
Using Symbolic Execution to Analyze
Linux KBuild Makefiles

ThanhVu Nguyen and KimHao Nguyen
University of Nebraska-Lincoln

Abstract—The Linux kernel can be customized and built from
over 13,000 configuration options, making it one of the most
highly-configurable systems in modern computing. To understand
how the kernel is built over these configurations, we present a
symbolic execution approach to analyze the Linux kbuild system.
By exploiting several unique features in kbuild, we believe our
approach can provide accurate results and scale well to the high
level of configuration in Linux. Preliminary results show that
our prototype can handle hundreds of build files in Linux and
provide interesting information about the Linux build system.

Index Terms—Linux build Systems, kbuild Makefiles, config-
urable systems, symbolic execution

I. INTRODUCTION

The Linux kernel [1] is an active and large open-sourced
software used in a wide range of systems, e.g., from tiny IoT
sensors, mobile devices, to desktop and super computers. This
flexibility is due to the configurable design of Linux, allowing
the users to customize the kernel build with an extensive
set of options. In total, Linux has more than 13,000 options
and allows for an astronomically large number of 213000

configurations1 [2] (as a comparison, the highly-configurable
Apache webserver and Firefox browser have about 1100 and
1600 options, respectively).

a) The problem: Similar to many large projects, Linux
uses the make system [3] to control how different configuration
options affect the compilation and linking of individual files to
build the kernel. The make system consists of the make tool
that takes as inputs Makefiles, written in the Make language
and consisting of rules to build target programs. Linux has
around 500 kbuild files, which are Makefiles with specific
structures and conventions adopted by Linux developers [4].
In addition to Linux, kbuild Makefiles are used to build many
other open-source, system-level software.

Kbuild files contain valuable build information for both
Linux developers and users. The Linux Foundation has pro-
posed a Google Summer of Code (GSoC) project in 2018 [5]
to analyze these files to discover build conditions over config-
uration options, which indicate when source files are included
in the kernel build. For example, building the kernel using a
configuration satisfying the build condition α is guaranteed to
use the file file.c.

As shown in the GSoC project, build conditions can help
developers find orphan files that are never built in any con-

1This is a conservative estimate as many configuration options in Linux can
take more than two values. Moreover, while some options or combinations
are not compatible, we do not actually know what they are, and thus also
need to consider those possibilites.

figuration, test configurations that affect interested files, and
determine what patches or code changes affect a given config-
uration. They also allow users (e.g., phone manufacturers) to
estimate the kernel’s build time and size, which is especially
important for small devices (e.g., the “kernel tinification”
project [6] is an effort to build small kernels to fit very
small IoT device sensors). More generally, these conditions
can reveal interesting configuration properties, e.g., the ratio
of build conditions with respect to the configuration space,
the complexity and types of the build conditions, “influential”
options affecting how files are built, etc. These properties have
been studied in various highly-configurable systems [7], [8],
but not at the configuration level of Linux.

b) Prior Works: Makefiles can be considered as “pro-
grams” in the make declarative language and thus can be
analyzed as other programs. However, compared to imperative
languages such as C, there are few works on analyzing Make-
files, in particular for kbuild files. The works from [9]–[11]
use patterns to analyze a subset of kbuild files, but suffer from
correctness and scalability issues, e.g., fail to handle thousands
of (.c) files in Linux as shown in [2]. The Kmax static
analysis tool [2] improves scalability by sacrificing precision,
e.g., does not support options with integer or string values
(which are used often in kbuild files). This work also does not
validate the resulting build conditions and analyze their uses
(which are the main motivations for finding these conditions).
SYMake [12] applies symbolic evaluation to general Makefiles
and constructs dependency graphs for refactoring code and
detecting code smell and consistencies in Makefiles. This work
does not analyze build conditions and thus does not solve
the build problems in the GSoC project. Moreover, this work
might not scale to Linux Makefiles with many configuration
options. Indeed, the GSoC project calls the analysis of Linux
kbuild files a “Herculean” task due to Linux’s unusually large
configuration space.

c) Our approach: We propose to extend the popular
symbolic execution technique [13], [14] to efficiently ana-
lyze Linux build conditions. Symbolic execution simulates
program execution over symbolic inputs, forks into multiple
executions corresponding to feasible conditional branches, and
collects “path conditions” that are logical constraints over
symbolic inputs leading to these branches. Analogously, we
treat configuration options as symbolic inputs and simulate
the “execution” of make to collect build conditions over these
inputs mapping to source files.

