using standard

0-induction). By using proved results as lemmas, KIP proves the invariant s ≥ t,

which is not k-inductive for k ≤ maxK, where maxK = 5 is a parameter in the prover

and the default setting of KIP. The prover also rejects spurious relations such as

9989 ≥ x by producing counterexamples that invalidate those relations in sqrt. The

parallel implementation allows KIP to check these candidate results simultaneously.

3.5.1 Analyzing Programs using k-Induction

A program execution can be modeled as a state transition M = (I, T ) with I repre-

senting the initial state of M , and T specifying the transition relation of M from a

state n − 1 to a state n. To prove that p is a state invariant, which holds at every

state of M , k-induction requires that p hold for the �rst k + 1 states (the base case)

and that p hold for the state n + k + 1 if it holds for the k + 1 previous states (the

induction step). Formally, k-induction proves the state invariant p of M = (I, T ) by

checking the base case and induction step formulas:

I ∧ T1 ∧ . . . ∧ Tk ⇒ p0 ∧ . . . ∧ pk (3.8)

pn ∧ Tn+1 ∧ . . . ∧ pn+k ∧ Tn+k+1 ⇒ pn+k+1 (3.9)
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procedure kprove(I, T, p)
for k ← 0 . . .maxK do

. base case
if k = 0 then

Sb.assert(I)
else

Sb.assert(Tk)

if ¬Sb.entail(pk) then
return disproved,Sb.cex . p is not an invariant

. induction step
Ss.assert(pk, Tk+1)
if ¬Ss.entail(pk+1) then

return proved . p is a k-inductive invariant

return unproved . p is not k-inductive

Figure 3.12: Algorithm for incremental k-induction using SMT solvers Sb and Ss.

If both formulas can be proved then p is a k-inductive invariant. If the base case (3.8)

fails, then p is disproved and is not an invariant of M (assuming that M correctly

models the program). However, if the base case holds but the induction step (3.9)

fails, then p is not a k-inductive invariant but it could still be a program invariant.

Thus, k-induction is a sound but incomplete proof technique.

By considering multiple consecutive transitions, k-induction can prove invariants

that cannot be proved by standard induction (0-induction in this formulation). For

example, the invariant x 6= y of the transition M(I : (x = 0 ∧ y = 1 ∧ z = 2)0,

Tn : xn = yn−1 ∧ yn = zn−1 ∧ zn = xn−1) that rotates the values 0, 1, 2 through the

variables x, y, z is not provable by standard induction, but is k-inductive with k ≥ 3.

The notation (P )i denotes the formula P with all free variables subscripted by i,

e.g., (x+ y = 1)0 is x0 + y0 = 1.
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3.5.2 k-Induction and SMT Solving

Figure 3.12 outlines the algorithm for verifying a property p using iterative k-

induction with SMT solving. The algorithm consists of a loop that performs in-

cremental k-induction, starting from k = 0. The loop terminates when either the

base case fails (P is not an invariant), both the base case and the induction step are

proved (P is an invariant), or maxK is reached. In the last case, we say that P is not

a maxK-inductive invariant.

We use two independent SMT solvers Sb and Ss to check the two formulas cor-

responding to the base case (3.8) and induction step (3.9).5 For a solver S and a

formula f , we append f to S through assertions and check if the assertions a1, . . . , an

in S imply f using entailment [De Moura and Bjørner, 2008]. If S does not entail f ,

then the solver returns a counterexample (cex) satisfying a1 ∧ · · · ∧ an but not f .

3.5.3 The Architecture of KIP

At a high level, proving a candidate invariant against a program requires two steps:

(i) computing a formula that encodes the program's semantics, and (ii) deciding

whether the candidate invariant is consistent with that formula or not. To increase

expressive power in practice, the prover also (iii) incorporates knowledge of all in-

variants learned thus far.

Figure 3.13 outlines the architecture of KIP to verify a set P of candidate ob-

tained at location L for program S. We �rst generate from the program S and the

location L the formulas I, T to represent the state transition M = (I, T ) described

above. Essentially, the formulas I, T are veri�cation conditions (vcs) based on weak-

est pre-conditions (wps) from program analysis using Floyd-Hoare logic [Floyd, 1967,

5The two SMT solvers can share the same implementation: �independent� merely indi-
cates that they may hold di�erent assumptions at runtime.
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procedure KIP(S,L, P )
I, T ← vcgen(S,L) . veri�cation conditions from S to check properties at L
Pp, Pd, Pu ← ∅

repeat
Newp, Newu ← ∅
for p ∈ P do

r ← kprove(I, T, p)
if r = proved then

Pp.add(p);Newp.add(p)
else if r = unproved then

Newu.add(p)
else

Pd.add(p)

until Newp = ∅ ∨ Newu = ∅

Pu ← P
Pi, Pr = checkRedundancy(Pp)
return Pi, Pr, Pd, Pu

Figure 3.13: Algorithm to verify candidate invariants. Pi and Pr are proved results, but Pr

is redundant because Pi ⇒ Pr. Pd is disproved, and Pu is unknown.

Hoare, 1969]. The backward analysis method [Dijkstra, 1975] provides the necessary

rules to create I, T for imperative programming constructs such as assignments, con-

ditional branches, and loops. This area is well-established; tools such as Microsoft

Boogie [Leino, 2008] and ESC [Flanagan et al., 2002] implement various methods

based on backward analysis to automatically generate vcs using wps.

KIP progresses by trying to prove the invariants in the context of the vcs. While

unproved invariants remain, KIP re-attempts to prove them by adding newly proved

results as lemmas to KIP. In many cases, this additional knowledge allows KIP to

prove properties that could not be proved previously (see Section 3.6.1). A disproved

invariant is likely spurious, a proved invariant is de�nitely correct, and an unproved

invariant (e.g., one that is not maxK-inductive) can be conservatively rejected.

KIP's design admits a parallel implementation, checking candidate invariants (the
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for loop in Figure 3.13) simultaneously using multiple threads. In a post-processing

step, KIP uses implication to partition all proved invariants into two sets: those that

are independent, i.e., strongest and those that are implications of others, i.e., weaker.

Implied invariant are redundant and need not be presented to the developer. This

partitioning uses the backend SMT solver to check if each invariant p ∈ Pp can be

inferred by the conjunction of the other proved invariants Pp \ {p}.

To summarize, KIP combines several established techniques and provides the �ve

properties we desire for the e�cient veri�cation of complex invariants: (i) use of k-

induction for expressive power; (ii) use of SMT solvers for reasoning about program-

critical theories like nonlinear arithmetic; (iii) incorporate lemmas iteratively to prove

otherwise non-inductive properties; (iv) explicit parallelism for performance; and (v)

removing weaker implied results for human consumption.

3.6 Experiments

The invariant analysis prototype DIG is implemented in Python using the Sage

mathematical environment [Stein et al., 2015]. DIG uses built-in Sage functions

to solve equations and construct convex hulls for classical polyhedra, and it uses

TPLib [Allamigeon and Katz, 2013] to manipulate max and min-plus polyhedra.

The prover prototype KIP is also implemented in Python and uses the Z3 [De Moura

and Bjørner, 2008] solver to check the satis�ability of SMT formulas. The website

https://bitbucket.org/nguyenthanhvuh/dig/ contains the source code of DIG

and KIP, benchmark programs, and experimental results given in this chapter.

To evaluate the e�ciency and expressive power of the hybrid approach of DIG

and KIP, we consider the two research questions:

• Can DIG and KIP together e�ectively generate on complex correctness prop-

erties, such as those that are not classically inductive or involve nonlinear
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arithmetic, and prove them correct?

• Can DIG and KIP together e�ciently discover powerful disjunctive invariants

and prove them correct?

To investigate the �rst question, we applied DIG to a benchmark suite of algo-

rithms involving nonlinear arithmetic [Nguyen et al., 2012]. To investigate the second

question, we used a benchmark suite of kernels consisting of abstractions of string

and array processing and involving disjunctive information [Nguyen et al., 2014b].

Each program was run on 300 random inputs to provide traces for invariant

generation and 100 random inputs for �ltering. For small kernels, this yields traces

that are su�cient to generate accurate invariants [Nimmer and Ernst, 2002, Sharma

et al., 2013b]. These programs include annotated invariants at various locations

such as loop heads and function exits. For evaluation purposes, we instrumented the

values of variables at those locations and generated invariants among the resulting

traces.

DIG �rst generates equality relations and then proceeds to generate inequali-

ties, using the deduction method when additional information such as loop guards is

available. By default, DIG automatically �nds the octagonal relations given in Sec-

tion 3.2.3, and it does not generate general inequalities using the polyhedral method

unless the user speci�es it. The tool generates only the weak linear max and min-

plus relations given in Section 3.3.3 unless the number of variables is three or less,

in which case it is also practical to use the general forms. The prototype KIP sets

maxK = 5 by default and takes as input the veri�cation conditions corresponding

to M = (I, T ) (Section 3.5.3); a more e�cient tool such as Microsoft Boogie could

also be used to generate these veri�cation conditions. The experiments reported here

were performed on a 32-core 2.60GHz Intel Linux system with 128 GB of RAM; KIP

used 64 threads of parallelism.

68



Chapter 3. Polynomial Invariants

3.6.1 Nonlinear Invariants

We evaluate DIG on complex programs, such as those that are not classically induc-

tive or use nonlinear arithmetic, by studying the NLA (nonlinear arithmetic) test

suite [Nguyen et al., 2012]. The suite, shown in Table 3.3, consists of 27 programs

from various sources collected previously by Rodríguez-Carbonell and Kapur [Car-

bonell, 2006, Carbonell and Kapur, 2007, Rodríguez-Carbonell and Kapur, 2007].

These programs are relatively small, on average two loops of 20 lines of code each.

However, they implement nontrivial mathematical algorithms and are often used to

benchmark static analysis methods [Carbonell, 2006]. The documented correctness

assertions for these 27 programs require nonlinear invariants, mostly equalities among

nonlinear polynomials.

For these programs, we generate and check loop invariants of two polynomial

forms: nonlinear equations and linear max-plus inequalities among program vari-

ables. In this experiment, we de�ne a single parameter α = 200 to bound DIG's

running time. DIG automatically adjusts the maximum degree so that the number

of generated terms does not exceed α. For example, the tool will consider invariants

up to degree 5 for a program with four variables and invariants up to degree 2 for a

program with twelve variables.

Table 3.3 reports experimental results. The number of generated invariants shown

in the Gen column speaks to the expressive power of the algorithm: higher is better,

indicating that DIG can reason about more complex relationships over program

variables. Time indicates the e�ciency of DIG: lower is better. The generated

invariants were disproved three times as often as they were proved redundant. The

signi�cant presence of invariants requiring k-induction or learned lemmas validates

the KIP architecture design choice. KIP is able to formally validate 118 of the

generated invariants, or 4.3 per program on average, proving them correct and non-
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redundant. Some of the theorem prover queries issued caused the underlying Z3

SMT solver to return an unknown error or to stop responding. These errors are

likely due to recent revision in Z3 to support nonlinear arithmetic, and we reported

these errors to the developers. In the interim, however, such candidate invariants

must be rejected.

Ultimately, the invariants generated and validated by DIG can be used to stat-

ically prove the correctness of 22 of these 27 programs using Floyd-Hoare logic. Of

the remainder, divbin and hard require novel invariant forms, egcd1 requires in-

variants that are not k-inductive, and prodbin and dijkstra are correct but beyond

the capability of current SMT solvers. For the �rst type, divbin requires the invari-

ant ∃k.x = 2k, and DIG does not currently support exponential forms. The hard

program also has exponential invariants. For the second type, DIG generates three

nonlinear equalities that precisely capture egcd1's semantics, and manual inspection

veri�es that they are not k-inductive for any k, and thus KIP does not prove them.

For the third type, DIG generates invariants that precisely capture the semantics

of prodbin and dijkstra and KIP can process them, but the backend SMT solver

hangs instead of proving them (we manually veri�ed that they are otherwise correct).

Thus, KIP could prove two more programs with an improved SMT solver, two more

programs with a better theorem prover architecture, but it could not prove the last

without a new algorithm for invariant generation.

3.6.2 Disjunctive Invariants

We also evaluate DIG on several benchmark kernels for disjunctive invariant anal-

ysis [Allamigeon et al., 2008], listed in Table 3.4. These programs typically have

many execution paths, e.g., oddeven5 contains 12 serial conditional blocks and thus

212 possible execution paths through the program. The documented correctness as-
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sertions for these programs require reasoning about disjunctive invariants,6 but do

not involve higher-order logic. For example, the sorting algorithms are asserted to

produce sorted output, but are not asserted to produce a permutation of the input.

Table 3.4 shows the experimental results, in a format similar to that of Table 3.3.

The table shows that the DIG approach is e�cient. DIG can infer about 3000

disjunctive relations per minute, on average, and KIP validates about 300 per minute

using the 32-core Linux system mentioned earlier. DIG is also e�ective; it produced

264 non-redundant, proved-correct disjunctive invariants, and those invariants were

su�cient to statically prove each program's contract. For all of these programs, the

invariants generated and validated by DIG�an average of 18 per program�were

su�cient for a static proof of program correctness.

For example, for the C string function strncpy, which copies the �rst n characters

from a (null-terminated) source s to a (unconstrained) destination d, DIG inferred

the relation:

(n ≥ |s| ∧ |d| = |s|) ∨ (n < |s| ∧ |d| ≥ n)

This captures the desired semantics of the function: if n ≥ |s|, then the copy stops

at the null terminator of s, which is also copied to d, so d ends up with the same

length as s. However, if n < |s|, then the terminator is not copied to d, so |d| ≥ n.

As a second example, for bubbleN and oddevenN , which sort the input elements

x0, . . . , xN and store the results in y0, . . . , yN , DIG's generated invariants prove the

outputs y0 and yN hold the smallest and largest elements of the input. However,

DIG cannot show that y is a permutation of x because that is only expressible using

higher-order logics, but the obtained invariants here are similar to those of purely

6Note that this suite is relatively small. Max-plus algebra is still relatively new, and
although it has practical applications such as network tra�c shaping [Daniel-Cavalcante
et al., 2006, Heidergott and van der Woude, 2006] and biological sequence alignment [Comet,
2003], to our knowledge this is the �rst work on dynamic inference for max-plus invariants
and, thus, few benchmarks are yet available.
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static analyses [Allamigeon et al., 2008].

3.7 Summary

This chapter presented DIG, the �rst dynamic invariant generator that discovers

conjunctions and disjunctions of polynomial relations over numerical variables. To

�nd conjunctions of nonlinear equalities, DIG generates terms representing nonlin-

ear polynomials among variables and uses an equation solver to �nd linear relations

among the terms; this yields nonlinear relations among the original variables. DIG

represents a conjunction of inequalities using geometric shapes and reduces the task

for inferring general inequalities to generating convex polyhedra. To �nd the max-

plus class of disjunctive polynomial invariants, we reformulate the problem of convex

invariant detection in a non-standard max-plus algebra. DIG generates terms and

then builds max-plus polyhedra consisting of nonconvex facets represented by the

desired disjunctive invariants. DIG gains expressive power with dual min-plus con-

straints, capturing if-and-only-if behavior. By generating invariants directly based

on input traces, DIG produces very accurate results with respect to given traces. To

deal with spurious results, we presented KIP, a parallel k-inductive SMT theorem

prover, and integrated it with DIG to formally check candidate invariants statically

against program code.

