
Artifact for “GenTree: Using Decision Trees to
Learn Interactions for Configurable Software”

KimHao Nguyen and ThanhVu Nguyen
University of Nebraska-Lincoln, USA
{kdnguyen,tnguyen}@cse.unl.edu

Abstract—This document describes the artifact package ac-
companying the ICSE’21 paper “GenTree: Using Decision Trees
to Learn Interactions for Configurable Software” [1]. The artifact
includes GenTree source code, pre-built binaries, benchmark
program specifications, and scripts to replicate the data presented
in the paper. Furthermore, GenTree is applicable to new
programs written in supported languages (C, C++, Python, Perl,
Ocaml), or can be extended to support new languages easily.
GenTree implementation is highly modular and optimized,
hence, it can also be used as a framework for developing and
testing new interaction inference algorithms. We hope the artifact
will be useful for researchers who are interested in interaction
learning, especially iterative and data-driven approaches.

I. INTRODUCTION

Testing, debugging, and analyzing highly configurable sys-

tems are challenging because of the exponentially large con-

figuration spaces—in the worst case, every combination of

option settings can lead to a distinct behavior [2]–[5]. The

configuration space explosion presents real challenges to soft-

ware developers because faults are often visible under only

specific combinations of configuration options. Static analyses

are difficult because of the path explosion problem and usage

of external libraries that are difficult to model precisely.

An interaction for a location is defined as a logically weak-

est formula over configuration options such that any configu-

ration satisfying that formula would cover that location. The

GenTree [1] interaction learning algorithm is inspired by the

iterative and dynamic approach of iGen [6] but can discover

interactions under arbitrary boolean formula by leveraging the

expressive power of decision trees. This document describes

the reusable artifact package accompanying the paper, which

includes source code, pre-built binaries, benchmark program

specifications, and scripts to replicate the evaluation data

presented in the paper.

II. ARTIFACT OVERVIEW

A. Benchmark Parts

We divided the benchmark suite into two parts: a fast part

that quickly generates results for reasonably sized programs

and an all part that generates results for all programs. Both

parts also run an exhaustive search to get the ground truth

interactions if the configuration space is less than 107.

B. System Requirements

a) Hardware: The benchmarks presented in the paper

were run on a workstation with a 64-core AMD Ryzen

Threadripper 3990X @ 2.9 GHz CPU, 64 GB RAM, and at

least 40GB of free disk space. Running the all benchmarks

takes around 26 hours. However, the fast part could run on

a normal laptop with around 8 GB RAM.

b) Software: We recommend evaluating the artifact on

a Linux-based OS (tested on Ubunutu 20.04 and Debian

10.7) with Docker (tested with Docker 19.03.14 and 20.10.1).

Before proceeding with the installation instructions, make

sure you can successfully run the command docker run
hello-world on the host machine.

# Step 1: Pull Docker image
docker pull unsatx/gentree_docker:icse21

# Step 2: Run container
docker run -it --rm --tmpfs /mnt/ramdisk \

unsatx/gentree_docker:icse21 bash

# Step 3: Run GenTree (inside container)
cd ~/gentree/wd
./gt -J2 -cx -BF @ex_paper # example
./gt -J2 -cx -BF @ex_paper --full # example

(ground truth)
./gt -J2 -cx -GF 2/id # coreutils id (C)
./gt -J2 -cx -YF 2/vsftpd # vsftpd (Otter)

Fig. 1: Commands to install GenTree

C. Installation

To install the GenTree artifact, follow the instructions

in Figure 1. First, we pull the pre-built Docker image from

Docker Hub. If the image is not available, we can import

the permanently archived image at [7]. Then, we start the

container and run GenTree tool. @ex_paper is the example

C program listed in Figure 2 in [1]. id and vsftpd are

benchmark programs listed in Table 1 in [1].

III. GENTREE OUTPUT FORMAT

For better interoperability, the GenTree output is designed

to be both human and machine-readable. For each discovered

interaction, GenTree outputs a block similar to Figure 2.

Blocks are separated by the line “======”. In a block,

there are three components separated by the line “-”. All

lines started with the character ‘#’ are comments and should

be ignored while parsing. In Figure 2, the comments tell

us how many hit and miss configurations classified by the



======
# M/H: 51 / 137
# Last rebuild: iter 2 num_configs 30
L4,
-
(or (= u |0|) (= v |0|))
-
3 H 4 HM
======

Fig. 2: GenTree’s output for the interaction ū ∨ v̄ in the

example program in Figure 2 in [1]

decision tree, which iteration the tree was last rebuilt, and

how many configurations were used to build the tree. The first

component in the block is a list of locations covered by the

interaction (e.g., L4). The second component is an SMT-LIB

2.0 [8] formula generated by Z3 [9]. The last component is a

serialized decision tree (pre-order traversal) for internal usage.