While symbolic execution is relatively straightforward,



Fig. 1. Menuconfig. The notations *, M, and empty (< > or [ ]) indicate
file(s) being built directly in the kernel, as a module, or not set, respectively.

many challenges arise when it is applied to real-world appli-
cations, e.g., scalability, dealing with challenging code seman-
tics, etc. However, we can exploit several unique properties of
kbuild Makefiles to make symbolic execution efficient, e.g.,
merging conditions mapping to similar files as the number of
files is much smaller than the number of configurations.

After obtaining build conditions, we need to analyze them
to solve build problems and learn interesting configuration
properties. By representing symbolic states as formulae in
first-order logic, we can use modern constraint solvers to
solve problems such as finding orphan files and the impact
of configuration options to files included in a build. For
example, to find orphan files, we ask the solver for files that
do not satisfy any build conditions. We can also discover
other interesting configuration information about the Linux
build system, e.g., the complexity of build conditions, highly-
influential configuration options, etc.

d) Results: We have developed a symbolic execution tool
for analyzing kbuild Makefiles. The work is in progress, but
we were able to apply the tool on Busybox, another well-
known system that uses kbuild Makefiles, and on many large
kbuild files in Linux. We also have developed analyses to learn
interesting build properties from build conditions.

II. KBUILD MAKEFILES AND BUILD CONDITIONS

At a high level, the Linux kernel is built using two steps:
configuring and building. In the first step, the user configures
the kernel using the menuconfig tool shown in Figure 1.
This interactive tool reads in kconfig files, which describe
configuration options in the kernel and their dependencies
(e.g., networking core driver is required for any networking
device), and shows this information in a menu that the user
can select from. After done configuring, the user saves the
selected options and their values in a .config file. In the
second step, the user invokes make to compile C source files
to build the kernel image. The make tool, which reads in the
.config file and kbuild files, uses gcc to compile and link
C files based on the chosen options in .config.

obj-y := fork.o
ifeq ($A,y)
BITS := 32

else
BITS := 64

endif

obj-$B += probe_$(BITS).o
obj-$C += fileC.o

Build Conds Files Others

True obj-y := fork.o
A = y ∧B = y obj-y := probe 32.o BITS = 32
A = y ∧ C = y obj-y := fileC.o BITS = 32
A = y ∧B = m obj-m := probe 32.o BITS = 32
A 6= y ∧B = y obj-y := probe 64.o BITS = 64

. . .

Fig. 2. KBuild Example.

Our work focuses on the second build step using kbuild
Makefiles as there are many existing works on analyzing
kconfig files (see Section V) and Linux C source code (e.g.,
how files are linked through preprocessing macros such as
#ifdef .. #include [15]).

a) KBuild Makefiles: Figure 2 shows a small example
of a kbuild file, adapted from [2]. The example involves three
tristate configuration options A,B and C, which in Linux
means they can take three possible values: y (yes), m (module),
or unset (to be excluded from the build process). The two
special variables obj-y and obj-m store the name of files
being built directly to the kernel (their functionalities are
always available) and files being built as modules (they can
be loaded on demand), respectively.

In the example, the first assignment statement sets obj-y
to fork.o. The following conditional block tests if the value
of A equals y. Variables are referenced (expanded in Makefile
terminology) using the $ operator. Depending on the value of
A, BITS is set to either 32 or 64. Next is an append statement
(+=). Both the left and right-hand side values of the statement
are computed by first expanding variable references. The right-
hand side becomes either probe_32.o or probe_64.o de-
pending on the value of BITS, which indirectly depends on A.
Similarly, the left-hand side value depends on B and becomes
either obj-y, obj-m, or obj- (which is ignored because
B is unset). Note that these expansions expose Makefile’s un-
usual support for runtime variable name construction. Finally,
the last assignment appends fileC.o to either obj-y or
obj-m depending on the value of C.