We evaluate DIG using di�cult benchmark kernels involving nonlinear arithmetic

and abstract arrays. DIG is e�cient and e�ective at �nding and validating disjunc-

tive, nonlinear and complex invariants. Ultimately, DIG �nds and veri�es invariants

that are powerful enough to prove 36 of 41 programs from the given benchmark suites

correct using Floyd-Hoare logic, taking two minutes per program, on average, and

producing no spurious answers.
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Program Loc Var Gen TGen(s) Val kI TVal(s) Strength

cohendiv 2 6 152 26.2 7 14 8.2 X
divbin 2 5 96 37.7 8 15 8.7 �
manna 1 5 49 19.2 3 2 5.6 X
hard 2 6 107 14.2 11 4 9.2 �
sqrt1 1 4 27 25.3 3 1 4.3 X
dijkstra 2 5 61 30.7 8 6 10.9 �
freire1 1 3 25 22.5 2 0 2.2 X
freire2 1 4 35 26.0 3 1 5.1 X
cohencb 1 5 31 23.6 4 1 4.2 X
egcd1 1 8 108 43.1 1 8 12.8 �
egcd2 2 10 209 60.8 8 12 14.6 X
egcd3 3 12 475 67.0 14 25 23.4 X
lcm1 3 6 203 38.9 12 0 14.2 X
lcm2 1 6 52 14.9 1 10 0.9 X
prodbin 1 5 61 28.3 3 10 1.1 �
prod4br 1 6 42 9.6 4 7 8.6 X
fermat1 3 5 217 75.7 6 1 6.2 X
fermat2 1 5 70 25.8 2 0 5.2 X
knuth 1 8 113 57.1 4 6 24.6 X
geo1 1 4 25 16.7 2 4 1.5 X
geo2 1 4 45 24.1 1 10 2.1 X
geo3 1 5 65 22.1 1 12 2.7 X
ps2 1 3 25 21.1 2 0 4.0 X
ps3 1 3 25 21.9 2 0 4.2 X
ps4 1 3 25 23.5 2 0 4.9 X
ps5 1 3 24 24.9 2 0 7.4 X
ps6 1 3 25 25.0 2 0 69.5 X

total 2392 825.9 118 149 266.3 22/27

Table 3.3: Nonlinear arithmetic experimental results. The Loc column lists the number of
locations where invariants were generated. The Var column reports the number of distinct
variables involved in the invariants. The Gen column counts the number of unique candi-
date invariants generated by DIG. The TGen column reports the generation and �ltering
time, in seconds, averaged over �ve runs. The Val column reports the number of gener-
ated invariants that KIP proved correct and non-redundant with respect to the program.
The kI column counts the number of invariants that require k-induction to be proved or
disproved. The TVal column counts the time, in seconds, to analyze all of the generated
invariants. The Strength column indicates whether the validated invariants were su�cient
to prove program correctness using Floyd-Hoare logic. These benchmark NLA programs
and experimental results are available at https://bitbucket.org/nguyenthanhvuh/dig/.
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Program Loc Var Gen TGen(s) Val TVal(s) Strength

ex1 1 2 15 0.2 4 1.5 X
strncpy 1 3 69 1.1 4 7.7 X
oddeven3 1 6 286 3.7 8 16.0 X
oddeven4 1 8 867 12.7 22 46.0 X
oddeven5 1 10 2334 56.8 52 1319.4 X
bubble3 1 6 249 4.1 8 4.9 X
bubble4 1 8 832 11.7 22 47.6 X
bubble5 1 10 2198 53.9 52 938.2 X
partd3 4 5 479 10.5 10 50.8 X
partd4 5 6 1217 23.3 15 181.1 X
partd5 6 7 2943 53.3 21 418.1 X
parti3 4 5 464 10.3 10 45.5 X
parti4 5 6 1148 22.4 15 165.1 X
parti5 6 7 2954 53.6 21 405.6 X

total 16055 317.6 264 3647.5 14/14

Table 3.4: Disjunctive invariant experimental results. Loc lists the number of locations
where invariants were generated. Var reports the number of distinct variables involved in
the invariants. Gen counts the number of unique candidate invariants generated by DIG.
TGen reports the generation and �ltering time, in seconds, averaged over �ve runs. Val
reports the number of generated invariants that KIP proved correct and non-redundant
with respect to the program. TVal counts the time, in seconds, to analyze all of the
generated invariants. Strength indicates whether the validated invariants were su�cient
to prove program correctness using Floyd-Hoare logic. These benchmark programs and
experimental results are available at https://bitbucket.org/nguyenthanhvuh/dig/.
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Chapter 4

Array Invariants

�Bad programmers worry about the code. Good programmers worry about

data structures and their relationships." � Linus Benedict Torvalds1

This chapter is about the dynamic generation of array invariants from traces.

We formally introduce and analyze a form of nested relation among arrays. DIG

implements algorithms developed in the analysis to generate array invariants that

appear in many applications. Parts of this chapter have been published in [Nguyen

et al., 2012, 2014a]. The complexity analysis of the array nesting problem is a

collaboration with Matthias Horbach.

4.1 Introduction

Arrays are a widely-used data structure that is fundamental to many programs. For

example, in Hoare's seminal 1971 paper on algorithm veri�cation, Proof of a program:

FIND, the overall goal is to prove an array invariant that lies at the heart of the

correctness of quicksort [Hoare, 1971, p.40]. Many data structures, including lists,

1Finnish-American software engineer, who was the principal force behind the develop-
ment of the Linux kernel (1969 � present).
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strings, heaps, queues, stacks, and hash tables, are frequently implemented on top

of arrays. Fixed-size arrays are also present in many system programs, and proper

analysis is often critical for security, e.g., bu�er overruns. Finally, the ubiquity of

arrays in general software makes reasoning about arrays crucial for performance, e.g.,

for bounds check elimination [Bodík et al., 2000].

This chapter describes methods for analyzing complex relations among multidi-

mensional array variables that appear in real-world applications. For example, these

array relations are involved in over one half of the required invariants in a well-known

AES (Advanced Encryption Standard) implementation [Yin et al., 2009]. First, we

show that the generation of a certain form of nested relations among arrays is re-

lated to the mathematical problem of composing functions. Then, we prove that both

problems are strongly NP-complete in the number of arrays or functions involved, but

they can be solved in polynomial time in the number of array elements or function in-

puts. These results establish the run-time complexity for both problems and suggest

directions to develop techniques for solving them.

Based on this theoretical work, we develop techniques in DIG to discover array

invariants, including nested and �at relations among multidimensional array vari-

ables. To �nd these invariants, DIG employs equation solving, performs reachability

analysis, and then encodes the problem as a satis�ability problem that can be han-

dled by an SMT solver. The integration of equation and SMT solvers allows DIG to

analyze e�ciently complex array invariants that have not been previously considered

by either static or dynamic methods. Experimental results provide evidence that

DIG is e�ective at generating invariants for practical software like AES.

4.1.1 Contributions

We make the following contributions to the dynamic inference of array invariants in

this chapter:
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• Complexity Analysis (Section 4.2). We formally analyze the relation between

the problem of �nding of nested relations among arrays and the task of com-

posing functions. We prove the complexity of both problems to be strongly

NP-complete in the number of involved functions or arrays and show that they

are polynomial in the sizes of the functions or arrays.

• Nested Array Relations (Section 4.3). We implement of the algorithms devel-

oped in Section 4.2 to infer nested array relations among array variables with

multiple dimensions and functions of multiple arguments. In particular, we

encode the problem of �nding nested array relations as a satis�ability problem

that can be e�ciently solved by an SMT solver.

• Flat Array Relations (Section 4.4). We use equation solving to dynamically

infer �at relations among multidimensional array variables from program exe-

cution traces. The technique also identi�es �at relations over certain subsets

of array elements, i.e., a form of conditional invariant.

• Experimental Evaluation (Section 4.5). We empirically evaluate DIG on a full

implementation of the AES encryption algorithm that contains many array

invariants. DIG successfully discovers all annotated invariants of the considered

forms of array relations.

4.2 Function Composition and Array Nesting

In this section, we provide a theoretical framework for �nding a form of nested

relation among arrays. We �rst de�ne the problem of function composition and

analyze the complexity of this problem and its variants. We then show that �nding

nested array relations is a special case of composing functions and present e�cient

algorithms for �nding these relations.
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4.2.1 The Function Composition (FC) problem

Functions, which describe the relation between a set of inputs (a domain) and a

set of outputs, are �the central objects of investigation� in most �elds of modern

mathematics [Spivak, 2006]. In mathematics and computer science, the function

composition problem searches for applications of functions to produce a target func-

tion. For example, applying f : Y → Z to g : X → Y yields a function mapping

x ∈ X 7→ (f ◦ g)(x) ∈ Z. The problem has many practical values, e.g., computer

programs are typically written by composing smaller programs or functions.

This research focuses on the composition of functions with �nite domains. Car-

dinal examples of �nite functions include the array data structure, because an array

of size n can be viewed as a function that takes inputs from the �nite set of indices

{0, . . . , n − 1}. In practice, in�nite functions are often treated as partial functions

that operate on a �nite set of inputs. For example, the correctness of a program

function, which might be de�ned over an in�nite domain, is usually tested only over

a �nite set of test inputs. Many test input generation techniques aim to create small

test suites with high code coverage [Gupta and Heidepriem, 2003, Harder et al., 2003,

Xie and Notkin, 2003].

Let f be a unary function with a �nite domain and G be a �nite set of unary

functions with �nite domains. The size of a function is the cardinality of the function

domain, e.g., |f | = |dom(f)|. A function composition from G is an ordered tuple

(g1, . . . , gl) from G, where the gi's are distinct, i.e., i 6= j ⇒ gi 6= gj. Section 4.2.3

generalizes this de�nition to allow repeats in the compositions and to support func-

tions with multiple input arguments.

De�nition 4.2.1 (The Function Composition (FC) problem). Given a function f

and a set G of functions as de�ned above, does there exist a composition from G that
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produces f? That is, a composition (g1, . . . , gl) from G such that

∀x ∈ dom(f). f(x) = g1(· · · (gl(x)) . . . )? (4.1)

Example 4.2.2. The composition (g1, g4) from G = {g1 = {j 7→ y, v 7→ z, k 7→

v}, g2 = {v 7→ y, y 7→ z}, g3 = {a 7→ k, b 7→ j}, g4 = {a 7→ j, b 7→ v}} produces

f = {a 7→ y, b 7→ z}. Another composition from G that produces f is (g2, g1, g3).

4.2.2 Complexity of FC

Because the FC problem takes as input a set G of functions and a function f , we

analyze the complexity of FC with respect to |G|, the size of G and in |f |, the size

of f . We �rst show that FC is strongly NP-complete in |G|, denoted as NPC|G|, when

|G| is the dominant parameter. That is, when |G| is asymptotically equivalent to or

larger than f , e.g., |f | is polynomial in G. We then show that FC can be solved in

polynomial in |f |, denoted as P|f |, when |f | is dominant, e.g., |G| is constant or less

than polynomial in |f |.

Theorem 4.2.3. If |f | is polynomial in |G|, then FC is strongly NPC|G|.

Proof. The proof consists of two parts that show (i) FC is in NP|G| and (ii) is at least

strongly NP|G|-Hard. FC is in NP|G| because verifying that a composition of length l

from G producing f , i.e., checking the relation given in Equation (4.1), takes O(l|f |),

which is polynomial in |G| with |f | is polynomial in |G| and l ≤ |G|.

FC is strongly NP|G|-Hard by the reduction from Exact Covering (EC), a well-

known strongly NPC problem introduced by Karp [Karp, 2010] and de�ned as follows.

De�nition 4.2.4 (The Exact Covering (EC) problem). Given a collection S =

{S1, . . . , Sq} of subsets of a set X = {x1, . . . , xp}, does there exist a subcollection (or

an exact cover) S ′ ⊆ S such that each xi ∈ X occurs in exactly one subset of S ′?
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Example 4.2.5. Given the sets S = {{5}, {7}, {0, 7}, {−2, 0}, {−2, 5, 7}} and X =

{−2, 0, 5, 7}, the subcollection {{5}, {7}, {−2, 0}} from the set S is the only exact

cover of the set X. The subcollection {{5}, {7}, {0, 7}, {−2, 0}} of S is not an exact

cover of X because 0 appears in both {0, 7} and {−2, 0}.

The reduction from an arbitrary instance of EC with S = {S1, . . . , Sq} and X =

{x1, . . . , xp} to a speci�c instance of FC consists of two steps. In the following,

⊥ denotes the value 1 + 2p, y′ the value y + p, and h = [y0, . . . , yk] the function

h = {0 7→ y0, . . . , k 7→ yk}, i.e., an array-like function that takes as inputs the �nite

set of non-negative integers {0, . . . , k}.

• Create a function f = [⊥, 1′, 2′, . . . , p′], i.e., a function of size p+ 1.

• For each Si ∈ S, create a function gSi
of size 2p+ 1 using the rules

gSi
[y∈{0,...,2p}] 7→


y′, if xy ∈ Si

⊥, if xy−p ∈ Si

y, otherwise

This reduction is polynomial in |S| and transforms an arbitrary EC instance

to a speci�c FC instance, which consists of array-like functions.2 The reduction

guarantees that the input EC problem has a solution if and only if the resulting FC

problem has a solution.3 Function gSi
maps the input y to the special value y′ if

xy ∈ Si. Essentially, y′ speci�es that y has been used as a valid input previously. In

the input EC problem, this means xy has been covered by some set Si. If y′ is later

used as input to a function gSj
that has y ∈ Sj, then gsj maps y′ to ⊥ to indicate an

2There are other (potentially) simpler reductions from EC to FC. However, the presented
reduction, which constructs array-like functions, can easily apply to the Array Nesting
problem in Section 4.2.4.

3Note that |S| = O(2|X|) because S contains the subsets of X. Thus, this reduction
from EC shows that the FC problem is strongly NPC|G| even when N is log(|G|).
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invalid composition. In the input EC problem, the sets Si and Sj cannot be part of

an exact cover because xy is in both of sets.

Example 4.2.6. The EC instance from Example 4.2.5 is reduced to the following

FC instance:
f = [⊥, 1′, 2′, 3′, 4′]

and

G = { g{5} = [⊥, 1, 2, 3′, 4, 1′, 2′,⊥, 4′],

g{7} = [⊥, 1, 2′, 3, 4′, 1′, 2′, 3′,⊥],

g{0,7} = [⊥, 1, 2′, 3, 4′, 1,⊥, 3′,⊥],

g{−2,0} = [⊥, 1′, 2′, 3, 4,⊥,⊥, 3, 4],

g{−2,5,7} = [⊥, 1′, 2, 3′, 4′,⊥, 2,⊥,⊥] }.

This reduced FC instance has only one composition (g{7}, g{5}, g{−2,0}) producing

f , corresponding to the only exact cover {{7}, {5}, {−2, 0}} in the input EC instance.

Because FC is strongly NPC|G|, the problem remains NPC even when all of its

numerical parameters, e.g., the values of the elements in the functions and domains,

are small in the size of G (bounded by a polynomial of |G|). Readers who are

interested in knowing more about the two important classes of strongly and weakly

NPC should refer to [Wisniewski, 2006].

In general, unless P = NP, FC is not likely to have a polynomial algorithm in

|G|. However, in practice, the sizes of the functions typically exceed the number

of functions, which is usually a �xed number. The following shows that FC can be

solved in polynomial time in |f | when |G| is constant.

Theorem 4.2.7. If |G| is constant, then FC is in P|f |

Proof. FC can be solved by enumerating all possible compositions (g1, . . . , gl) from

G over di�erent lengths l = 1, . . . , |G| and checking if any of these compositions
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produces f . The set G contains |G|!
l!(|G|−l)! subsets of size l, where each subset has l!

compositions. Thus, G has |G|!
(|G|−l)! compositions of size l. Moreover, checking if a

composition of length l produces f , i.e., verifying the relation given in Equation (4.1),

takes O(l|f |). In total, this algorithm has the complexity

|G|∑
l=1

|G|!
(|G| − l)!

×O(l|f |), (4.2)

which is in P|f | because l is bounded by the constant |G|.

4.2.3 Generalizations of FC

Functions often take multiple input arguments and can be used more than once in

various composition situations, e.g., recursive calls. We now generalize the de�nition

of FC to allow repeats in the composition and to support functions with multiple

arguments. We then show that the complexity of these generalizations are similar to

those of FC, i.e., NPC in |G|, but can be solved in polynomial time in |f |.

De�nition 4.2.8 (FC with bounded repeats (r-FC)). Given a function f , a set G of

functions as in De�nition 4.2.1, and an integer d ≥ 1, does there exist a composition

from Gd that produces f , where Gd is a multiset containing d copies of each function

in G?

We note that r-FC can be treated as a version of FC by labeling the functions in

Gd, e.g., the d copies of gi are labelled as g1i , . . . , g
d
i . Because |Gd| is only a constant

factor d larger than |G|, the analysis of FC in Section 4.2.2 also applies to r-FC.

Corollary 4.2.9. If |f | is polynomial in |G|, then r-FC is strongly NPC|G|

Proof. r-FC is in NP|G| because checking if a composition from Gd produces f takes

O(l|f |), and |f | and the length l of the composition are both polynomial in |G|.
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Moreover, r-FC is at least strongly NP|G|-Hard because FC is a speci�c instance of

r-FC with d = 1.

Corollary 4.2.10. If |G| is constant, then r-FC is in P|f |

Proof. The polynomial time algorithm to enumerate compositions for FC in Theo-

rem 4.2.7 also applies to r-FC. The resulting complexity, analogous to Equation (4.2)

with Gd replacing G, is also in P|f | because |Gd| = d|G| is constant with both d and

|G| are constants.

