
GenTree: Inferring Configuration Interactions
using Decision Trees

KimHao Nguyen
University of Nebraska-Lincoln, USA

kdnguyen@cse.unl.edu

ThanhVu Nguyen
George Mason University, USA

tvn@gmu.edu

Abstract—In this paper, we demonstrate the implementation
details and usage of GenTree, a dynamic analysis tool for
learning a program’s interactions. Configurable software systems,
while providing more flexibility to the users, are harder to
develop, test, and analyze. GenTree can efficiently analyze the
interactions among configuration options in configurable soft-
ware. These interactions compactly represent large sets of con-
figurations and thus allow us to efficiently analyze and discover
interesting properties (e.g., bugs) in configurable software. Our
experiments on 17 configurable systems spanning 4 languages
show that GenTree efficiently finds precise interactions using a
tiny fraction of the configuration space. GenTree and its dataset
are open source and available at https://github.com/unsat/gentree
and a video demo is at https://youtu.be/x3eqUflvlN8.

I. INTRODUCTION

Modern software systems are increasingly designed to be
configurable. This has many benefits, but also significantly
complicates tasks such as testing, debugging, and analysis
due to the number of configurations that can be exponentially
large—in the worst case, every combination of option settings
can lead to a distinct behavior [1].

Existing works on highly-configurable systems [1]–[4]
showed that we can automatically find interactions to con-
cisely describe the configuration space of the system. These
works define an interaction for a location as a logically
weakest formula over configuration options such that any
configuration satisfying that formula would cover that location.
Such interactions can help understand the configurations of
the system, e.g., determine what configuration settings cover
a given location; determine what locations a given interaction
covers; find important options, and compute a minimal set of
configurations to achieve certain coverage; etc.

While existing interaction techniques are useful, they have
several limitations. The symbolic analysis in [2] does not
scale to large systems, even when being restricted to boolean
configuration options, and is language-specific (C programs).
iTree [3], [4] uses decision trees to generate configurations
to maximize coverage, but achieves few and imprecise in-
teractions. Both of these works only focus on interactions
that can be represented as purely conjunctive formulae. The
dynamic approach iGen [1] can infer interactions that are
purely conjunctive, purely disjunctive, and specific mixtures
of the two. However, these interactions are still too limited to
capture complex interactions in real-world systems.

Program
and

Testsuite
Configs Final

Interactions

1-way
covering array New

Trees ?

post
processing

Coverage

classifierrun program

gen new configs

NoYes

Fig. 1: GenTree overview

We present GenTree, an iterative “guess-and-check” ap-
proach to automatically learn, check, and refine program’s
interactions. GenTree runs the program under a small sample
of configurations to obtain coverage data; uses a custom C5.0
classifying algorithm on these data to build decision trees
representing interaction candidates; and then analyzes the trees
to generate new configurations to further refine the trees and
interactions in the next iteration.

The GenTree approach has several benefits. By using
dynamic analysis, GenTree is language agnostic and supports
complex programs (e.g., those using third party libraries)
that might be difficult for static analyses. By considering
only small configuration samples, GenTree is efficient and
scales well to large programs. By integrating with iterative
refinement, GenTree generates small sets of useful config-
urations to gradually improve its results. By using decision
trees, GenTree supports expressive interactions representing
arbitrary boolean formulae and allows for generating effective
counterexample configurations. Finally, by using a classifi-
cation algorithm customized for interactions, GenTree can
build trees from small data samples to represent accurate
interactions.

The source code and dataset of GenTree are publicly avail-
able at https://github.com/unsat/gentree. The full details of the
GenTree approach are available in the research paper [5]. In
this tool paper, we present more in-depth the technical details
and usage of GenTree, not only as an implementation of
GenTree algorithm but also as a generic platform to develop
and test data-driven approaches for interaction learning.