# Step 1: Check if GenTree is working.
# If got "Permission error", run "sudo chmod

777 -R /mnt/ramdisk" and retry.
./gt -J2 -cx -GF 2/id

# Step 2: Clean up old results
./scripts/bm.sh --clean

# Step 3:
# - To run the fast part (~3m on i9-9880H)
./scripts/bm.sh --fast --bm
# - To run the all part (~26h on Ryzen 3990X)
./scripts/bm.sh --all --bm

Fig. 3: Commands to run the benchmarks (inside container)

IV. EVALUATION

There are two parts to the evaluation process: generating

interactions and analyzing them.

A. Generate Interactions

Follow the instructions in Figure 3 to generate the in-

teractions and ground truths. The results are saved into

files res/<program>/a_<repeat>.txt. Each program

is run 11 times, so <repeat> is an integer from 0 to

10. The ground truth interactions, if available, are saved at

res/<program>/full.txt. The output file format is

described in §III.

B. Analyze Interactions

Follow the instructions in Figure 4 to analyze

the generated interactions and obtain the results as

presented in [1]. The analysis results are saved to

res/Analyze/<type>/<program>.csv, where

<type> is the analysis type (count number of each

interactions type, the accuracy of inferred interactions

compared to the ground truth, etc.). Each row in the .csv

# Step 1: Run analysis for Table II, III
# - fast part: ~5s on i9-9880H.
# - all part: ~60s on Ryzen 3990X.
./scripts/bm.sh --all --analyze-all

# Step 2: Run analysis for Fig 9
# (optional, upto ~30m on Ryzen 3990X)
./scripts/bm.sh --all --analyze-progress

Fig. 4: Commands to analyze data (inside container) for

Tables II, III and Figure 9 in [1]

file presents the data of a single run, and the MED row at the

end is the median value being reported in [1]. For a more

detailed description of the analysis results, please refer to the

README file in the Github source repository at [10] or the

snapshot at [7].

The GenTree implementation and benchmark programs

have some nondeterministic components, hence, the replicated

results may not match exactly with the results in [1]. However,

most of the time, they should be close or match exactly.

ACKNOWLEDGMENT

We thank the anonymous reviewers for helpful comments.

This work was supported in part by awards CCF-1948536

from the National Science Foundation and W911NF-19-1-

0054 from the Army Research Office. KimHao Nguyen is

also supported by the UCARE Award from the University of

Nebraska-Lincoln.

REFERENCES

[1] K. Nguyen and T. Nguyen, “GenTree: Using decision trees to learn
interactions for configurable software,” in International Conference on
Software Engineering. IEEE, 2021, p. to appear.

[2] P. Gazzillo, “Kmax: Finding all configurations of kbuild makefiles
statically,” in Foundations of Software Engineering, 2017, pp. 279–290.

[3] S. Zhou, J. Al-Kofahi, T. N. Nguyen, C. Kästner, and S. Nadi, “Extract-
ing configuration knowledge from build files with symbolic analysis,”
in International Workshop on Release Engineering. IEEE, 2015, pp.
20–23.

[4] S. Apel, D. Batory, C. Kästner, and G. Saake, “Software product lines,”
in Feature-Oriented Software Product Lines. Springer, 2013, pp. 3–15.

[5] M. B. Cohen, P. B. Gibbons, W. B. Mugridge, and C. J. Colbourn, “Con-
structing test suites for interaction testing,” in International Conference
on Software Engineering. IEEE, 2003, pp. 38–48.

[6] T. Nguyen, U. Koc, J. Cheng, J. S. Foster, and A. A. Porter, “iGen: Dy-
namic interaction inference for configurable software,” in Foundations
of Software Engineering, 2016, pp. 655–665.

[7] K. Nguyen and T. Nguyen, “Artifact for GenTree: Using decision
trees to learn interactions for configurable software,” 2021. [Online].
Available: https://doi.org/10.5281/zenodo.4514778

[8] C. Barrett, A. Stump, and C. Tinelli, “The SMT-LIB Standard: Version
2.0,” Department of Computer Science, The University of Iowa, Tech.
Rep., 2010, available at www.SMT-LIB.org.

[9] L. De Moura and N. Bjørner, “Z3: An efficient SMT solver,” in Tools
and Algorithms for the Construction and Analysis of Systems. Springer,
2008, pp. 337–340.

[10] K. Nguyen and T. Nguyen, “GenTree,” 2021, accessed on 2021-02-01.
[Online]. Available: https://github.com/unsat/gentree