De�nition 4.2.11 (FC with functions with multiple inputs (k-FC)). Given a func-

tion f with k input arguments, i.e., a k-ary function, and a set G of k-ary functions,

where the integer k ≥ 1, does there exist a composition from G that produces f?

Example 4.2.12. Basic binary functions, e.g., AND, OR, XOR, are often used to

build complex digital circuits such as multiplexers, memory controllers, and micro-

processors. For example, the XOR ⊕ gate can be composed from a set of NAND ↑ gates

as x⊕ y =↑ (x ↑ (x ↑ y)) ↑ (y ↑ (x ↑ y)).

Corollary 4.2.13. If |f | is polynomial in |G|, then k-FC is strongly NPC|G|

Proof. k-FC is in NP|G| because checking if a composition from G produces f takes

O(l|f |), where both |f | and the size l ≤ |G| of the composition are polynomial in

|G|. Moreover, k-FC is NP|G|-Hard because FC is a speci�c instance of k-FC with

k = 1.

Corollary 4.2.14. If |G| is constant, then k-FC is in P|f |

Proof. The polynomial time algorithm to enumerate compositions for FC in Theo-

rem 4.2.7 also applies to k-FC. However, more compositions are generated from a set

of l k-ary functions than from a set of l unary functions. In fact, the enumeration of

function compositions for k-FC is equivalent to the counting of trees, a well-known

combinatorial problem summarized below.
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De�nition 4.2.15. The tree counting problem asks for Ck
l , the number of full k-ary

trees4 that can be formed using l unlabeled nodes. This number, also known as the

Fuss-Catalan number, has the closed form Ck
l = 1

(k−1)l+1

(
kl
l

)
. The number of trees

increases to l!Ck
l when the nodes are labelled, i.e., the position of each node in the

tree matters.

Example 4.2.16. Figure 4.1 depicts the formulation of two binary trees using two

unlabeled nodes. Figure 4.2 depicts the formulation of four binary trees using two

labelled nodes. In these �gures, • represents an unlabeled node, •i represents a node

with label i, and − represents a leaf.

•

−•

−−

•

•

−−

−

Figure 4.1: The formulation of binary trees using two unlabelled nodes

•1

−•2

−−

•1

•2

−−

−

•2

−•1

−−

•2

•1

−−

−

Figure 4.2: The formulation of binary trees using two labelled nodes

By modeling functions as labelled tree nodes, the enumeration of compositions

from l k-ary functions is equivalent to the counting of k-trees with l labelled nodes.

Thus, the enumeration algorithm given in Theorem 4.2.7 produces l!Ck
l compositions

of size l from G. In total, the complexity of solving the k-FC problem is
|G|∑
l=1

|G|!Ck
l

(|G| − l)!
×O(l|f |), (4.3)

4A full k-ary tree is a rooted tree in which each node has exact k children
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which is also in P|f | because l is bounded by the constant |G|.

4.2.4 The Array Nesting (AN) problem

As mentioned, arrays can be viewed as a speci�c class of functions that operates

over a �nite, non-negative integral domain {0, . . . , n− 1} representing array indices.

Due to this relation, the analysis for functions in Section 4.2.1 also applies to the

following problem of �nding nested relations among arrays, a form of relation that

appears in many applications.

Let a be a 1-dimensional array and B be �nite set of 1-dimensional arrays. The

size of an array is the cardinality of its domain or its set of indices, e.g., dom(a) =

{0, . . . , |a|}. An array nesting from B is an ordered tuple (b1, . . . , bl) of B, where

the bi's are distinct, i.e., i 6= j ⇒ bi 6= bj. Section 4.2.6 generalizes this de�nition to

allow repeats in the nesting and to support multidimensional arrays.

De�nition 4.2.17 (The Array Nesting (AN) problem). Given an array a and a set

B of arrays as de�ned above, does there exist a nesting from B that produces a? That

is, a nesting (b1, . . . , bl) from B such that

∀i ∈ dom(a). a[i] = b1[. . . bl[i] . . . ] ? (4.4)

De�nition 4.2.18 (The Array Nesting 2 (AN2) problem). Given an array a, a set

B of arrays as de�ned above, and the reals z′, z′′, w′, w′′, does there exist a nesting

(b1, . . . , bl) from B and two reals (z, w), where z′ ≤ z ≤ z′′ and w′ ≤ w ≤ w′′, such

that

∀i ∈ dom(a). a[i] = b1[. . . bl[z + wi] . . . ] ? (4.5)

De�nition 4.2.19 (The Array Nesting 3 (AN3) problem). Given an array a, a set

B of arrays as de�ned above, and the reals x′, x′′, y′, y′′, z′, z′′, w′, w′′, does there exist

a nesting (b1, . . . , bl) from B and the reals x1, y1, . . . , xl, yl, z, w, where x
′ ≤ xi ≤ x′′,
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y′ ≤ yi ≤ y′′, z′ ≤ z ≤ z′′ and w′ ≤ w ≤ w′′, such that

∀i ∈ dom(a). a[i] = x1 + y1b1[. . . [xl + ylbl[z + wi]] . . . ] ? (4.6)

The reals c′i, c
′′
i in the de�nitions of AN2 and AN3 specify the ranges of the coef-

�cients ci. These explicit ranges allow for the reduction of one problem to another.

Speci�caly, AN is an instance of AN2 with z′ = z′′ = 0, w′ = w′′ = 1 and AN2 is an

instance of AN3 with x′ = x′′ = 0, y′ = y′′ = 1. Hence, in term of complexity, AN ⊆

AN2 ⊆ AN3.

Example 4.2.20. AN �nds nested array relations such as a[i] = b1[b2[i]], AN2 �nds

relations such as a[i] = b1[b2[2i+ 3]], and AN3 �nds relations such as a[i] = −2b1[4 +

1
5
b2[2i+ 3]].

Note that the FC problem in De�nition 4.2.1 generalizes AN because array is a

special class of function. However, AN2 and AN3, the generalizations of AN, are not

related to FC, i.e., neither AN2 nor AN3 reduces to FC, and vice versa.

4.2.5 Complexity of the AN's

Similar to the study of FC in Section 4.2.2, we analyze the complexity of the AN

problems in |B|, the size of the set B of arrays and |a|, the size of array a. We show

that AN problems are strongly NPC|B| when |B| is the dominant factor and in P|a|

when |a| is the dominant parameter.

Theorem 4.2.21. If |a| is polynomial in |B|, then AN is strongly NPC|B|

Proof. This proof is similar to the proof of Theorem 4.2.3 showing that FC is NPC.

First, AN is in NP|B| because it is an instance of FC. Next, AN is strongly NP-Hard

by the same reduction from the Exact Cover problem, with arrays a and bi ∈ B

represented by functions f and gi ∈ G, respectively.
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Corollary 4.2.22. If |a| is polynomial in |B|, then both AN2 and AN3 are strongly

NPC|B|

Proof. AN2 is in NP|B| because checking the relation given in Equation (4.2.18) from a

nesting {b1, · · · , bl} and a pair of reals (z, w) is polynomial in |B|. Similarly, AN3 is in

NP|B| because checking the relation given in Equation (4.2.19) from {b1, · · · , bl} and

(x1, y1, . . . , xl, yl, z, w) is in P|B|. AN2 and AN3 are both at least NP-hard because

AN can be reduced to AN2 with (z′ = z′′ = 0, w′ = w′′ = 1) and to AN3 with

(x′ = x′′ = 0, y′ = y′′ = 1, z′ = z′′ = 0, w′ = w′′ = 1).

In real-world applications, the number of array elements often exceeds the number

of arrays involved, which is usually a �xed number. The following proves that AN3 is

in P|a| when the number of array elements is the dominant parameter. This implies

that AN2 and AN, which are speci�c instances of AN3, are also in P|a|. The proof

of AN3 in P|a| relies on the solutions to the following auxiliary problems.

De�nition 4.2.23 (The Array Nesting 3a (AN3a) problem). Given an array nesting

(b1, . . . , bl) from B and the inputs a, x′, x′′, y′, y′′, z′, z′′, w′, w′′ from AN3, does there

exist the reals x1, y1, . . . , xl, yl, z, w, where x
′ ≤ xi ≤ x′′, y′ ≤ yi ≤ y′′, z′ ≤ z ≤ z′′

and w′ ≤ w ≤ w′′, such that

∀i ∈ dom(a). a[i] = x1 + y1b1[. . . [xl + ylbl[z + wi]] . . . ] ? (4.7)

De�nition 4.2.24 (The Array Nesting 3b (AN3b) problem). Given a positive integer

l and the inputs a,B, x′, x′′, y′, y′′, z′, z′′, w′, w′′ from AN3, does there exist a nesting

(b1, . . . , bl) from B and the reals x1, y1, . . . , xl, yl, z, w, where x
′ ≤ xi ≤ x′′, y′ ≤ yi ≤

y′′, z′ ≤ z ≤ z′′ and w′ ≤ w ≤ w′′, such that

∀i ∈ dom(a). a[i] = x1 + y1b1[. . . [xl + ylbl[z + wi]] . . . ] ? (4.8)

AN3b is more explicit than AN3 because it requires that the size l of the nesting

be provided as an input. AN3a is even more explicit because its input includes a
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speci�c nesting (b1, . . . , bl). As with AN3, neither AN3a nor AN3b is related to the

FC problem, i.e., they do not reduce to FC, and vice versa.

We now present an algorithm to solve AN3a in polynomial time in the size of

array a. This algorithm is subsequently used to show that AN3b and AN3 are in P|a|.

Lemma 4.2.25. If |B| is constant and |bi| is polynomial in |a|, then AN3a is in P|a|.

Proof. The algorithm consists of two steps: (i) generating nesting relations of the

form given in Equation (4.7) for an arbitrarily chosen pair of elements (a[i], a[j]) and

then (ii) checking if any of these relations also holds for other elements of a.

• Generating Nesting Relations. We arbitrarily choose two distinct elements

a[i] 6= a[j] in array a and �nd all pairs of indices in b1 whose elements can

linearly express (a[i], a[j]). That is, for each pair (s1, t1) of indices in b1, we

construct a set of two equations {a[i] = x1 + y1b1[s1], a[j] = x1 + y1b1[t1]} and

then solve it for (x1, y1), subjecting to the constraints5 about the ranges of

x1, y1 from the input problem. The answer to the input AN3a problem is no

if no solution is obtained for (x1, y1). Otherwise, a solution (x1 = u1, y2 = v1)

means that (a[i], a[j]) can reach b1 through the elements (b1[s1], b1[t1]) with the

real-valued coe�cients (x1 = u1, y2 = v1). This reachability analysis gives the

nesting relation {a[i] = u1 + v1b1[s1], a[j] = u1 + v1b1[t1]}.

For each nesting relation {a[i] = u1 + v1b1[s1], a[j] = u1 + vb1[t1]} obtained at

b1, we again apply reachability analysis to check whether the indices (s1, t1) can

reach b2. If (s1, t1) reaches b2 through (b2[s2], b2[t2]) with (x2 = u2, y2 = v2),

then (a[i], a[j]) reaches (b2[s2], b2[t2]) by the relations {a[i] = u1 + v1b1[u2 +

v2b2[s2]], a[j] = u1+v1b1[u2+v2b2[t2]]}. Repeating the analysis for all bi's results
5Essentially, this is a linear programming problem and can be solved using methods

such as Simplex or Fourier-Motzkin in constant time because the number of constraints
and unknowns coe�cients are both constants.
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in a set of relations of the form {a[i] = u1 + v1b1[. . . [ul + vlbl[sl]] . . . ], a[j] =

u1 + v1b1[. . . [ul + vlbl[tl]] . . . ]} at bl. Finally, for each obtained relation at bl,

we construct a set of two equations {sl = z +wi, tl = z +wj} and solves it for

the coe�cients (z, w).

This step has polynomial time complexity in |a|. At b1, we create at most

|b1|2 or O(|b1|2) relations6. Each relation obtained from b1 produces O(|b2|2)

relations at b2. Thus, the number of relations is O(|b1|2|b2|2) at b2, and more

generally, is O(|b1|2 · · · |bl|2) at bl. Because |bi| is polynomial in |a|, this step

produces O(|a|2l) relations, which is polynomial in P|a| since l is bounded by

the constant |B|.

• Verifying Nesting Relations. This step checks if any of the obtained relations,

which are guaranteed to hold for the initially chosen pair of elements (a[i], a[j]),

holds for all elements of a. Verifying a relation of the form given in Equa-

tion (4.7) takes O(l|a|). Thus, the veri�cation of O(|a|2l) such relations is

O(|a|2ll|a|), which is in P|a| because l is bounded by the constant |B|.

When all elements of a are the same (or a has only one element), the algorithm

only needs to �nd a nesting relation that holds for the �rst element a[i = 0]. Thus,

the above analysis is performed to obtain all nesting relations of the form a[0] =

u1+v1b1[. . . [u2+vlbl[x]] . . . ]. Note that w can be anything within its range constraint

because i = 0. The veri�cation step is also not necessary because the nesting relation

that holds for a[0] also holds for other elements a[i] because all elements of a are the

same. The complexity of this algorithm is O(|a|l), which is in P|a| using similar

analysis as above.

6The number of ways to obtain an ordered subset of k elements from a set of n elements
is nPk = n!

(n−k)! . In this case, with k = 2 and n = |b1|, this becomes |b1|!
(|b1|−2)! = |b1|(|b1|−1) =

|b1|2 − |b1| or O(|b− 1|2).

89



Chapter 4. Array Invariants

A solution of the form given in Equation (4.7) that holds for all elements of Amust

also hold for the initially chosen pair of elements (A[i], A[j]). Thus, we can �nd such

a solution, if it exists, by trying all possible sets of relations generated by reachability

analysis on the two elements A[i], A[j]. Moreover, it is su�cient to apply the analysis

on two distinct, instead of all, elements of the 1-dimensional A because only two

independent equations are needed to solve for the pair of unknown coe�cients as

shown above. In general, we apply reachability analysis on tuples of k + 1 elements

of a k-dimensional array a (see the k-AN3 problem in Section 4.2.6) because the

nested relation now involves a linear expression consisting of k + 1 unknowns. The

analysis also has a polynomial time complexity when k is a �xed number.

We now apply this reachability analysis to solve the AN3b and AN3 problems. In

Section 4.3, we implement these solutions to discover nested array relations dynam-

ically from traces.

Lemma 4.2.26. If |B| is constant and |bi| is polynomial in |a|, then AN3b is in P|a|.

Proof. The AN3b problem can be solved by applying the reachability algorithm for

AN3a given in Lemma 4.2.25 on each nesting from the |B|!
(|B|−l)! nestings of size l

generated from the set |B|. This takes

O(
|B|!

(|B| − l)!
|a|2ll|a|),

which is in P|a| because l is bounded by the constant |B|.

Theorem 4.2.27. If |B| is constant and |bi| is polynomial in |a|, then AN3 is in

P|a|.

Proof. AN3 can be solved by applying the algorithm for AN3b given in Lemma 4.2.26

over the lengths l = 1, . . . , |B|. This takes
|B|∑
l=1

O(
|B|!

(|B| − l)!
|a|2ll|a|),
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which is polynomial in |a| because l is bounded by the constant |B|.

Corollary 4.2.28. If |B| is constant and |bi| is polynomial7 in |a|, then AN and

AN2 are in P|a|.

Proof. AN and AN2 are speci�c versions of AN3 and, thus, are also in P|a| by Theo-

rem 4.2.27.

4.2.6 Generalizations of AN

Similar to FC, AN's can be extended to allow a bounded number of repeats in

the nesting and to support multidimensional arrays. The following introduce two

extensions of AN3, which is the most general version of the AN problems.

De�nition 4.2.29 (AN3 with repeats (r-AN3)). Given an array a, a set B of arrays

as in De�nition 4.2.19, and an integer d ≥ 1, does there exist an array nesting of a

from Bd, where Bd is a multiset containing d copies of each array in G?

Corollary 4.2.30. r-AN3 is strongly NPC|B| and in P|a|

Proof. r-AN3 is a version of AN3 with the set B increased by a constant factor d,

i.e., by giving distinct labels to the d copies of each array gi. Thus, the proof for

AN3 being strongly NPC|B| is similar to the one given in Corollary 4.2.9 showing the

strongly NP-Completeness of r-FC. The polynomial time argument for r-AN3 is also

similar to the one given in Corollary 4.2.10 showing r-FC is in P.