II. GENTREE APPROACH

GenTree takes as input a program and returns interactions
that are arbitrary boolean formula over the program options
mapping to program locations. Figure 1 gives an overview of
the main components in GenTree:

https://github.com/unsat/gentree
https://youtu.be/x3eqUflvlN8
https://github.com/unsat/gentree

// 9 configuration options:
// s, t, u, v (bool);

a, b, c, d, e ∈ {0, 1, 2}

printf ("L0\n"); // True

if (a ≡ 1 ∨ b ≡ 2) {
// a ≡ 1 ∨ b ≡ 2
printf ("L1\n");

}
else if (c ≡ 0 ∧ d ≡ 1) {

// a ∈ {0, 2} ∧ b ∈ {0, 1}
//∧c ≡ 0 ∧ d ≡ 1
printf ("L2\n");

}

if (u ∧ v) {
printf ("L3\n"); //u ∧ v
return ;

}

else {
printf ("L4\n"); //ū ∨ v̄
if (s ∧ e ≡ 2){

// s ∧ e ≡ 2 ∧ (ū ∨ v̄)
printf ("L5\n");
return ;

}
}

// (s̄ ∨ e ∈ {0, 1}) ∧ (ū ∨ v̄)
printf ("L6\n");

if (e ≡ 2) {
// s̄ ∧ e ≡ 2 ∧ (ū ∨ v̄)
printf ("L7\n");
if (u ∨ v) {

// s̄ ∧ e ≡ 2 ∧ ((u ∧ v̄) ∨ (ū ∧ v))
printf ("L8\n");

}
}

Fig. 2: A program with 9 locations L0–L8 annotated with
interactions

Initial Configurations: GenTree first uses a random 1-
way covering array [6] to obtain a set of initial configurations,
which contains all possible settings of each individual option.

Decision Trees: For each covered location l, GenTree
uses a classification algorithm called C5i, developed specifi-
cally for this work, to build a decision tree representing the
interaction for l. To build the tree for l, C5i uses two sets
of data: the hit sets consisting of configurations covering l
and the miss set consisting of configurations not covering l.
C5i only uses a small sample of configurations to build a
decision tree and thus could be inaccurate when classifying
unseen configurations.

New Configurations: GenTree next attempts to create
new configurations to refine the tree representing the in-
teraction for location l. A hit path on a decision tree for
location l is a path from the root to a leaf with hit label
(i.e., covers l), and similarly, a miss path is a path lead to
a leaf with miss label (i.e., does not cover l). Observe that
if a hit path is precise, then any configuration satisfying its
condition would cover l (similarly, any configuration satisfying
the condition of a miss path would not cover l). Thus, we
can validate a path by generating configurations satisfying its
condition and checking the coverage. Configurations generated
from a hit (or miss) path that do not (or do) cover l are
counterexample configurations, which show the imprecision
of the path condition and help build a more precise tree in the
next iteration.

Next Iterations: GenTree repeats the process of building
trees and generating new configurations until it cannot generate
new coverage or refine existing trees for several consecutive
iterations. In a postprocessing step, GenTree combines the
hit path conditions of the decision tree for each location l into
a logical formula representing the interaction for l.

Example: We illustrate the expressive power of
GenTree using the C program in Figure 2. This program has
nine configuration options listed on the first line of the figure.

User

Driver Job queue
Algorithm

Iter2

AnalyzerJob queueProgram Runner

Normal Simple

Built-in Cache
DB

Classification Algo

C5i

Fig. 3: GenTree components

The print statements mark nine interesting locations L0–L8.
At each location, we list the associated desired interaction. For
example, L5 is covered by any configurations in which s is
true, e is 2, and either u or v is false.

For this example, GenTree found the correct interactions
for all locations within eight iterations and under a second. The
table below shows the number of iterations and configurations
used to find the interaction for each location. For example,
the interaction s̄ ∧ e ≡ 2 ∧ ((u ∧ v̄) ∨ (ū ∧ v)) of L8 took
58 configurations and is discovered at iteration 4, and the
interaction true of L0 was quickly discovered from the
initial configurations. Overall, GenTree found all of these
interactions by analyzing approximately 360 configurations
(median over 11 runs) out of 3888 possible ones.

L0 L1 L2 L3 L4 L5 L6 L7 L8
Iter. Found 1 2 6 1 2 5 3 3 4
Configs 3 27 144 15 30 123 50 47 58

Existing interaction analyses fail to capture these interac-
tions. The works on symbolic configuration analysis [2] and
iTree [3], [4] only support conjunctions and therefore cannot
generate the correct interactions for any line except L2 and
L3. The iGen dynamic analysis [1] also cannot generate the
complex disjunctive interactions for L6 and L8.