When executed, make determines the source files to be
included based on the values of A,B,C, e.g., the configu-
ration A=y,B=y,C=y results in obj-y containing fork.o,
probe_32.o, and fileC.o. By kbuild convention, Linux
generates the object .o files by compiling the corresponding
.c files (e.g., fork.c compiles to fork.o).

b) Build Conditions: To understand the relationships
between configuration options and source files, we capture
the semantics of the kbuild Makefiles as mappings from build
conditions, which are constraints over configuration options,
to source files (and some additional bookkeeping details).
Figure 2 shows several build conditions for our running
example. These mappings indicate that a kernel built with a
given configuration will use source files from build conditions
satisfied by that configuration. For example, the configuration
A=y,B=y,C=y results in obj-y = {fork.o, probe 32.o,



fileC.o }, i.e., these files will be built directly to the kernel.
We can obtain this exact information by enumerating all

possible configurations and run make on each of them to
collect built files. However, complex build projects such as
Linux would have too many configurations for this brute-force
approach. Build conditions thus serve as a compact way to
represent the same information.

III. TECHNICAL APPROACH

To analyze Linux kbuild files, we extend the bug-finding
symbolic execution technique [13], [14]. This technique uses
symbolic values for program inputs and simulates program
execution over those values (instead of actual concrete values
as in normal program execution). When facing a conditional
branch over symbolic values, the technique considers all
possible outcomes of the condition and spawns new executions
for each of those outcomes. Symbolic execution remembers
how it enters an execution by recording a “path condition”
representing the branch condition of the execution. The user
can solve the path conditions to extract concrete input values
allowing the program to reach interesting program locations
(e.g., those represent undesirable program behaviors).

a) Collecting Build Conditions: We use the kbuild Make-
file in Figure 2 to demonstrate symbolic execution. We create
three symbolic inputs representing the configuration options
A,B,C and “simulate” make execution over symbolic values
to collect build conditions.

The first assignment statement results in one execution with
the path condition true mapping to obj-y = fork.o
because we always execute this statement. The following
conditional block spawns into two new execution paths cor-
responding to the branch conditions A = y and A 6= y.
Combining these with the original path gives two new exe-
cution paths with the path conditions true ∧ A = y 7→
[obj-y = fork.o, BITS=32] and true ∧ A 6= y 7→
[obj-y = fork.o, BITS=64].

These two paths reach the appending statement
obj-$B=..., which contains unknown references (i.e., the
$ operators) that need to be expanded. For the execution
with path condition A = y (and BITS =32), this statement
spawns into three statements, e.g., obj-y += probe 32.o
(when B = y). Combining the original execution with
these produces three paths, e.g., A = y ∧ B = y 7→
BITS = 32, obj-y = {fork.o, probe_32.o}].
Similarly, the path with A 6= y also becomes three new paths.
Thus, we have six paths after this appending statement.

We now reach the final statement via six paths, each of
which spawns into three new paths for the three values for
C. In total, we accumulate 2× 3× 3 = 18 paths representing
mappings from build conditions to .o files being built .

b) Optimizing Symbolic Execution: Standard symbolic
execution can produce an exponential number of execution
paths to the number of configuration options and thus does not
scale to a large number of configuration options. To deal with
this issue, we extend symbolic execution with optimizations
specifically for kbuild Makefiles.

A simple yet effective technique is combining execution
paths [16] mapping to the same files. For example, if we
have two execution paths leading to the same files (and same
values for other variables), we can “merge” them into just
one path by taking the disjunction of the two path conditions.
While combined path conditions are more complex, modern
constraint solvers can still deal with these formulae efficiently,
especially when they do not involve complex arithmetics or
data structures.

obj-$A += 1.o
obj-$B += 2.o
obj-$C += 3.o

...

In addition, kbuild Makefiles often have
a sequence of append statements as shown
on the right. Standard symbolic execution
would enumerate all configurations as each of them updates
the obj variables, e.g., A = y ∧ B = y ∧ C = y 7→
[obj-y = {1, 2, 3}], . . . . Instead, we can significantly reduce the
number of paths by only storing individual files being added
to obj, instead of the entire contents of obj, e.g., A = y 7→
[1 ∈ obj-y], B = y 7→ [2 ∈ obj-y], C = m 7→ [3 ∈ obj-m]. To
achieve this, we can use a “split-merge” strategy [17] that splits
a set of files into individual files and merges executions leading
to same files. Thus, number of generated executions paths is
linear, instead of exponential, in the number of individual files.