De�nition 4.2.31 (AN3 with k-dimensional arrays (k-AN3)). Given a k-dimensional

array a and a set B of k-dimensional arrays, where k is a constant ≥ 1, does there

exist a nesting from B that produces a?

7The requirement of bi being polynomial in |a| is not necessary to show AN is in P|a|
because it is an instance of FC. However, this constraint is used in the polynomial time
algorithm for AN3 in Lemma 4.2.25.
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Similar to functions with multiple inputs in Section 4.2.14, a k-dimensional array

can be modeled as a k-ary trees, where each array index is represented by a node in

the tree. Moreover, because a is a k-dimensional array, the non-nested array indices

in the nesting, i.e., the leaf nodes in the tree, are now a linear combination of the k

indices of a, e.g., a[i][j][k] = b[c[i− j + k + 2]][i+ k].

Corollary 4.2.32. If |a| is polynomial in |B|, then k-AN3 is strongly NPC|B|.

Proof. k-AN3 is at least as hard as AN3, which is strongly NPC|B|. Moreover, k-AN3

is in NP|B| because checking a nesting of a from B is O(l|a|), which is polynomial in

|B| for l ≤ |B|.

Corollary 4.2.33. If |B| is constant and |bi| is polynomial in |a|, then k-AN3 is in

P|a|.

Proof. The enumeration of k-dimensional array nestings is equivalent to the count-

ing of k-ary trees as given in Corollary 4.2.14. Hence, we enumerate l!Ck
l nestings

for each set of size l = 1, . . . , |B| using the reachability algorithm given in Theo-

rem 4.2.27. As mentioned in the proof of Lemma 4.2.25, the algorithm now applies

reachability analysis on a tuple of k+ 1 elements of the k-dimensional array. Finally,

the algorithm checks if any of the
|B|∑
l=1

|B|!
(|B|−l)!C

k
l enumerated nestings satis�es the array

|a|. Lemma 4.2.25 shows the veri�cation of a given nesting of size l is O(|a|2ll|a|),

thus the complexity of this algorithm is

|B|∑
l=1

O(
|B|!

(|B| − l)!
Ck

l |a|2ll|a|),

which is in P|a| because l is bounded by the constant |B|.

92



Chapter 4. Array Invariants

4.3 Inferring Nested Array Invariants Dynamically

DIG implements the algorithms developed in Section 4.2 to generate nested relations

among multidimensional arrays dynamically from program traces. Speci�cally, we

combine SMT solving with the reachability algorithm presented in Section 4.2.5 to

solve the k-AN3 problem in De�nition 4.2.31. To achieve an e�cient and practical

implementation, we consider only unit coe�cients in the nesting. For instance, if the

inputs to k-AN3 are a 2-dimensional array a and a set B of 1-dimensional arrays,

then DIG �nds a nesting from B that produces a, i.e.,

∀i ∈ dom(a). a[i1][i2] = b1[. . . [bl[z + w1 + w2] . . . ]. (4.9)

This form covers simpler relations than those supported in k-AN3. For instance, it

does not consider the relation A[i] = 8 − 9B[5 + 2C[2i − j] because it has non-unit

coe�cients. However, this form covers the nested array relations that are in real-

world applications such as AES, and it enables a more straightforward reachability

algorithm as shown below.

DIG takes as input the set V of (possibly multidimensional) array variables that

are in scope at location L and the associated traces X, and it returns a set of possible

relations among the arrays in V . Figure 4.3 outlines the three steps that generate

nested array relations. The �rst step (genNestings) enumerates nested array struc-

tures, such as A = B[C[. . . ]], B = A[C[. . . ]], . . . . The next step (reachAnalysis)

applies reachability analysis to identify relations among individual array elements us-

ing each enumerated nesting, such as A[0] = B[C[1]], A[1] = B[C[2]], A[2] = B[C[3]].

The last step analyzes this information for potential nested array relations, e.g.,

A[i] = B[C[i+1]], by encoding the problem as a satis�ability query that can be han-

dled using an SMT solver (genFormula and SMT). Essentially, this algorithm uses

the ideas given in Theorem 4.2.27, but encodes the results of reachability analysis as

a satis�ability problem.
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procedure findNestedArrays(V,X)
S ← ∅
nestings← genNestings(V )
for nesting ∈ nestings do

R← reachAnalysis(nesting,X)
if R 6= ∅ then

f ← genFormula(R)
s← SMT(f)
if s 6= ∅ then

S ← S + {s}
return S . return array relations of the form given in Equation (4.9)

Figure 4.3: Algorithm for �nding nested array relations from inputs: the set V of array
variables and the associated traces X. The algorithm consists of three steps: enumerating
nested structures among the input array variables (genNestings), applying reachability
analysis on each enumerated nesting to �nd relations among individual array elements
(reachAnalysis), encoding the obtained relations as a satis�ability query that can be
checked using an SMT solver (genFormula and SMT).

For simplicity, we illustrate this method using three 1-dimensional arrays, i.e.,

V = {A,B,C}, although the implementation of DIG generalizes the method to

multidimensional arrays.

• Nestings. We �rst enumerate the nested structures among the arrays in V .

A nested array structure, or nesting, from a set V of arrays is a tuple (a,B)

where a is an array in V and B is a non-empty and non-repeating sequence of

arrays in V that does not contain the array P . For the input V = {A,B,C},

we generate the nestings (A, [B]), (A, [C]), . . . , (C, [B,A]).

Intuitively, each nesting represents an input to the r-AN3 problem. Moreover,

the enumeration step resembles the counting of trees shown in Corollary 4.2.33,

where a nesting (a, [. . . ]) is a tree with root node a.

• Reachability Analysis. A nesting (A, [B,C]) implies the relation A[i] = B[C[k]]

where elements of the array A are related to elements of B using elements of

C as indices into B. For such a relation to hold, the elements of A must be in
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B. Moreover, the indices of B, where the elements of A appear in, must also

be in C. We use the reachability analysis in Lemma 4.2.25 to determine how

the elements of A are related to the elements of B using C as indices into B.

We arbitrarily choose two distinct elements A[x] 6= A[y] from array A. For A[x],

we �nd the indices jx in B where B[jx] = A[x]. For each of the obtained indices

jx in B, we again �nd the indices kx in C where C[kx] = jx. We then form a set

of relations of the form A[x] = B[C[kx]] from these results, which indicate that

the element A[x] is related to elements of B using elements C[kx] as indices

into B. Repeating this process for A[y], we obtain a set of relations of the form

A[y] = B[C[ky]]. Each set R from the cross product of the two sets of relations

consists of two equations of the form {A[x] = B[C[kx]], A[y] = B[C[ky]]}.

If any of the above checks fails, e.g., A[x] is not in B or the obtained indices jx

of B are in C, then relation A[i] = B[C[k]] is invalid and disregarded. We can

further optimize this step by starting with the two distinct elements of A that

occur least often in B. However, such a greedy approach does not guarantee

the smallest number of relation sets generated at the end because the indices

jx of B can occur many times in C.

• Relations Among Array Indices. From a set R = {A[x] = B[C[kx], A[y] =

B[C[ky]]} of relations obtained from reachability analysis, we determine the

relation between the indices of A and C, which is represented by the parameter-

ized linear expression k = ip+ q. Instantiating k = pi+ q with the information

from R, we get a set of two equations {kx = xq+ q, ky = yp+ q}. The solution

for p, q of these equations gives a relation of the form A[i] = B[C[pi + q]] for

i = {x, y}, i.e., a conditional relation that is further discussed in Section 4.4.

We now verify that this relation also holds for other indices i of A, instead of

just x, y. If it is veri�ed, we return it as the candidate invariant. Otherwise, we

repeat this step on another set R of relations to �nd a di�erent nested array
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Figure 4.4: Reachability analysis showing A[0] = B[C[1]] (dotted), A[1] = B[C[2]]∨B[C[3]]
(solid), and A[2] = B[C[5]] (dashed).

relation.

Example 4.3.1. We demonstrate how DIG �nds the relation A[i] = B[C[2i + 1]]

from the trace A = [7, 1,−3], B = [1,−3, 5, 1, 0, 7, 1], and C = [8, 5, 6, 6, 2, 1, 4].

Figure 4.4 illustrates reachability analysis on the three elements of array A over the

nesting (A, [B,C]).

Among the nestings generated from the input V = {A,B,C}, those representing

relations such as B[i] = C[. . . ] are ruled out immediately because the element −3

of B is not in C. Note that the use of traces is essential here as it allows us to

quickly �lter out invalid nestings. For the nesting (A, [B,C]), we apply reachability

analysis on two arbitrarily chosen elements A[1] and A[2] of A. For A[1], the analysis

generates {A[1] = B[C[2]], A[1] = B[C[3]]} because A[1] = B[0], B[3], B[6] and 6 =

C[2], C[3] (the index values 0, 3 of B do not occur in C). For A[2], we obtain the

set {A[2] = B[C[5]]} because A[2] = B[1] and 1 = C[5]. The cross product of these

two sets yields the sets R1 = {A[1] = B[C[2]], A[2] = B[C[5]]} and R2 = {A[1] =

B[C[3]], A[2] = B[C[5]]} of relations.

The information from either the set R1 or R2 suggests the possibility of a nested
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relation A[i] = B[C[k]] for i = {1, 2} and k is the parameterized linear expression

k = pi+q. Instantiating k = pi+q with the information from R1 gives two equations

{2 = p + q, 5 = 2p + q}. The unique solution {p = 2, q = −1} for these equations

yields the relation A[i] = B[C[3i − 1]] where i = {1, 2}. This relation does not

hold for all indices of A, e.g., A[0] 6= B[C[−1]], and is thus disregarded. Next,

we instantiate k = pi + q with the information from R2 and obtain the equations

{3 = p + q, 5 = 2p + q}. The unique solution {p = 2, q = 1} for these yields the

relation A[i] = B[C[2i + 1]], for i = {1, 2}. This relation holds for all indices of A,

and is returned as the candidate invariant.

As shown in Lemma 4.2.25, the algorithm �nds a relation of the form A[i] =

B[C[k]], if it exists, by trying all possible sets R of relations generated by reacha-

bility analysis on the two elements A[x], A[y]. The technique is generalized to mul-

tidimensional arrays by applying reachability analysis on a tuple of k + 1 elements

of a k-dimensional array A because the relation among the indices of A and C is

represented by a linear expression consisting of k + 1 unknowns z, w1, . . . , wk.

4.3.1 Satis�ability Problem Formulation

In practice, arrays often have large sizes with multiple duplicate elements, causing

reachability analysis to generate many sets R of relations to be solved for. We

can accommodate this issue by encoding the results of reachability analysis as a

satis�ability formula in the theory of linear integer arithmetic, which can be solved

e�ciently with modern SMT technologies [Dutertre and De Moura, 2006].

Example 4.3.2. Returning to the running example, DIG creates a clause consisting

of two atoms (2 = p+ q ∨ 3 = p+ q) to represent the result {A[1] = B[C[2], A[1] =

B[C[3]]} from reachability analysis. Similarly, the atom 5 = 2p + q is created for

{A[2] = B[C[5]]}. Since the relation should hold for the two chosen elements of A,

i.e., A[i] = B[C[pi + q]] for i = {1, 2}, DIG combines these formulae into the �nal
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CNF formula f = (2 = p + q ∨ 3 = p + q) ∧ (5 = 2p + q). Next, DIG queries

the SMT solver to return, if possible, an assignment of integers (since array indices

are integers) to the variables p and q that satis�es f . In this example, the solver

might assign p = 3, q = −1 for f , which implies the relation A[i] = B[C[3i− 1]] for

i = {1, 2}. This relation cannot be veri�ed because it does not hold for all indices

of A, e.g., A[0] 6= B[C[−1]]. DIG then adds the constraint ¬(p = 3 ∧ q = −1) to f

and queries the SMT solver for a new assignment for p, q. The solver now assigns

p = 2, q = 1, implying the relation A[i] = B[C[2i + 1]]. This relation is veri�ed to

hold for all indices of A and thus is returned as the candidate invariant.

We avoid having to verify each relation by applying the analysis on all elements

of A. Doing so for the running example results in the CNF f = (1 = q) ∧ (2 =

p + q ∨ 3 = p + q) ∧ (5 = 2p + q), where the atom 1 = q represents the relation

A[0] = B[C[1]] as illustrated in Fig. 4.4. The solution {p = 2, q = 1}, returned by

the SMT solver on the formula f , implies the similar relation A[i] = B[C[2i + 1]]

as above. This relation is valid for all elements of A because the analysis is applied

on all of those elements. Thus, DIG invokes the solver only once, but over a more

complex formula f (the number of clauses in f is the size of A).

The problem of �nding nested array relations has polynomial time complexity

by the analyses and algorithms given in Section 4.2.2. However, the implementation

of DIG for nested array relations involves SMT technologies and, hence, does not

guarantee polynomial run time.8 The experimental results described in Section 4.5

were obtained by applying reachability analysis on all elements of A.

8This depends on the technique implemented in SMT solvers for satis�ability checking
over CNFs of the discussed form.
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4.3.2 Functions

Nested relations involving both arrays and functions, e.g., A[i] = f(C[i], g(D[i])), re-

quire special treatment. We view a function f with n arguments as an n-dimensional

array F , where the element F [i1] . . . [in] contains the output of f(i1, . . . , in). For ex-

ample, if f is the mult function, then F [4][7] = F [7][4] = 28. For e�ciency, F is

represented in DIG as a partial array that stores only observed values. For exam-

ple, if A = [4, 7] and B = [5] are considered, then F contains just the elements

F [4][4], F [4][5], F [4][7], . . . , F [7][7]. This abstraction of in�nite functions to �nite ar-

rays extends to function composition such as g(f(A[. . . ], B[. . . ])). For instance, if

g is mod2 which maps even and odd inputs to 0 and 1 respectively, then the corre-

sponding array G has as its indices the elements of A,B, F , e.g., G[4] = G[28] =

0, G[5] = G[7] = 1.

DIG pre-de�nes a set of basic functions, e.g., mult,add,xor,mod, and automat-

ically generates the corresponding partial arrays based on given traces as described

above. By treating functions as partial arrays, DIG generates nested array invariants

involving functions, such as the relation R[i] = T (mod255(add(L(A[i]), L(B[i])))) in

the multWord function in AES.

4.4 Inferring Flat Array Invariants Dynamically

Another popular form of array invariant involves non-nested, linear expressions rang-

ing over arrays such as A[i] = B[i]+C[i]+5. These �at array relations can be viewed

as a special case of nested relations by using a partial array to represent addition

as shown in Section 4.3.2. For example, the �at relation A[i] = B[i] + C[i] + 5 is

the nested relation A[i] = add[[add[B[i]][C[i]]][5], where add is a 2-dimensional array.

Thus, we can generalize the reachability analysis given in Section 4.3 to �nd �at

array relations. However, the non-nested, linear expression form of these relations
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allows for a more e�cient algorithm than reachability analysis. DIG implements

an algorithm that uses only standard equation solving to infer �at array relations

dynamically.

DIG �nds �at relations among array elements of the form

A = b1B1 + · · ·+ bnBn + c, (4.10)

where A,Bi are distinct (possibly multidimensional) arrays whose elements are real-

valued. The array A, called the pivot array, is privileged in our approach because the

indices of arrays Bi and the coe�cients bi, c are hypothesized as linear expressions

ranging over the indices of A. The invariant A[i][j] = B[iN + j] (N is a constant)

shown at the end of Section 3.2.3 is an example of �at array relation. DIG also

supports more complex relations of this form, e.g., A[i][j] = 1
2
jB[2i + j] − (j +

1)C[7i][3] + 5.

The algorithm for �nding �at array relations, outlined in Figure 4.5 consists of

two main parts: (i) identifying groups of relations among individual array elements

such as {A[1] = B[0] + 2, A[4] = 3B[7] − 4} and {C[0] = D[1], C[1] = D[2], C[2] =

D[3], . . . } and (ii) analyzing this information for potential �at array relations like

C[i] = D[i+ 1] in the second group.

For simplicity, we demonstrate this method using two 1-dimensional arrays, i.e.,

V = {A,B}, although the implementation of DIG generalizes the method to multi-

dimensional arrays.