III. IMPLEMENTATION

GenTree is implemented in C++ as a modular framework
for developing and testing data-driven interaction learning
approaches. The implementation uses standard C++ libraries
and relies on Z3 SMT solver [7] to encode and simplify
interactions.

Figure 3 provides the overview of the design of GenTree.
GenTree heavily utilizes multicore processing to speed up
the execution time. GenTree divides jobs into threads using
a job queue, which is a shared FIFO queue. We push jobs that
can be run in parallel into a shared job queue, and a set of
worker threads pop jobs from the queue and process them one
by one. GenTree consists of four main components:

a) Driver: The driver parses user input (as CLI flags),
performs common initializations and task distributions such
as pushing tasks to job queue to run in parallel, analyzes, and
outputs results.

b) Algorithm: An algorithm is a self-contained unit
of work in GenTree. It could be an interaction learning
algorithm or an analyzer that read the interaction results and do
various analyses on them. An algorithm is explicitly designed
to be able to run in parallel, hence all of its global states are
stored in a context that can be accessed by objects belonging
to that algorithm, but not other ones. Currenly, there are two
algorithms in the tool:

Iter2: This implements the main GenTree algorithm. It
supports dynamic configuration via a Javascript (JS) script,
which takes a subject program information (e.g., configura-
tion space) and tunes the GenTree algorithm parameters
accordingly. Using a scripting language provides flexibility
to quickly adjust parameters without recompiling GenTree.
Aside from the core algorithm, Iter2 can also (i) find ground
truth interactions by brute forcing all possible configurations
and (ii) build decision trees from all random configurations
(instead of from the counterexample generation heuristic by
GenTree).

Analyzer: This analyzes the results of GenTree, compares
with other results, and computes various statistics. It also
produces tables and graphs for the evaluation section in [5]. It
can (i) compare two outputs (e.g., GenTree outputs versus
the ground truth) for discrepancies, (ii) do random testing: con-
tinuously run the subject programs with random configurations
and check if the interactions produced by GenTree match the
actual execution traces, (iii) compute interactions statistic and
report number interaction types (pure conjunctive, pure dis-
junctive, mixed) and various metrics (number of configuration
used, number of locations, running time, etc.), and (iv) find a
small set of configurations that cover all reachable locations
using GenTree interactions result.

c) Program Runner: Run the program and collect the
coverage information. The algorithm treats program runner
as a black-box function, with input is a configuration, and
output is the set of covered locations. The program runner
is pluggable and supports different program types: normal
programs (currently supports C, Python, Perl, and OCaml
programs), simple programs (programs output their covered
locations to stdout), Otter [8] programs, and built-in programs.
Under the hood, the program runner is parallelized using a job
queue. It also has an embedded key/value database (RocksDB)
to cache the coverage results: querying the database is much
faster than running the program and the cached coverage
results are deterministic, which makes debugging much easier.

Normal programs: running and collecting coverage informa-
tion requires many external dependencies: the test suite, the
subject program, the interpreter and virtual environment (e.g.,
for Python), and the location coverage collection tool. We de-
veloped a simple DSL to specify the dependencies and runtime
arguments for the testing programs. Figure 4 is a run script
for pylint program. Each line is a command with structure
<cmd> <arguments>. For example, the command var
name pylint sets variable name with value pylint.
Variable names inside curly bracket, e.g., {name}, will be
substituted by their value. The DSL is designed to be simple

include conf.pycov
var name pylint

cov arg −−include={site−packages}/pylint/*
loc trim prefix {site−packages}/pylint/

bin {bindir}/{name}
=================================
clean wd
run {} { testdir }/py pylint /alg igen.py

Fig. 4: Config script for pylint

FN(testprog,
VARS(a, b, c, d, e),
DOMS(2, 2, 2, 3, 3), {

if ((a || b) && (c || d)) LOC("L1");
else LOC("L2");

})

Fig. 5: A built-in program named testprog

but expressive enough to reduce the configuration boilerplate
and flexible enough to support different run scenarios. More
examples on how to configure the normal program runner
could be found in the benchmarks folder in the GitHub
repository at [9].