Another idea is using light-weight dataflow analysis to
detect variables that are no longer used. In Figure 2 BITS
is only used once and thus we can safety discard and merge
execution paths involving BITS. This live-value analysis [18]
can be difficult in general, but the structure of kbuild files
makes it relatively simple to do (e.g., in many kbuild files,
we can just “see” that some variables are only used in certain
parts and never referred to again).

In general, these strategies improve scalability by limiting
the number of execution paths to the number of files being
built instead of the number of configurations (e.g., Linux has
over 213000 possible configurations but only about 38, 000
source files). Moreover, kbuild files, which are a subset of
the Make language, have specific conventions and designs
that favor symbolic execution. For example, they often do not
contain large loops (which would require bounded symbolic
execution and result in imprecision) or complex data structures
(they mostly use bool, int, and string values). Also, while
kbuild files can invoke arbitrary commands, many of them
can be evaluated directly in symbolic execution (e.g., native
pattern matching functions already model major capabilities
of grep).

c) Using Build Conditions: After obtaining build con-
ditions, represented as formulas in first-order logic, we can
validate and analyze them to extract insightful information
and answer questions about the build process. Recent advances
in constraint solving [19] allow us to efficiently reason over
very large formulae over many variables, i.e., the kind of
complexity we would expect when analyzing formulae over
thousands of Linux configuration options.

To validate these build conditions, we compare files that
were used in kernel builds to files that our inferred build
conditions map to. More specifically, given a configuration
(e.g., default .config files used to build the kernels in



popular Linux distributions), we first build a kernel and collect
.o objects created during that actual build process as “ground
truths”. Then we collect objects that would be created using
our generated build conditions and compare them to the
ground truth files to evaluate our results.

We can use the obtained conditions to solve Linux’s build
questions such as those in the GSoC ’18 project. For example,
to find orphan files that are never built in any configuration,
we ask the solver for files mapped to unsatisfiable conditions
or files that are not mapped to by any conditions. To find
a configuration that compiles a certain file, we combine our
build conditions with kconfig constraints (see Section V) and
ask the solver to generate a valid configuration mapping to
that file. These tasks can help Linux developers to better
understand and maintain the kernel (e.g., a developer making
changes to a specific file can focus on testing kernel built with
configurations mapping to that file).

Moreover, these build conditions can reveal interesting
properties that are commonly analyzed in highly-configurable
systems. Existing works [7], [8] using systems such as Apache
httpd and Coreutils show that conditions among configuration
options that lead to high code coverage often involve few
options and have specific forms (e.g., mostly conjunctive
formulae). They also identify influential configuration options
that must be enabled or disabled to achieve high coverage. We
aim to analyze these properties from our build conditions and
compare them with results from existing works.

Note that while we focus on Linux, this work can be applied
to other systems that use kBuild Makefiles, e.g., Busybox [20],
Zephyr RT [21], Buildroot [22]. We also believe that these
ideas on using build conditions, symbolic execution, and
constraint solving can be generalized to other build systems
and languages [23].

IV. PRELIMINARY RESULTS

We are developing a prototype tool in Python. We have ex-
tended the PyMake project [24] to parse Makefiles into AST’s
consisting of nodes corresponding to Make statements (e.g.,
conditional, appending statements, rules, etc). We have im-
plemented a breadth-first based symbolic execution algorithm
over the AST nodes to collect path constraints representing
build conditions. We represent these build conditions in logical
formulae using the Z3 SMT solver [25].

We have applied the tool on two systems using kbuild
files: Busybox [20], a software suite containing common
Unix commands for embedded devices, and Linux kernel. For
Busybox, which has a fairly large configuration space of 2500

configurations, we were able to analyze all files to obtain build
conditions within 30 mins.