• Relations Among Array Elements. We �rst generate a set V ′ of new variables

representing elements of the arrays in V . Next, the technique from Section 3.2.1

is used to identify linear equalities of the form given in Equation (3.1) over the

variables in V ′ from the input traces X. The obtained equations represent

relations among array elements, e.g., A4 = 3B7− 4 where the variables A4, B7,
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procedure findFlatArrays(V,X)
. obtain linear relations among array elements
V ′ ← genNewVars(V )
eqts← findEqs(V ′,X,d = 1) . �nd eqts using the algorithm given in Algorithm 3.3
Rs← group(eqts)
if Rs 6= ∅ then

for R ∈ Rs do
pivot← genPivot(R)
exps← genLinExps(pivot) . generate linear exps over the indices of pivot
s← solve(exps,R)
S ← S + {s}

return S . return array relations of the form given in Equation (4.10)

Figure 4.5: Algorithm for �nding �at array relations from the inputs: set V of numer-
ical array variables and the associated traces X. The algorithm has of two main parts
(i) identifying groups of relations among individual array elements and (ii) analyzing this
information for potential �at array relations in the obtained groups. The �rst part consists
of the steps: creating new variables to represent array elements (genNewVars), �nding
equality relations among these array elements (findEqs), and grouping the obtained re-
lations (group). The second part consists of the steps: representing the relations among
the indices of a selected pivot array and other arrays as a parameterized linear expression
(genPivot), instantiating this expression with information from the obtained group of
equalities (genLinExp), and solving these equations (solve).

represent the array elements A[4], B[7], respectively. Currently, we do not �nd

relations among similar arrays, e.g., A[i] = A[2i], and thus keep only equations

that express relations among array elements of di�erent arrays. These relations

are then grouped so that each group contains relations among elements from

a same set of arrays. For example, {A1 = B0 + 2, A4 = 3B7 − 4} and {C0 =

D1, C1 = D2, C2 = D3} are two di�erent groups.

• Relations Among Array Indices. From each obtained group, we consider only

the set R of relations of the form:

Ai0 = b0Bj0 + c0,

Ai1 = b1Bj1 + c1,
...
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where bx, cx are real-valued and Aix , Bjx are the variables in V ′ representing

A[ix], B[jx], respectively.

In such a set R, we select A as the pivot array and hypothesize that the

coe�cients bx, cx and the indices jx of array B are linear expressions ranging

over the indices ix of A. For instance, we represent the relation between jx

and ix through the parameterized linear expression jx = p1ix + q1, where p1

and q1 are unknowns to be solved for. This expression is then instantiated

with the information from R to obtain a set of equations {j0 = p1i0 + q1, j1 =

p1i1 + q1, . . . }. Any solution for p and q of these equations implies a relation of

the form A[ix] = (p0ix + q0)B[p1ix + q1] + (p2ix + q2), where ix are the indices

of A obtained from R.

Similar to the algorithm given in Section 4.3 for nested arrays, this algorithm

yields �at relations under the disjunctive or conditional form i ∈ {. . . } ⇒ r, i.e., the

relation r holds only for speci�c indices i. Such invariants are useful and appear in

many programs, e.g., in the following code fragment

for (i=0; i < M; ++i){

if (i < 6)

A[i] = [B[4*i], B[4*i+1],

B[4*i+2],B[4*i+3]];

}

[L]

For this code fragment, DIG generates the invariant A[i][j] = B[4i + j] for i =

{0, . . . , 5} and j = {0, . . . , 3}, indicating a relation among certain elements of the

arrays A and B at location L.

Example 4.4.1. The following illustrates how DIG �nds the relation A[i] = 7B[2i]+

3i between two arrays A,B, using traces X that exhibit that relation. An example

trace in X contains the values A = [−546,−641, 34] and B = [−78, 3,−92,−34, 4].
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Eight variables are created to represent the elements of A and B. Based on the

given trace, the set R = {A0 = 7B0, A1 = 7B2 + 3, A2 = 7B4 + 6} of linear equations

is obtained using the technique in Section 3.2.1. From R, DIG chooses A as the

pivot and extracts the information ix = {0, 1, 2}. The relation between jx and ix is

expressed as jx = p1ix+q1. DIG instantiates jx = p1ix+q1 with the information from

R and obtain the set of equations {0 = 0p1+q1, 2 = 1p1+q1, 4 = 2p1+q1}. The unique

solution {q1 = 0, p1 = 2} of these equations yields jx = 2ix, i.e., A[ix] = bxB[2ix]+cx.

Similarly, DIG instantiates the analogous equations for bx and cx. After solving these,

the array relation ix = {0, 1, 2} ⇒ A[ix] = 7B[2ix] + 3ix is obtained.

Notice that all relations in R have 7 as the coe�cient of Bi. DIG can divide these

equations by 7 to obtain R′ = {B0 = 1
7
A0, B2 = 1

7
A1 − 3

7
, B4 = 1

7
A2 − 6

7
}. From

R′, DIG selects B as the pivot array and extracts the information ix = {0, 2, 4}.

Applying the above process of creating and solving linear equations gives the relation

ix = {0, 2, 4} ⇒ B[ix] = 1
7
A[1

2
ix] − 3

14
ix. DIG recognizes such a scenario and, thus,

generates both array relations.

When given as inputs the trace data |X|, array variables |V |, and array elements

|E| consisting of elements from all arrays in V , the complexity of the algorithm

to �nd �at array relations of the form given in Equation (4.10) is dominated by

solving equations. We create |E| new variables to represent array elements and

use the equation solving technique in Section 3.2.1 to �nd equalities among them.

As analyzed in Section 3.4.1, generating equalities among these variables (terms)

takes O(|E|3), the time of solving |E| equations for |E| unknowns using Gaussian

elimination technique.
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4.5 Experiments

We evaluate DIG's ability to generate array invariants using traces from an AES

implementation described by Yin et al. [Yin et al., 2009]. This implementation

exempli�es a practical security-critical application and contains nontrivial array in-

variants. To show that the implementation conforms to the formal AES speci�cation,

the authors of AES inspected and documented the invariants of each function in AES

and then fully veri�ed the result using SPARK Ada [Barnes, 2003] and PVS [Owre

et al., 1992]. The annotated invariants represent the manual e�ort required to fully

verify the functionality of an AES implementation using axiomatic semantics. AES

contains 868 lines of Ada code organized into 25 functions containing 30 invariants:

8 �at array relations, 7 nested array relations, 2 linear equations, and 13 other rela-

tions.

Similarly to the evaluation of DIG on polynomial invariants in Section 3.6, we use

the parameter α = 200 to bound DIG's running times. For �at array relations, DIG

automatically adjusts the sizes of the considered arrays in such a way that the total

number of array elements does not exceed α. Analyzing over smaller array ranges

helps improve the run time of DIG and does not a�ect the result quality; e.g., the

relation A[i] = B[i], which holds for indices i = 0 . . . 199, would also hold for indices

i = 0 . . . 99. There is no parameter for nested array relations because reachability

analysis enumerates all possible non-repeating nestings to consider array relations

up to any nesting depth.

We currently do not statically check array relations against the program code.

Although modern SMT solvers can handle nonlinear polynomial arithmetic, they

have limited support for array operations, especially the complex form of nested

array relations considered by DIG. Indeed, most static analysis techniques abstract

operations over arrays because they cannot formally reason over this data structure.
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For example, concolic execution techniques, e.g., [Burnim and Sen, 2008], replace

symbolic array values directly with concrete values and operations over arrays as

uninterpreted functions so that the resulting constraints can be simpli�ed and solved

by existing constraint solvers.

Table 4.1 reports experimental results on all 25 functions from AES. DIG discov-

ered 30 candidate invariants for AES, none of which is spurious, i.e., we manually

verify that all of the generated array invariants are valid relations. Comparing to

the documented invariants, we found all 17 documented relations that are expressible

using the considered forms. In many cases, DIG also discovered undocumented invari-

ants. In the three relations r[i] = xor(a[i], b[i]), a[i] = xor(r[i], b[i]), b[i] = xor(r[i], a[i])

obtained from xor2Word, the �rst one is a documented invariant but the other two

are true properties of the xor operator. In addition to the documented invariant

r[i][j] = S[t[i][j]] in subWord, we found the relation t[i][j] = Si[r[i][j]], which is valid

because the array Si contains the reversed values of the array S. The results gener-

ated for the keySetupEnc functions are conditional invariants, e.g., in keySetupEnc8,

DIG found r[i][j] = k[4i + j] for i = 0, . . . , 7, j = 0, . . . , 3 and r[i][j] = 0 for other

indices i, j. In several cases, the algorithms for both �at and nested array relations

discover similar invariants such as S[i][j] = R[4i+ j] in state2Block because these

�at array relations are also nested array relations with nesting depth 0.

On average, DIG took under 35 seconds to generate invariants for each AES

function. However, this run time on the AES example could be signi�cantly improved

with additional information about the desired invariants. For instance, DIG found

the relation t[i][j] = c[4i+ j] in aesDecrypt in under 10s using reachability analysis,

but it took over 60s using the algorithm for �at array relations (for solving 200

equations). The last eleven functions in Table 4.1 has similar run times (77s on

average) because the considered arrays in each function were automatically resized to

contain α = 200 elements. We note that a smaller parameter value is also su�cient
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to obtain similar results for AES with much shorter run time, e.g., DIG took on

average 14.3s for the last eleven functions when run with α = 50.

The 13 documented invariants that were not discovered fall into categories that

are not supported by DIG and are left for future work. These can be grouped

into three categories: Others1−3. Others1 includes nested array relations such as

A[i] = 4B[6C[. . . ]]. We do not currently handle nested invariants if the elements

of A are not exactly nested in B. Others2 includes nested array invariants such as

A[i] = B[C[. . . ]] and A[j] = B[C[. . . ]] where i 6= j, i.e., a conditional form of nested

array relations. We require that generated relations such as A[i] = B[C[. . . ]] hold for

all i. Others3 includes array invariants involving functions whose inputs are arrays,

such as f([1, 2]). We consider only functions with scalar inputs such as g(7, 8). We

note that existing dynamic analysis methods cannot �nd these array relations either.

The manual annotation of AES with su�cient invariants to admit machine-

checked full formal veri�cation was a signi�cant undertaking involving hours of tool-

assisted manual e�ort [Yin et al., 2008, 2009]. Annotating pre- and post-conditions

and loop invariants has not been solved in general and is known to be a key bot-

tleneck in approaches based on axiomatic semantics [Flanagan and Leino, 2001]. It

is not surprising that our approach was unable to discover all relevant invariants;

indeed, we view reducing the manual veri�cation annotation burden by one-half as

a strong result.

4.6 Summary

This chapter introduced and analyzed a form of relation among arrays that appears

often in real-world programs. We show that the task of �nding such array relations is

related to the well-known mathematical problem of function composition. Our anal-

ysis proves that both problems are strongly NP-complete in the number of involved
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arrays or functions, but can be solved in polynomial time in the number of array

elements or function arguments.

DIG implements the above ideas to infer nested and �at array relations dynami-

cally from program traces. For nested array relations, we build an SMT query using

information obtained from a reachability analysis; the satisfying assignment provided

by the SMT solver yields the desired invariant. For �at array relations, we look for

relations among individual array elements and extract from those results the possible

relations among the array indices. These �at array relations also express conditional

information, capturing array relations that hold for speci�c indices. The integration

of equation and SMT solvers enables e�cient analysis of complex array properties

that have not been considered by either static or dynamic methods.

Our evaluation demonstrates the feasibility and potential of DIG by successfully

discovering 60% of the documented array relations necessary for full formal veri�ca-

tion of an AES implementation under 15 minutes.
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Function Desc Gen V, D TGen(s) Vs Doc

multWord mult 1 N4 7, 2 11.0 1/1
xor2Word xor 3 N1 4, 2 0.8 1/1
xor3Word xor 4 N1 5, 3 2.0 1/1
subWord subs 2 N1 3, 1 1.3 1/1
rotWord shift 1 F 2, 1 0.5 1/1
block2State convert 1 F 2, 2 4.1 1/1
state2Block convert 1 F 2, 2 4.2 1/1
subBytes subs 2 N1 3, 2 3.2 1/1
invSubByte subs 2 N1 3, 2 3.3 1/1
shiftRows shift 1 F 2, 2 3.7 1/1
invShiftRow shift 1 F 2, 2 3.6 1/1
addKey add 2 N1 4, 2 3.5 1/1
mixCol mult 0 - 1.0 0/1 O3

invMixCol mult 0 - 1.0 0/1 O3

keySetEnc4 driver 1 F 2, 2 76.4 1/2 O2

keySetEnc6 driver 1 F 2, 2 78.8 1/2 O2

keySetEnc8 driver 1 F 2, 2 79.3 1/2 O2

keySetEnc driver 1 F 2, 1 76.3 0/1 O3

keySetDec driver 0 - 73.0 0/1 O3

keySched1 driver 0 - 77.9 0/1 O1

keySched2 driver 1 F 2, 2 79.5 0/1 O1

aesKeyEnc driver 1 F, 1 eq 2, 1 76.2 1/2 O3

aesKeyDec driver 1 eq 2, 1 73.6 1/2 O3

aesEncrypt driver 1 F 2, 2 70.5 0/1 O3

aesDecrypt driver 1 F 2, 2 73.8 0/1 O3

25 functions 30 878.5 17/30

Table 4.1: Experimental results on 25 functions from AES. The Gen column counts the
number of unique candidate invariants generated by DIG. The V, D column reports the
number of distinct array variables and the highest dimension of the arrays in the candidate
invariants. The types of the generated invariants, reported in the Invs columns, include
N ested, F lat, and linear equality invariants (N l indicates that the depth of the generated
nested array relation is l). The Vs Doc column reports the number of documented in-
variants matched by DIG's results. The column also indicates the types of documented
invariant (called Others) that DIG could not identify. The driver functions are composed
from other functions in this table. The benchmark AES implementation and experimental
results are available at https://bitbucket.org/nguyenthanhvuh/dig/.
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Chapter 5

From Program Veri�cation to

Synthesis

�Get the habit of analysis� analysis will in time enable synthesis to become

your habit of mind.� � Frank Lloyd Wright1

This chapter establishes a direct link between the problem of reachability in pro-

gram veri�cation and the problem of template-based synthesis. Such a connection

enables the direct application of ideas and tools from one �eld to another, e.g., lever-

aging techniques for test input generation (a reachability task) to repair programs (a

synthesis task). Parts of this chapter have been submitted for publication in [Nguyen

et al., In submission].

1American architect and writer, who was considered the most abundantly creative genius
of American architecture. His Prairie style became the basis of 20th century residential
design in the United States (1867 � 1959).
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5.1 Introduction

Automatic program veri�cation and synthesis are two important problems in com-

puter science that have tremendous value in program research. Veri�cation is the

task of validating program correctness with respect to a given speci�cation [Srivas-

tava et al., 2013]. Synthesis is the task of �nding a program that meets a given

speci�cation [Srivastava et al., 2013]. Both problems are notoriously di�cult and

have been proved undecidable in general cases. However, there has been less work on

automatic program synthesis, which was considered to be �among the last tasks that

computers will do well� [Manna and Waldinger, 1979], compared to veri�cation. The

advent of powerful veri�cation techniques using constraint solving, e.g., SAT and

SMT solvers, in the past decade has changed the view of automatic veri�cation from

being intractable to being realizable [Srivastava, 2010]. These technologies may help

revise the view of synthesis from being impossible to being plausible. For example,

recent work in synthesis adopts many veri�cation techniques to create programs, e.g.,

using symbolic execution to generate program repairs [Könighofer and Bloem, 2011,

Nguyen et al., 2013].

In this chapter, we establish a formal connection between certain formulations of

program veri�cation and synthesis. We view program veri�cation as a reachability

problem, which checks if the program can reach an undesirable state, and we con-

sider template-based synthesis, which generates missing code for a partially complete

program. We then constructively prove that reachability and template-based syn-

thesis are equivalent. We reduce a template-based synthesis problem, which consists

of a program with parameterized templates to be synthesized and a test-suite spec-

i�cation, to a program consisting of a speci�c location that is reachable only when

that template can be instantiated such that the program has the desired behavior.

To reduce reachability to synthesis, we transform a reachability instance consisting

of a program and a given location into a synthesis instance that can be solved only
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when the location in the original problem is reachable. Thus, the task of synthesiz-

ing code is used as a procedure to decide if a program location can be reached, and

conversely, the determination of reachability allows for synthesizing programs. This

connection between the two areas enables ideas, optimizations and tools developed

for one problem to be applied to the other. For example, existing tools from the

well-established �eld of program veri�cation can be leveraged to solve problems in

the relative new �eld of program synthesis. Dually, advances in program synthesis

can potentially contribute to research in program veri�cation, e.g., �nding test inputs

to reach nontrivial program locations.