Simple programs: The program outputs its covered locations
to the standard output, separated by the newline character. If
a program is not directly supported by the normal programs
mode (C, Python, Ocaml, Perl), we can use the simple program
runner, with the entry point is a Python or Shell script
that invokes the actual program and collects the coverage
information, and then print to the standard output.

Built-in programs: Built directly into GenTree. We use
C++ macros to create a domain-specific language (DSL) to
specify simple test programs. Figure 5 is a simple builtin
program testprog with 5 options a, b, c, d, e, with domains
0 ≤ a, b, c < 2 and 0 ≤ d, e < 3. The built-in programs
greatly reduce the algorithms development cycle because it
is faster than running an external program, and everything is
self-contained in GenTree executable.

d) Classification Algorithm: Build decision trees from
a set of hit and miss configurations using C5i, a customized
classification algorithm described in [5]. The implementation
is deterministic and highly optimized. Aside from the tree-
building algorithm, it also contains some useful primitives to
work with the tree: find leaves with less supporting configura-
tions, generate counterexamples from a leaf (non-duplicated
with all previously generated configurations), serialize and
deserialize a tree from text, generate an SMT formula from
a tree, and compile a tree into a simple bytecode format to
quickly evaluate the tree on any configurations.

IV. USAGE

The detailed instructions for obtaining the artifact package
and running experiments can be found in [10]. Figure 6

illustrates how to install (step 1), run GenTree (steps 2 and
3), and examines its results (step 4).

Step 1: Pull Docker image
docker pull unsatx/gentree docker:icse21

Step 2: Run container
docker run − it −−rm −−tmpfs /mnt/ramdisk \

unsatx/gentree docker:icse21 bash

Step 3: Run GenTree (inside container)
cd ˜/ gentree/wd
./ gt −J2 −cx −BF @ex paper # example
./ gt −J2 −cx −BF @ex paper −−full # example (ground truth)
./ gt −J2 −cx −GF 2/id # coreutils id (C)
./ gt −J2 −cx −YF 2/vsftpd # vsftpd (Otter)

Step 4: Using the Analyzer
./ gt −J2 −cxw −j4 −GF 2/ln −−full −O full . txt
./ gt −J2 −cr −j4 −GF 2/ln −O out.txt
./ gt −A0 −T0 −GF 2/ln −v10 −I full. txt ,out. txt # compare

Fig. 6: Commands to install GenTree

Steps 3 in Figure 6 shows how to run GenTree on several
example programs. @ex_paper is the example C program
listed in Figure 2. id and vsftpd are subject programs
listed in Table 1 in [5]. By default, GenTree outputs result
interactions to the standard output. To output to a file instead,
use the flag -O <filename>. Step 3 demonstrates how to
run GenTree on built-in programs (@ex_paper), normal
programs (id), and Otter programs (vsftpd).

Step 4 in Figure 6 shows how use GenTree to analyze
the results. First, we run an exhaustive search to find the
ground truth in full.txt. Then, we run GenTree and write
results to out.txt. Finally, we use the analyze to compare
GenTree results with the ground truth. The analyzer out-
put could be ln.c:495 diff (cex = 1), which means
GenTree interaction for location ln.c:495 is different
than the ground truth (with one counterexample). In fact,
ln.c:495 is a long disjunction over all configurations and
GenTree infers the interaction true.
GenTree’s performance can be controlled by various pa-

rameters. The -j4 flag makes the program runner run at
most 4 subject programs in parallel. The -c flag controls the
program runner database (-cxw runs the program and caches
the coverage data and -cr make GenTree only uses the
cached data). GenTree runs almost deterministically1 when
running in -cr mode.