The tool also worked on hundreds of Linux kbuild files,
many of which have large configuration spaces (e.g., those in
drivers/hid, driver/fs, input/touchscreen,
platform/x86 contain about 100 options each). How-
ever, currently, we were not able to handle some of
the largest Makefiles (e.g., we ran out of memory
for Makefiles in sound/soc/codecs, drivers/mfd,

TABLE I
BUILD CONDITION TYPES

Subject conds simple conj disj mixed
Busybox 429 326 6 96 1
Linux 13737 12003 1301 271 162

drivers/hwmon, which contain more than 170 configura-
tion options each). While our tool has basic merging strategies,
it currently does not have the “split-merge” one described
in Section III, which is designed to simplify sequences
of append statements that often appear in large files (e.g.,
sound/soc/codecs/Makefile contains nearly 600 ap-
pend statements).

We also have developed analyses to understand build con-
ditions. Table I shows an analysis of the build conditions
found by Kmax (we convert the results from Kmax to Z3
formulae and apply our analyses on these formulae). Column
conds reports the number of build conditions, simple the
number of “simple” conditions that are either True (length
0) or contain single configuration options, and conj, disj, and
mixed the number of non-simple conditions (contain at least
two options) that are conjunctions, disjunctions, or mixture of
conjunctions and disjunctions, respectively. Thus, we found
that the number of build conditions is quite small compared to
the configuration space. Moreover, many build conditions are
simple and involve just a single configuration option. However,
while mixed conditions appear less frequently, they do exist,
especially in Linux. Another analysis (data not shown) also
showed that most build conditions are small, regardless of the
number of configuration options. However, we found several
long build conditions, e.g., Busybox contains a disjunction
involving 35 configuration options Linux has a complex mixed
formula involving 74 options.

V. RELATED WORKS

Other than Kmax, the works from KBuildMiner [9],
GOLEM [10], Makex [11] also generate build conditions.
KBuildMiner parses kbuild Makefiles with a custom grammar
and collects C files matching certain usage patterns. By just
parsing and not accounting for the semantics of Makefiles,
KBuildMiner is imprecise and misses thousand of C files used
to build the kernel [2]. GOLEM enables one or more options
at a time and runs make to obtain build data. This approach
can only cover a small number of configurations in Linux.
Makex uses a similar parsing approach as KBuildMiner, but
underperforms both KBuildMiner and GOLEM (yields only
about 75 percent of C files in Linux according to [10]).

SYMake [12] applies symbolic execution to general Make-
files to build dependency graphs, which are useful for finding
code smells and inconsistencies and refactoring (e.g., renaming
variables). MAKAO [26] uses dynamic analysis to extract a
dependency graph from build data observed when running
make on a configuration and use this graph for visualiza-
tion, finding dependencies among targets and built files, and
detecting code smells. The works in [27], [28] show how



to improve the make tool (e.g., making it more efficient in
parsing Makefiles). These tools are for general Makefiles and
thus do not focus on kbuild files.

Several works in software product line analyze configuration
options defined in kconfig files (Section II). Sincero et al.
consider these options as a feature model [29] and Dintzner
et al. track changes in Linux’s feature model over time [30].
Berger et al. compare kconfig and the CDL modeling language
to illustrate real-world use of variability modeling [31]. She et
al. build a formal hierarchy of Linux features while Dietrich et
al. quantify their granularity [32]. Tartler et al. compute code
coverage for a single configuration and maximized coverage
with a minimal set of features [33]. The Undertaker tool [34]
analyzes kconfig and source code to obtain kconfig constraints
and detect anomalies in source code (e.g., dead code block
in C files). The work in [11] uses Undertaker’s constraints
with kbuild files to detect anomalies at both the file and
code block levels in source code. The work in [35] combines
constraints from kconfig and kbuild files to generate valid
build configurations. These works mostly focus on kconfig
specifications while we analyze kbuild files.

VI. CONCLUSION

We present a symbolic execution approach to analyze kbuild
Makefiles in Linux. To handle the large configuration space in
Linux, we exploit several unique properties of kbuild files to
optimize the symbolic execution algorithm. While additional
developments and experiments are needed, our preliminary
results are promising and reveal interesting build information
in Linux and Busybox.

Currently, we are implementing simplification and dataflow
analyses that would significantly improve scalability. We are
also working on constraint-based techniques to extract answers
to build questions (e.g., finding orphan files). Finally, we are
creating a GUI tool, similar to the menuconfig tool shown
in Figure 1, to allow the users to interact with the solver to
get useful build information.
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