To demonstrate the potential impact of the above ideas, we use the construction

from the reduction proof to develop a new automatic program repair technique us-

ing existing test input generation tools. We view program repair as a special case

of program synthesis in which �patch� code is generated so that the program be-

haves correctly. We develop a prototype tool called CETI (Correcting Errors using

Test Inputs) that automatically repairs C programs violating test-suite speci�cations.

Given a test suite and a program failing at least one test in that suite, CETI �rst

applies fault localization to obtain a list of ranked suspicious statements from the

buggy program. For each suspicious statement, CETI transforms the buggy program

and the information from its test suite into a program reachability instance. The

reachability instance is a new program containing a special if branch, whose then

branch is reachable only when the original program can be repaired by modifying

the considered statement. By construction, any input value that allows the special

location to be reached can map directly to a repair template instantiation that �xes

the bug. To �nd a repair, CETI invokes an o�-the-shelf automatic test input gen-

eration tool on the transformed code to �nd test values that can reach the special

branch location. CETI stops when such test input values are found. These values

correspond to changes that, when applied to the original program, cause it to pass

the given test suite.
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1 int is_upward(int in,

2 int up, int down){

3 int bias , r;

4 if (in)

5 bias = down;

6 else

7 bias = up;

8 if (bias > down)

9 r = 1;

10 else

11 r = 0;

12 return r;

13 }

Inputs Output
Test in up down expected Passed

1 1 0 100 0 X
2 1 11 110 1 �
3 0 100 50 1 X
4 1 -20 60 1 �
5 0 0 10 0 X
6 0 0 -10 1 X

Figure 5.1: Given this buggy program and its test suite, CETI suggests replacing line 5
with the statement bias = up + 100; to �x the bug.

In the remainder of this section, we provide a motivating example and list our

contributions.

5.1.1 Motivating Example

We present a concrete instance of the reduction from program reachability to syn-

thesis to motivate important design decisions. Consider the program in Figure 5.1, a

code excerpt from a tra�c collision avoidance system [Do et al., 2005]. The intended

behavior of this program can be precisely described as is_upward(in, up, down) =

in∗100+up > down. The table in Figure 5.1 lists a test suite describing the intended

behavior. The test suite also demonstrates that the buggy program fails two tests.

To reduce the search space for possible patches, automated repair approaches

typically restrict attention to certain simple types of edits (e.g., tree-structured op-

erators [Weimer et al., 2009], mutation testing operators [Debroy and Wong, 2010],

repair templates learned from human �xes [Kim et al., 2013], etc). Although these

edits could be applied anywhere, practical optimization program repair approaches
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Line Statement Score Rank

5 bias = down; 0.75 1
11 r = 0; 0.60 2
4 if (in) 0.50 3
8 if (bias > down) 0.50 3
7 bias = up; 0.00 5
9 r = 1; 0.00 5
12 return r; 0.00 5

Table 5.1: Fault localization results for the program and its test suite in Figure 5.1

often begin by considering statements or locations implicated by o�-the-shelf fault

localization techniques [Qi et al., 2013]. In this example, we explain CETI in terms

of these two design decisions: the shapes of possible edits and the use of fault local-

ization.

CETI �rst applies fault localization to the program to bias modi�cations toward

regions of the code that are likely to be implicated in the defect. Using Tarantula,

a statistical technique that ranks program statements in descending order of their

suspiciousness [Jones and Harrold, 2005], CETI obtains a ranked list of statements

and their suspiciousness scores as shown in Table 5.1. The tool then considers each

statement in the list in descending order until a repair is found.

We consider repairs formed by modi�cations to the program based on repair tem-

plates. In particular, we assume that the program can be repaired by synthesizing

expressions involving program variables and unknown coe�cients�a design decision

used in most template-based program synthesis and program repair algorithm such

SemFix [Nguyen et al., 2013] and Forensic [Könighofer and Bloem, 2013]. For ex-

ample, the template c0 + c1v1 + c2v2 is a linear combination of program variables

vi and unknown constants ci. This template can be instantiated to yield concrete

expressions such as 200 + 3v1 + 4v2 via c0 = 200, c1 = 3, c2 = 4. Using this template,

CETI considers a repair by replacing the highest ranked statement in Table 5.1, bias
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= down;, with

bias = c0 + c1*bias + c2*in + c3*up + c4*down;

where bias, in, up, and down are the variables in scope at line 5 and the value of

each ci must be found by our method.

Although program repair is currently phrased as a synthesis problem, we use test

input generation to �nd values for each ci in the repair template. Given the program

and its test suite in Figure 5.1 with the template statement shown above, CETI

creates a related program reachability problem instance consisting of a program and

a special target location. The created program, shown in Figure 5.2, contains a

function pis_upward that is similar to the function is_upward in the original code but

with line 5 replaced by the template statement. The program also contains a starting

function pmain that encodes the inputs and expected outputs from the given test suite

as the guards to a conditional statement leading to the reachability target location

L. Intuitively, this reachability problem instance asks if we can �nd values for each

ci that allow control �ow to reach location L.

The reachability problem instance can be given as input to any o�-the-self test

input generation tool. In this example CETI employs KLEE [Cadar et al., 2008a]

to �nd values for each ci. KLEE determines that the values c0 = 100, c1 = 0, c2 =

0, c3 = 1, c4 = 0 allow control �ow to reach location L. Finally, we map this solution

to a reachability problem back to a solution to the original program repair problem.

Those test input values, when applied to the template

bias = c0 + c1*bias + c2*in + c3*up + c4*down;

yield the statement

bias = 100 + 0*bias + 0*in + 1*up + 0*down;

which simpli�es to bias = 100 + up;. Replacing the statement bias = down; in
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int pis_upward(int in, int up, int down ,

int c0, int c1, int c2, int c3, int c4){

int bias , r;

if (in)

bias = c0 + c1*bias + c2*in + c3*up + c4*down;

else

bias = up;

if (bias > down) r = 1;

else r = 0;

return r;

}

int pmain(){

int c0,c1,c2,c3,c4;

if(pis_upward(1, 0,100,c0,c1,c2,c3,c4) == 0 &&

pis_upward(1, 11,110,c0,c1,c2,c3,c4) == 1 &&

pis_upward(0,100, 50,c0,c1,c2,c3,c4) == 1 &&

pis_upward(1,-20, 60,c0,c1,c2,c3,c4) == 1 &&

pis_upward(0, 0, 10,c0,c1,c2,c3,c4) == 0 &&

pis_upward(0, 0,-10,c0,c1,c2,c3,c4) == 1){

[L]

}

return 0;

}

Figure 5.2: The reachability problem instance derived from the buggy program and test
suite in Figure 5.1. Location L is reachable with values such as c0 = 100, c1 = 0, c2 =
0, c3 = 1, c4 = 0. These values suggest using the statement bias = 100 + up; at line 5 in
the buggy program.

the original program with the new statement bias = 100 + up; causes the original

program to pass all of the test cases.

The use of fault localization to prioritize candidate repairs and restrict attention

to certain shapes or templates of candidate repairs closely resemble design decisions

used by other repair methods. Indeed, the novelty of many repair techniques relates

to where and how they modify existing code or generate new code. For instance,

GenProg reuses existing code [Weimer et al., 2009], Debroy and Wong use muta-
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tion operators [Debroy and Wong, 2010], while SemFix [Nguyen et al., 2013] and

FoREnSiC [Könighofer and Bloem, 2013] create and solve constraints. The particu-

lar fault localization and repair template schemes shown above are not novel; they

were chosen as indicative examples. By contrast, the novelty in CETI lies in its

use of the equivalence between program reachability and program synthesis and, in

essense, framing program repair (synthesis) as a test input generation (reachability)

problem. This equivalence is established by the constructive proof presented in the

next section.

5.1.2 Contributions

In this chapter, we make the following contributions to the research areas of program

veri�cation/reachability and program synthesis/repair:

• Equivalence Theorem. We prove that that the problems of reachability in pro-

gram veri�cation and template-based program synthesis are equivalent. This

result opens doors to a pro�table cross-fertilization between the two research

areas of program veri�cation and synthesis.

• Program Repair Technique. We present a new automatic program repair tech-

nique that leverages the constructive nature of the equivalence proof. Once

potential error-causing locations have been identi�ed, we create a template-

based synthesis program from the buggy program and the suspicious locations,

and transform the synthesis problem and test-suite speci�cation de�ning its

expected behavior into a reachability program. We then apply an o�-the-shelf

reachability tool to the transformed code to �nd test inputs to reach the tar-

get location in the reachability program and map those test inputs to concrete

program patches.

• Experimental Evaluation. We empirically evaluate CETI using 41 defects from
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the Tcas program in the SIR benchmark [Do et al., 2005]. Although the pri-

mary contributions are theoretical, even this small case study demonstrates the

e�ectiveness of the equivalence theorem in practice, as CETI achieves higher

success rates than many other standard repair approaches.

5.2 Program Reachability is Equivalent to

Template-based Synthesis

Program reachability and synthesis are both classical problems in computer science.

They both have theoretical and practical impacts in software development. In this

section, we �rst review these problems and then prove that certain formulations of

them are equivalent.

5.2.1 Preliminaries

We consider standard imperative programs in a language like C. The language in-

cludes usual program constructs such as assignments, conditionals, loops, and func-

tions. A function takes as input a (potentially empty) tuple of values and returns an

output value. The correctness of a function is speci�ed using a test suite consisting

of a �nite set of input/output pairs. A function may call other functions, including

itself. A program P consists of �nite set of functions including a special starting

function pmain. For brevity, we write P (xi, . . . , xn) = y to denote that the result of

evaluating the function pmain ∈ P on the input tuple (xi, . . . , xn) is the value y.

To simplify the presentation of the proofs in this section, we assume that the

language also supports exceptions. That is, it admits non-local control �ow by raising

and catching exceptions as in modern programming languages such as C++, Java

or Python. This assumption is not necessary for the proof, and we discuss how to

remove it in Section 5.2.2.
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Program Reachability

The program reachability problem asks if a particular program state or location is

reachable. This problem is not decidable in the general case because it can encode

the halting problem: a loop terminates if and only if the location immediately after

that loop is reachable (cf. Rice's Theorem [Rice, 1953]). Nonetheless, reachability

remains a popular and well-studied problem in practice. For example, it is used

in model checking [Clarke et al., 1999] to discover if program states representing

undesirable program behaviors could occur in practice. Reachability is also a major

research interest in the area of test input generation [Cadar and Sen, 2013], which

aims to produce test values to explore all reachable program locations.

De�nition 5.2.1 (The Program Reachability problem). Given a �nite program

P (t1, . . . , tn) with a target location L, does there exist input values ti such that the

execution of P (t1, . . . , tn) reaches L in a �nite number of steps?

For example, the program in Figure 5.3 has a reachable location L using the

solution {x = −20, y = −40}. Reachability is often formulated in terms of labeled

transition systems (for model checking) or Turing machine con�gurations (for more

theoretical analyses). For brevity, we do not reproduce any of that well-studied

machinery here, and instead assume a standard formalization of what it means for an

execution to visit a labeled location; the reader is referred to [Jhala and Majumdar,

2009] for a thorough treatment. The decision problem formulation of reachability

asks merely if such input values exist; in this presentation we use the searching

problem formulation and require that the input values be produced.

Program Synthesis

As introduced in Section 2.2, program synthesis is a sub�eld in arti�cial intelligence

and software engineering that aims to generate automatically program code to meet
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def P(x, y):

if 2*x == y:

if x > y+10:

[L]

return 0

Figure 5.3: An instance of program reachability. Program P reaches location L using the
solution {x = −20, y = −40}

a required speci�cation. The problem of creating a complete program is undecid-

able in general cases [Srivastava, 2010], thus most synthesis techniques concentrate

on generating code for partially complete programs. That is, practical synthesis

approaches often �ll in holes in otherwise-complete programs [Solar-Lezama et al.,

2005, 2006]. Moreover, these techniques use speci�c forms or templates instead of

producing arbitrary code [Srivastava et al., 2010]. A synthesis template expresses

the shape of program constructs, but includes holes (sometimes called template pa-

rameters) rather than concretely specifying all low-level details. For example, the

template c0 + c1v1 + · · ·+ cnvn is a linear combination involving program variables vi

and real-valued template parameters ci. A synthesis template with un�lled template

parameters is incomplete and only has meaning as a program when the synthesizer

has �lled in all parameters. Borrowing notation from contextual operational seman-

tics, we write P [c0, . . . , cn] to denote the result of instantiating the template program

P with the template parameter values c0 . . . cn. To �nd values for the parameters

in a program containing one or more synthesis templates, many modern synthesis

techniques (e.g., [Solar-Lezama et al., 2007, Srivastava et al., 2010]) encode the pro-

gram and its speci�cation as a logical formula (e.g., using axiomatic semantics). A

constraint solver is then used to �nd values for the parameters ci that satisfy that

formula. Instantiating the templates with those values yields a complete program

that adheres to the required speci�cation. This formulation of template-based pro-
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def Q(i, u, d):

if i:

#stmt with template

b = c0+c1*u+c2*d

else:

b = u

if (b > d): r = 1

else: r = 0

return r

Inputs Output
Test in up down expected

1 1 0 100 0
2 1 11 110 1
3 0 100 50 1
4 1 -20 60 1
5 0 0 10 0
6 0 0 -10 1

Figure 5.4: An instance of program synthesis. Program Q passes the test suite T using the
solution {c0 = 100, c1 = 1, c2 = 0}

gram synthesis has many practical applications. For example, it has recently been

used for automatic program repair (e.g., [Könighofer and Bloem, 2013, Nguyen et al.,

2013]): once the defect has been localized to a small segment of code, that code can

be erased and replaced by a synthesis template. Solving the synthesis problem is

then equivalent to rewriting that segment of the program to repair the bug.

De�nition 5.2.2 (The Template-based Program Synthesis problem). Given a tem-

plate program Q with a �nite set of template parameters S = {c1 . . . cn} and a �nite

test suite of input/output pairs T = {(i, o)}, does there exist parameter values ci such

that ∀(i, o) ∈ T . (Q[c1, . . . , cn])(i) = o?

For example, the program in Figure 5.4 passes the given test suite T using the

solution {c0 = 100, c1 = 1, c2 = 0}. The decision formulation of the problem asks

merely if satisfying values c1 . . . cn exist; in this presentation we use the searching

problem formulation and require that the concrete values of c1 . . . cn be produced.

5.2.2 Reducing Synthesis to Reachability

We reduce the problem of program synthesis to the problem of program reachability

so that the solutions to the reachability problem can be used to synthesize programs.
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Theorem 5.2.3 (Templated-based Synthesis is reducible to Program Reachability).

The synthesis problem in De�nition 5.2.2 of Section 5.2.1 is reducible to the reacha-

bility problem in De�nition 5.2.1 of Section 5.2.1.

Proof. Let Q be a template program with a �nite set of template parameters S =

{c1, . . . , cn} and T a �nite test suite. The reduction from a general instance Q, T, S

of program synthesis to a speci�c instance P,L of reachability is as follows:

• For every function q ∈ Q, de�ne a similar function p ∈ P that has the additional

formal parameters c1, . . . , cn (the parameters in S). Replace each function call

to q with a corresponding call to p with additional actual arguments c1, . . . , cn.

• De�ne a starting function pmain that has input arguments c1, . . . , cn.

� Encode the speci�cation information from the test suite T as a conjunctive

expression e: ∧
(x,y)∈T

pQ(x, c1, . . . , cn) = y

where pQ is the starting function in Q.

� pmain contains a conditional statement leading to a target location L only

when e is true.

� Thus, pmain has the form

def pmain(c1 ,..,cn):

if e:

[L]

return 0

• The program P consists of the function pmain and other pi.
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def pQ(i, u, d,

c0, c1, c2):

if i:

b = c0+c1*u+c2*d

else:

b = u

if b > d:

r = 1

else:

r = 0

return r

def pmain(c0, c1, c2):

e = pQ(1, 0,100, c0,c1,c2) == 0 and

pQ(1,11,110, c0,c1,c2) == 1 and

pQ(0,100,50, c0,c1,c2) == 1 and

pQ(1,-20,60, c0,c1,c2) == 1 and

pQ(0, 0, 10, c0,c1,c2) == 0 and

pQ(0, 0,-10, c0,c1,c2) == 1

if e:

[L] #pass the given test suite

return 0

Figure 5.5: Reducing the synthesis instance in Figure 5.4 to a reachability program.