For better interoperability, the GenTree output is designed
to be both human and machine-readable. For each discovered
interaction, GenTree outputs a block similar to Figure 7.
Lines started with the character ‘#’ are comments and should
be ignored while parsing. In Figure 7, the comments tell
us how many hit and miss configurations classified by the
decision tree, which iteration the tree was last rebuilt, and
how many configurations were used to build the tree. The first

1All GenTree code are determistic, but the Z3 solver could give non-
deterministic results. However, we have not encountered any non-determinism
while developing GenTree.

component in the block is a list of locations covered by the
interaction (e.g., L4). The second component is an SMT-LIB
2.0 [11] formula generated by Z3 [7]. The last component is a
serialized decision tree (pre-order traversal) for internal usage.

M/H: 51 / 137
Last rebuild : iter 2 num configs 30
L4,
−
(or (= u |0|) (= v |0|))
−
3 H 4 HM

Fig. 7: GenTree’s output for the interaction ū ∨ v̄ in the
example program in Figure 2 in [5]

V. EVALUATION

We evaluated GenTree on 17 programs in C, Python, Perl,
and OCaml [5]. Our results show that GenTree generates
precise interaction results (similar to what GenTree would
produce if it inferred interactions from all possible config-
urations) and scales extremely well (works with real-world
programs with hundreds of trillion configurations) because it
only explores a small fraction of the large configuration spaces.

Results from GenTree also confirmed several observations
made by prior work (e.g., conjunctive interactions are common
but disjunctive and mixed interactions are still important for
coverage; and enabling options, which must be set a certain
way to cover most locations, are common). We also found
that complex interactions supported by GenTree, but not
from prior works, cover a non-trivial number of locations and
are critical to understanding the program behaviors at these
locations.

ACKNOWLEDGMENT

We thank the anonymous reviewers for their helpful
comments. This work was supported in part by awards
W911NF19-1-0054 from the Army Research Office; CCF-
1948536 from the National Science Foundation; and a Faculty
Seed award from the University of Nebraska-Lincoln (UNL).
KimHao Nguyen is also supported by a UCARE Award from
UNL.

REFERENCES

[1] T. Nguyen, U. Koc, J. Cheng, J. S. Foster, and A. A. Porter, “iGen: Dy-
namic interaction inference for configurable software,” in Foundations
of Software Engineering, 2016, pp. 655–665.

[2] E. Reisner, C. Song, K. Ma, J. S. Foster, and A. Porter, “Using symbolic
evaluation to understand behavior in configurable software systems,” in
International Conference on Software Engineering. ACM, 2010, pp.
445–454.

[3] C. Song, A. Porter, and J. S. Foster, “iTree: Efficiently discovering
high-coverage configurations using interaction trees,” in International
Conference on Software Engineering, 2012, pp. 903–913.

[4] ——, “iTree: Efficiently discovering high-coverage configurations using
interaction trees,” Transactions on Software Engineering, vol. 40, no. 3,
pp. 251–265, 2014.

[5] K. Nguyen and T. Nguyen, “Gentree: Using decision trees to learn
interactions for configurable software,” in International Conference on
Software Engineering (ICSE). IEEE, 2021, pp. 1598–1609.

[6] M. B. Cohen, P. B. Gibbons, W. B. Mugridge, and C. J. Colbourn, “Con-
structing test suites for interaction testing,” in International Conference
on Software Engineering. IEEE, 2003, pp. 38–48.

[7] L. De Moura and N. Bjørner, “Z3: An efficient SMT solver,” in Tools
and Algorithms for the Construction and Analysis of Systems. Springer,
2008, pp. 337–340.

[8] K.-K. Ma, K. Y. Phang, J. S. Foster, and M. Hicks, “Directed symbolic
execution,” in Static Analysis Symposium. Springer, 2011, pp. 95–111.

[9] K. Nguyen and T. Nguyen, “GenTree,” 2021, accessed on 2021-02-01.
[Online]. Available: https://github.com/unsat/gentree

[10] ——, “Artifact for GenTree: Using Decision Trees to Learn Interactions
for Configurable Software,” in International Conference on Software
Engineering. IEEE, 2021, pp. 177–178.

[11] C. Barrett, A. Stump, and C. Tinelli, “The SMT-LIB Standard: Version
2.0,” Department of Computer Science, The University of Iowa, Tech.
Rep., 2010, available at www.SMT-LIB.org.

https://github.com/unsat/gentree

	Introduction
	GenTree Approach
	Implementation
	Usage
	Evaluation
	References