This reduction transforms an arbitrary synthesis instance Q,S, T to a speci�c

reachability instance P,L such that the location L is reachable if and only if Q

can be synthesized successfully. Suppose that L can be reached using the solution

ci, then the predicate e is true (because L is guarded by exactly e) and hence Q,

when instantiated with ci, passes the test suite T (because e is constructed as a

conjunction of all of input-output behaviors speci�ed by T ). Conversely, if L in P

cannot be reached for any input values ci, then no values of ci can ever make e true

(since e depends entirely on the values of ci) and hence Q cannot be instantiated for

any values ci to satisfy T . This is also a polynomial time reduction from the input

instance Q,S, T . The constructed program P consists of all functions in Q (with

|S| extra parameters) and a starting function pmain having |S| parameters and an

expression encoding the test suite T .

Example 5.2.4. Figure 5.5 illustrates the reduction using the synthesis example in

Figure 5.4.
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5.2.3 Reducing Reachability to Synthesis

Conversely, we reduce reachability to synthesis so that program synthesis can be

used to solve reachability.

Theorem 5.2.5 (Program Reachability is reducible to Template-based Synthesis).

The reachability problem in De�nition 5.2.1 of Section 5.2.1 is reducible to the syn-

thesis problem in De�nition 5.2.2 of Section 5.2.1.

Proof. Let P be a program containing a location L. The reduction of a general

instance P,L of reachability to a speci�c instance Q,S, T of program synthesis is as

follows:

• For every function p ∈ P , de�ne a similar function q ∈ Q. Replace each

function call to p with the corresponding call to q.

• Raise a unique exception REACHED at the location in Q corresponding to the

location L in P . The exception REACHED will be caught if and only if the

location in Q corresponding to L ∈ P has been reached.

• De�ne a starting function qmain that has no inputs and returns an integer value.

� Let qP be the function in Q corresponding to the starting function in P .

At the beginning of qmain, insert a �nite set of template assignment of the

form xi = ci, where xi are the inputs to function qP and ci are parameters

to be synthesized.

� Next, insert a try-catch construct that calls qp on inputs x1, . . . , xn and

returns the value 1 if the exception REACHED is caught.

� At the end of qmain, return the value 0.

� Thus, qmain has the form
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def qmain():

x1 = c1

. . .

xn = cn

try:

qp(x1 ,..,xn)

catch REACHED:

return 1

return 0

• The template program Q consists of the �nite set of template parameters S =

{c1, . . . , cn}, functions qmain, and other qi.

• The test suite T for Q consists of exactly one test case Q() = 1.

The reduction transforms an arbitrary reachability instance P,L into a speci�c

synthesis instance Q, T, S that can be synthesized if and only if location L in P is

reachable. Suppose that Q can be synthesized with values ci such that Q() = 1 (the

only test in T ), then the location corresponding to L in Q is reachable (to return

1 the exception must have been caught, to be caught it must have been raised, it

is raised only at that location), and hence L ∈ P is reachable using the same input

values ci (because P and Q share control- and data-�ow). Conversely, if Q cannot

be synthesized with any values ci such that Q() = 1, then the location corresponding

to L in Q and hence L ∈ P is not reachable for any input values of ci. This is also a

polynomial time reduction from the input instance P,L. The constructed program

Q consists of all functions in P and a starting function qmain having n template

assignments, where n is the number of inputs to P .
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def qP (x, y):

if 2*x == y:

if x > y+10:

[L]

raise REACHED

return 0

def qmain():

#synthesized stmts

x = c0
y = c1
try:

qP(x,y)

catch REACHED:

return 1 #success

return 0

Test suite T: Q() = 1

Figure 5.6: Reducing the reachability instance in Figure 5.3 to a synthesis program.

Example 5.2.6. Figure 5.6 illustrates the reduction using the reachability example

in Figure 5.3.

The exception REACHED represents a signal, unique from all other values re-

turned by qp, indicating to qmain that the location corresponding to L has been

reached. We present the reduction in terms of exception handling, a familiar mecha-

nism supported by many modern languages. However, exceptions are not necessary

for the reduction to proceed. Other (potentially language-dependent) implementa-

tion techniques can be also employed. We could use tuples or structs as a signal,

returning (v, false) from a function that normally returns v if the location correspond-

ing L has not been reached and (1, true) as soon as it has. BLAST [Beyer et al.,

2007], a model checker for C programs (which do not support exceptions), uses goto

and labels to indicate when a desired location has been reached.

5.2.4 Synthesis ≡ Reachability

Together, the above two theorems establish the equivalence between program syn-

thesis and reachability.

Theorem 5.2.7. The synthesis problem in De�nition 5.2.2 of Section 5.2.1 is equiv-
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alent to the reachability problem in De�nition 5.2.1 of Section 5.2.1.

Proof. This follows from Theorem 5.2.3 stating that synthesis is reducible to reach-

ability and Theorem 5.2.5 stating that reachability is reducible to synthesis. Thus,

the two problems are reducible to each other, i.e., equivalent.

This result connects the two �elds and the constructive nature of the proof allows

for insights and techniques from one problem to be used to the other. In the next

section, we demonstrate just such a concrete application for this theoretical result.

5.3 CETI: Automatic Program Repair using Test

Input Generation

In this section, we describe a new approach for solving automated program repair

problems (a synthesis task) using techniques for test input generation (a reachability

task). We de�ne the problem of program repair in terms of template-based program

synthesis:

De�nition 5.3.1 (Single-Edit Program Repair problem). Given a program P that

fails at least one test in a �nite test suite T and a �nite set of parameterized templates

S, does there exist a location L ∈ P and parameter values c1, . . . , cn for the templates

in S such that L can be replaced with S[c1, . . . , cn] and the resulting program passes

all tests in T?

We present an automatic program repair tool called CETI (Correcting Errors

using Test Inputs) to solve this repair problem. The tool implements the key ideas

from Theorem 5.2.3 in Section 5.2.2 to transform the repair task into a reachability

problem, which can then be solved by tools developed in veri�cation sub�elds such

as model checking and test input generation in software testing. Figure 5.7 gives an
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Buggy
Program

Test
Suite

FAULT
LOCALIZER

Suspicious
Statements

PROGRAM
CONVERTER

Reachability
Program

TEST INPUT
GENERATOR

Repair

Figure 5.7: CETI: Automatic Program Repair using Test input Generation.

overview of CETI. Given a test suite and a buggy program that fails some test in

the suite, CETI employs an existing statistical fault localization technique to rank

suspicious statements. Next, for each suspicious statement and synthesis template,

CETI transforms the buggy program, the test suite, the statement and the template

into a new program containing a location reachable only when the original program

can be repaired. The transformed program is then sent to an o�-the-shelf test input

generation tool, which produces test values that can reach the designated location.

Such test input values, when combined with the synthesis template and the suspicious

statement, correspond exactly to a patch that repairs the bug.

5.3.1 Repair Components

We review the main repair components of CETI. These include fault localization,

repair templates, and test input generation.

Statistical Fault Localization

To transform a program repair instance into a synthesis task, we �rst identify particu-

lar code regions for synthesis. These correspond exactly to patch locations. Although

some program repair approaches consider all possible locations [Weimer et al., 2013],

a common optimization is to consider locations likely to be implicated in the defect
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�rst. We use a statistical fault localization technique [Jones and Harrold, 2005, Qi

et al., 2013] to identify program statements likely related to the defect. Statistical

fault localization techniques typically compute a suspiciousness score for each pro-

gram statement based on static and dynamic information, such as the frequency of

its appearance in passing and failing program test case runs. We consider techniques

that return a list of ranked statements in descending order of their suspiciousness

with respect to a given defect.

CETI implements the popular Tarantula statistical algorithm [Jones and Harrold,

2005], which assigns a score for a program statement s as

score(s) =
fail(s)/totalfail

fail(s)/totalfail + pass(s)/totalpass

where fail(s) is the number of failing runs in the test suite that visit statement

s and totalfail is the number of failing runs (regardless of whether s is reached or

not). Similarly, pass(s) and totalpass are the corresponding numbers for passing runs.

Table 5.1 lists the Tarantula scores of the program statements in Figure 5.1.

Repair Templates

Like many template-based program synthesis and repair methods [Nguyen et al.,

2013, Solar-Lezama et al., 2005, Srivastava et al., 2013], CETI modi�es program

statements using prede�ned templates. We consider repairs that change only the

right hand sides of assignment statements. We assume an intermediate program

representation such as CIL [Necula et al., 2002] that simpli�es expressions that con-

trol side-e�ects or control-�ow through the introduction of well-typed temporaries.

For example, x = y = z; is treated as y = z; x = y; and if(e){..} is treated as

temp = e; if(temp){..}. This allows for many defects, including those occurring

at non-assignment statements such as conditions and loops, to be addressed even

when attention is restricted to statement-level [Weimer et al., 2009] or assignment-

level [Nguyen et al., 2013] patches.
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At a high level, we assume that the program is mostly correct; if the programmer

is using a comparison operation at a suspicious statement, we consider replacing it

with another comparison operation, instead of arbitrary code. Given an assignment

x = e;, where e is an expression, CETI considers the repair templates given in

Table 5.2, de�ned based on the structure of e and the variables it references. For

example, if e is x ≤ y, then CETI creates the Top template c1 ∗ (x ≤ y) + c2 ∗ (x <

y) + · · ·+ c5 ∗ (x ≥ y), where the parameter ci have boolean values and exactly one

ci is true. The template instantiates di�erent logical comparisons between x and y

depending on the value of ci. For example, c5 = true corresponds to x ≥ y. CETI

automatically analyzes the recursive structure of e to apply appropriate operators.

The tool also uses the template Tconst to replace all constants in an expression with

parameters, e.g., 2 ∗ x+ 3 ∗ y + 4 becomes c1 ∗ x+ c2 ∗ y + c3.

We also assume that defects can often be addressed in terms of in-scope variables.

The k-linear template is a combination among k variables and k + 1 parameters.

Unlike the operator-directed templates, this template is applicable to any assignment

statement x = e; regardless of the structure of e. Applying this template on the

assignment x= ...; results in a template assignment x = c0+c1*v1+...+ck*vk;,

where vi are k variables in scope at the assignment statement. Such a template can

be instantiated to form statements such as x = 7;, x = 2*v1;, or x = 2*v1 + 5*v2

+ 100;.

For single-edit repairs, CETI considers only one change at a time as a candidate

patch. If e contains n operators then the tool creates and synthesizes n template

expressions separately. Similarly, when there are more than k variables available,

CETI creates all possible combinations of variables of size k then applies the k-linear

template on each combination.
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Template Description

Top operators
logics ∧,∨

comparison ≤, <,=, >,≥
arithmetic +,−

Tconst const ci

Tlincomb k-linear comb c0 + c1v1 + · · ·+ ckvk

Table 5.2: Repair templates used in CETI.

Test Input Generation

Test input generation is a sub�eld in program veri�cation that aims to generate high-

coverage test data and, thus, to �nd deep errors in complex software. Although black-

box approaches that do not inspect the program are possible (e.g., fuzz testing [Miller

et al., 1990, Tillmann and de Halleux, 2008]), many approaches force a program to

visit a particular path by calculating the associated path predicate and using a

constraint solver to �nd satisfying values. This is complicated by common program

features that are di�cult to reason about statically, such as aliasing.

Concolic execution [Cadar and Sen, 2013] is a modern test input generation tech-

nique that combines concrete and symbolic executions to create test inputs that

explore as many di�erent program locations as possible. To �nd inputs leading to a

program location, the technique encodes the conditions leading to that location as

a path constraint, which can be solved with a constraint solver for concrete input

values. For the program in Figure 5.3, the technique can generate inputs such as

(x = 0, y = 1) from the constraint 2x 6= y leading directly to the return statement

and the inputs (x = −20, y = −40) from 2x = y ∧ x > y+ 10 leading to location L.

CETI employs KLEE [Cadar et al., 2008a], an automatic test input generation

tool based on concolic execution, to �nd inputs reaching a desired location in a
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C program. KLEE has been shown to generate high coverage inputs on to complex

real-world programs, e.g., above 90% line coverage of tools in the GNU COREUTILS

utility suite. Because KLEE repeatedly produces test inputs to make a high coverage

test suite, we terminate the test input generation process as soon as the desired

location is reached.

Although CETI uses KLEE for test input generation, other tools and techniques,

such as CREST [Burnim and Sen, 2008], SAGE [Godefroid et al., 2008], PEX [Till-

mann and de Halleux, 2008], BLAST [Beyer et al., 2007], or SLAM [Ball and Raja-

mani, 2002] could be used to �nd inputs reaching a program location. In fact, for

reachability purposes, software model checkers such as BLAST and SLAM are poten-

tially more e�cient because they target the reachability of speci�ed locations, rather

than exploring all possible locations as in the case of test input generation tools. Fi-

nally, because CETI treats a test input generator as an untrusted black box, it runs

multiple test input generation tools in parallel to take advantage of techniques that

make di�erent performance and correctness trade-o�s. A key advantage of CETI

is that it admits other test input generation or reachability tools, regardless of the

technologies used in these tools.

5.3.2 Repair Algorithm

Figure 5.8 outlines the repair algorithm of CETI, which takes as inputs a test suite

T , a program Q failing T , and returns a modi�ed program Q′ satisfying T . The algo-

rithm synthesizes correct-by-construction repairs, i.e., the repair, if found, is guaran-

teed to pass the test suite. As discussed in Section 5.3.1, we use a pre-processing step

to parse the program into an intermediate representation that exposes expressions

for the bene�t for fault localization and repair template locations. Next, we obtain

a list of suspicious statements using an o�-the-shelf fault localization algorithm.

The algorithm then applies each applicable prede�ned repair template given in
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procedure Repair(Q,T )
Q← parse(Q) . Parse and simplify complex program constructs
susp_stmts← faultLoc(Q,T ) . Apply statistical fault localization

. Create programs with template statements
tpl_progs← ∅
for ss ∈ susp_stmts, in ranked order do

for tpl ∈ predefined_templates do
tpl_stmts← applyTemplate(tpl,ss)
for ts ∈ tpl_stmt do

q ← Q.replace(ss, ts)
tpl_progs.add(q)

. Convert to reachability programs and apply test input generation (parallel code)
for q ∈ tpl_progs do

p← convert(q,T )
test_vals← genTestInputs(p)
if test_vals 6= ∅ then

return q.instantitate(test_vals)

return �no single-edit repair found�

Figure 5.8: Algorithm for single-edit program repair from the inputs: a test suite T and a
program Q failing T . The main step of this algorithm are: pre-processing the input program
to an intermediate representation (parse), using fault localization to obtain a ranked list
of suspicious statements (faultLoc), creating template-based synthesis programs using
prede�ned templates and suspicious statements (applyTemplate), converting synthesis
programs to reachability problems using equivalence theorem (convert), and applying test
input generation to �nd solutions for reachability problems, which correspond to program
repairs (genTestInputs).

Table 5.2 on each suspicious statement, in order, to create template statements

containing parameters to be synthesized. We focus on single-statement modi�cations

by creating, for each template statement ts, a new program similar to the input

program but with the suspicious statement replaced by ts. This step produces a set

of template programs tpl_prog, each of which, when coupled with the test suite T ,

is an instance of the program synthesis problem (De�nition 5.2.2 of Section 5.2.1).

Using the constructive reduction step shown in Section 5.2.2, we convert each
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program q ∈ tpl_prog to a reachability problem p containing a location L that

corresponds exactly to passing the test suite T . Next, we send each transformed

program p to an o�-the-shelf test input generation tool. If such test values are

found, they are instantiated into the corresponding parameters in template program

q to obtain a repaired program that passes the test suite T .

As an optimization, the algorithm parallelizes the process of converting programs

and running the test input generator. Although the program transformation step can

be done quickly, �nding test cases to reach a certain program location can be expen-

sive depending on the given program and the test input generation tool. Moreover,

the task is embarrassingly parallel because each test input problem can be considered

independently. Parallelization allows us to quickly �nd a repair by running multiple

test generation instances simultaneously and stopping when the �rst repair is found

by any of the parallel tasks2. This optimization mirrors other parallelism approaches

found in previous ad hoc techniques. For example, each candidate patch and each

test case can be considered independently in GenProg.

5.4 Experiments

The prototype tool CETI takes as input a buggy C program and a test suite and

makes use of an o�-the-shelf fault localization tool (Tarantula) and an o�-the-shelf

reachability tool (KLEE) as well as a set of prede�ned repair templates (described

in Table 5.2). The tool converts each candidate repair (i.e., the application of a

given repair template at a given suspicious statement) into a test input generation

problem; any satisfying test input values are mapped back into a repair. We use

the CIL [Necula et al., 2002] front end to parse and modify program constructs

2 We note that a test input generation tool designed for use in such a repair algorithm
could re-use intermediate results and pre-processing steps on these similar queries and thus
operate even more rapidly. However, we do not assume anything about the test input tool
used.
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followed by other scriptings to invoke the test input generator tool in parallel. The

website https://bitbucket.org/nguyenthanhvuh/ceti/ contains the source code

of CETI, benchmark programs, and experimental results given in this chapter.

The behavior of CETI is controlled by customizable parameters. For fault local-

ization, we implement both the Tarantula and Ochiai [Abreu et al., 2006] statistical

score metrics. We consider the top n = 80 statements with a score s > 0.2 from

the ranked list of suspicious statements and, then, apply the prede�ned templates

to these statements. We use k = 2-linear templates, representing expressions of

the form c0 + c1v1 + c2v2. For e�ciency, we restrict synthesis parameters to be

within certain value ranges: constant coe�cients c0 are con�ned to the integral

range [−100000, 100000] while the variable coe�cients c1, c2 are drawn from the set

{−1, 0, 1}.

To evaluate CETI, we use the Tcas program from the SIR benchmark [Do et al.,

2005]. The program, which implements an aircraft tra�c collision avoidance system,

has 180 lines of code and 12 integer inputs. The program comes with a test suite

of about 1608 tests and 41 faulty functions, consisting of seeded defects such as

changed operators, incorrect constant values, missing code, and incorrect control

�ow. This program has been used to benchmark modern bug repair techniques

including SemFix [Nguyen et al., 2013], FoREnSiC [Könighofer and Bloem, 2013],

and Debroy and Wong [Debroy and Wong, 2010].

We manually modify Tcas, which normally prints its result on the screen, to

instead return its output to its caller, e.g., printf("output is %d\n",v); becomes

return v;. Similar techniques were used in FoREnSiC and SemFix because they

also need to encode the input and expected output speci�cations as constraints. We

expand constant array values (e.g., int arr[2]; becomes two variables, arr0 and

arr1) when appropriate to simplify integration with KLEE. We also observe that

the test case generator KLEE works slowly on programs containing large numbers
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of global variables. Therefore, we convert global variables to local variables when-

ever possible (following algorithms and tools to do this automatically, e.g., [Yang

et al., 2009]). For e�ciency, many repair techniques initially consider a smaller num-

ber of tests in the suite and then verify promising candidate repairs on the entire

suite [Fast et al., 2010] (e.g., the author of SemFix minimize the given test suite

to 50 tests [Nguyen et al., 2013]). In contrast, we use all available test cases at all

times to guarantee that any repair found by CETI is correct with respect to the test

suite. We �nd that modern test input generation tools such as KLEE can handle

the complex conditionals that encode such information e�ciently, �nding the desired

solutions within seconds. For brevity, we elide all tests not related to algorithmic

correctness (e.g., sanity checks ensuring that the correct number of inputs are passed

to the function).

Table 5.3 shows the experimental results with 41 buggy Tcas versions. These

experiments were performed on a 32-core 2.60GHz Intel Linux system with 128 GB

of RAM. We were able to correct 26 of 41 defects, including multiple defects of

di�erent types. On average, CETI takes 22 seconds for each successful repair. The

tool found 100% of repairs for which the required changes are single edits according

to one of our prede�ned templates (e.g., generating arbitrary integer constants or

changing operators at one location). In several cases, defects could be repaired in

several ways. For example, defect v28 can be repaired by swapping the results of both

branches of a conditional statement or by inverting the conditional guard. CETI also

obtained unexpected repairs. For example, the bug in v13 is a comparison against an

incorrect constant; the buggy code reads < 700 while the human-written patch reads

< 600. Our generated repair of < 596 also passes all tests. The human acceptability

and maintainability of automatic patches is an area of ongoing research (e.g., [Fry

et al., 2012, Kim et al., 2013]), but we note that the acceptability of our repairs to

humans are comparable to those reported for other tools.
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We were not able to repair 15 of 41 defects, each of which requires edits at

multiple locations or the addition of code that is beyond the scope of the current set

of templates. As expected, CETI takes longer for these programs because it tries all

generated template programs before giving up. One common pattern among these

programs is that the bug occurs in a macro de�nition, e.g., #define C = 100 instead

of #define C = 200. Since the CIL front end automatically expands such macros,

CETI would need to individually �x each use of the macro in order to succeed. This

is an artifact of CIL, rather than a weakness inherent in our algorithm.

CETI, which repairs 26 of 41 Tcas defects, performs well compared to other

reported results from repair tools on this benchmark program. GenProg, which �nds

edits by recombining existing code, can repair 11 of these defects [Nguyen et al.,

2013, Tab. 5]. The technique of Debroy and Wong, which uses random mutation,

can repair 9 of these defects [Debroy and Wong, 2010, Tab. 2]. FoREnSiC, which uses

the concolic execution in CREST, repairs 23 of these defects [Könighofer and Bloem,

2013, Tab. 1]. SemFix out-performs CETI, repairing 34 defects [Nguyen et al., 2013,

Tab. 5], but also uses �fty manually selected test cases instead of the entire suite of

thousands. Other repair techniques, including equivalence checking [Könighofer and

Bloem, 2013] and using counterexample guided re�nement [Könighofer and Bloem,

2013], repair 15 and 16 defects, respectively.

The closest related tool, SemFix, directly uses and customizes a concolic execution

engine. In contrast, we use KLEE o�-the-shelf to demonstrate that the constructive

reduction works competitively in general, even without domain-speci�c optimiza-

tions. This is a trade-o�: customizing a reachability solver to the task of program

repair may increase the performance or the number of repairs found, but may also

reduce the generality or ease-of-adoption of the overall technique. We note that our

unoptimized tool CETI already outperforms published results for GenProg, Debroy

and Wong, and FoREnSiC on this benchmark, and is competitive with SemFix.
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The goal of this proof-of-concept evaluation was to demonstrate that the construc-

tive reductions between program synthesis and program reachability allow tools and

algorithms from one area to be used directly in the other.

5.5 Summary

The reachability problem in program veri�cation and template-based program syn-

thesis are two important problems in computer science with many theoretical and

practical applications. This chapter proved that the two problems are equivalent.

We reduce a general program synthesis instance to a speci�c reachability instance

consisting of a special location that is reachable when code could be generated for the

synthesis problem. Conversely, we reduce a general reachability instance to a speci�c

synthesis instance such that a successful synthesis indicates the reachability of the

target location in the original problem. This equivalence result connects the �elds of

synthesis and reachability and enables the application of ideas, optimizations, and

tools developed for one problem to the other.

To show the potential impact of these theoretical results, we leverage the con-

structive nature of the reduction proof to develop a new algorithm for automatic

program repair (a synthesis problem) using test input generation techniques (which

solve reachability problems). We use existing statistical fault localization algorithms

to rank suspicious program statements, consider template code transformations on

the buggy program, apply an o�-the-shelf test input generation tool to each trans-

formed program to �nd test inputs, and map those inputs back into concrete patches.

We implement these ideas in a prototype tool called CETI to automatically repair C

programs, evaluating on a benchmark that has been targeted by multiple program

repair algorithms. The preliminary results suggest the usefulness of the equivalence

in practice because CETI has a higher success rate than many other standard repair

approaches.
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Bug Type R-Progs Time (s) Repair? Template

v1 incorrect op 6143 21 X Top

v2 missing code 6993 27 X Tlincomb

v3 incorrect op 8006 18 X Top

v4 incorrect op 5900 27 X Tconst

v5 missing code 8440 394 � �

v6 incorrect op 5872 19 X Top

v7 incorrect const 7302 18 X Tconst

v8 incorrect const 6013 19 X Tconst

v9 incorrect op 5938 24 X Top

v10 incorrect op 7154 18 X Top

v11 multiple 6308 123 � �

v12 incorrect op 8442 25 X Top

v13 incorrect const 7845 21 X Tconst

v14 incorrect const 1252 22 X Tconst

v15 multiple 7760 258 � �

v16 incorrect const 5470 19 X Tconst

v17 incorrect const 7302 12 X Tconst

v18 incorrect const 7383 18 X Tconst

v19 incorrect const 6920 19 X Tconst

v20 incorrect op 5938 19 X Top

v21 missing code 5939 31 X Tlincomb

v22 missing code 5553 175 � �

v23 missing code 5824 164 � �

v24 missing code 6050 231 � �

v25 incorrect op 5983 19 X Top

v26 missing code 8004 195 � �

v27 missing code 8440 270 � �

v28 incorrect op 9072 11 X Top

v29 missing code 6914 195 � �

v30 missing code 6533 170 � �

v31 multiple 4302 16 X Tlincomb

v32 multiple 4493 17 X Tlincomb

v33 multiple 9070 224 � �

v34 incorrect op 8442 75 X Tlincomb

v35 multiple 9070 184 � �

v36 incorrect const 6334 10 X Tconst

v37 missing code 7523 174 � �

v38 missing code 7685 209 � �

v39 incorrect op 5983 20 X Top

v40 missing code 7364 136 � �

v41 missing code 5899 29 X Tlincomb

Table 5.3: Repair results for 41 Tcas defects. Column Bug Type describes the type of
defect. Incorrect Const denotes a defect involving the use of the wrong constant, e.g., 700
instead of 600. Incorrect Op denotes a defect that uses the wrong operator for arithmetic,
comparison, or logical calculations, e.g., ≥ instead of >. Missing code denotes defects
that entirely lack an expression or statement, e.g., a&&b instead of a&&b||c or return

a; instead of return a+b;. Multiple denotes defects caused by several actions such as
missing code at a location and using an incorrect operator at another location. Column
Seconds shows the time taken. Column R-Prog lists the number of reachability problem
instances that were generated and processed by KLEE. ColumnRepair? indicates whether
a repair was found and column Template names the template used to �nd that repair
(see Table 5.2). These benchmark programs and experimental results are available at
https://bitbucket.org/nguyenthanhvuh/ceti/.
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Chapter 6

Conclusions

�Beware of bugs in the above code; I have only proved it correct, not tried

it.� � Donald Knuth1

As stated in Chapter 1, the thesis of this dissertation is to build e�ective tech-

niques to automatically generate invariants and synthesize programs by encoding

these tasks as solutions to existing problems in the mathematical and veri�cation

domains. In the following, we review the key contributions of this dissertation to

support the thesis, suggest future directions, and o�er �nal remarks.

6.1 Summary of Findings

In Section 1.2, we hypothesize that complex program invariants can be interpreted

as linear equations and constraints, which can be e�ciently solved using existing

mechanical and powerful constraint solvers. This thesis is supported by the following

contributions described in Chapters 3 and 4:

1American computer scientist and mathematician, who created the TeX computer type-
setting system (1938 � present).
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• Geometric Invariant Inferring. We present and evaluate a geometric approach

for discovering general polynomial relations among numerical program traces.

We reduce the inference of conjunctive polynomial equalities and inequalities

to the task of building hyperplanes and convex polyhedra in high-dimensional

space. We also construct nonconvex polyhedra in the non-standard max and

min-plus algebras to handle disjunctive polynomial relations. For e�ciency, we

de�ne and detect weaker forms of polynomial invariants that balance between

expressive power and e�ciency. Finally, by using terms to represent nonlinear

polynomials among program variables, the geometric inference technique yields

nonlinear relations among the original variables.

• Static Invariant Proving. We develop a custom, automatic theorem prover for

verifying invariants based on iterative, parallel k-inductive SMT solving. Many

program invariants are not classically inductive, and k-induction allows us to

prove them. Similarly, the re-use of learned invariants as lemmas allows us

to prove non-inductive invariants in practice. The explicit parallel structure of

the prover is critical for performance. By construction, our geometric approach

does not overapproximates true program invariants that are expressible using

supported forms. Moreover, validating each candidate against the program

code means that we do not underapproximate the true invariants; this approach

helps address the issue of spurious or incorrect invariants.

• Theory of Nested Array Relations. We conduct a formal analysis that connects

the tasks of composing functions and �nding nested relations among arrays.

The analysis establishes the complexity of the two problems; they are NP-

complete in the number of involved arrays and functions, but have polynomial

complexity in the number of array elements or function arguments. Based on

this analysis, we develop a dynamic technique that employs equation and SMT

solving to discover complex array invariants from program traces.
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• Implementation and Evaluation. We implement DIG, an invariant analysis

tool, to dynamically detect invariants, and KIP, a theorem prover based on

k-induction, to verify candidate invariants. These tools are evaluated using

di�cult programs involving nonlinear arithmetic and a full implementation of

an AES encryption algorithm. Experimental results show that the tools are

e�cient, both at learning complex invariants and proving them correct.

We also hypothesize in Section 1.2 that certain formulations of veri�cation and

synthesis are equivalent, and this equivalence allows for the exchange of ideas and

techniques between di�erent research areas. This thesis is supported by the following

contributions described in Chapter 5:

• Equivalence Theorem. We formally show that program reachability, a formula-

tion of veri�cation, and template-based synthesis, an approach to synthesis, are

interreducible. We encode a reachability problem as a synthesis task, where a

successful synthesis indicates the reachability of the target location in the orig-

inal problem. Dually, we transform a synthesis task into a program containing

a target location, reachable only when code could be generated for the original

task.

• Automatic Program Repair Technique. To demonstrate the potential impact

of the equivalence theorem, we present a new approach to automatic program

repair (a synthesis task) using existing techniques for test input generation

(which solves reachability problems). We rank suspicious code statements using

an existing fault localization algorithm, perform a code transformation on the

buggy program, apply a test input generation tool on the transformed code to

�nd inputs, and map those test inputs back into concrete repairs.

• Implementation and Evaluation. We implement CETI, a prototype tool to

repair C programs using o�-the-shelf test input generation tools. Experimental
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results from common bug benchmarks show that CETI can have higher success

rates than many other standard repair approaches.

6.2 Future Work

The research presented in this thesis could be continued in many directions. The

invariant detection tool DIG can be extended to new classes of polynomial invari-

ants, such as the congruence relations of the form cixi + · · · + cnxn ≡ c[m] used

in abstract interpretation to analyze pointer alignment properties and bit vectoriza-

tions [Granger, 1989, 1991]. The modular design of DIG allows for easy extensions

to other geometric shapes for other forms of relations. Currently, DIG can iden-

tify 60% of the required array relations necessary for full formal veri�cation of the

AES implementation. Our goal is to cover the remaining array invariants in AES,

e.g., analyzing disjunctive nested array relations by exploiting the NP-completeness

proof for arrays in Chapter 4. We are also interested in analyzing properties of other

data structures related to arrays such as strings and trees. The prover KIP can be

extended to support arrays and other data structures by using constraint solvers

designed speci�cally for these data structures instead of general SMT solvers, e.g.,

Boolector for arrays and bit-vectors [Brummayer and Biere, 2009] or HAMPI for

string constraints [Kiezun et al., 2009]. In addition, we are extending KIP to verify

invariants for recursive programs and functions.

The tool CETI synthesizes program repairs that are correct with respect to a

given test suite, not a formal speci�cation. Consequently, these repairs may not

be generalized to test inputs that are not given in the test suite. We propose to

use theorem proving, e.g., KIP, to verify the repair against a formal speci�cation

if available. If the repair violates the formal speci�cation, we can generate coun-

terexamples and re�ne the repair iteratively. In addition, we intend to integrate

CETI, which synthesizes code using repair templates, with evolutionary-based tech-
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niques such as GenProg, which can evolve arbitrary extant code. This dissertation

concretely demonstrates the applicability of program reachability (test input genera-

tion) to program synthesis (bug repair) but not the reverse direction of using program

synthesis to solve reachability. We intend to apply advances in automatic program

synthesis and repair to �nd test inputs to reach nontrivial program locations using

the constructive proof given in Chapter 5.

6.3 Final Remarks

We believe that this research was a successful step toward making software more

reliable. The development of invariant generation o�ers programmers the ability

to understand and verify programs containing complex properties such as nonlinear

polynomial, disjunctive, and array relations. The equivalent theorem opens doors

to a pro�table cross-fertilization between the two research areas of program veri�-

cation and synthesis, e.g., leveraging veri�cation techniques to synthesize program

repairs. We hope that many of the ideas, techniques, and tools in this research

will be adopted in the future, and that they will ultimately contribute toward more

productive developers and more reliable software.
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