
1

Using Symbolic States to Infer
Numerical Invariants

ThanhVu Nguyen, KimHao Nguyen, and Matthew B. Dwyer

Abstract—Automatically inferring invariant specifications has proven valuable in enabling a wide range of software verification and
validation approaches over the past two decades. Recent approaches have shifted from using observation of concrete program states
to exploiting symbolic encodings of sets of concrete program states in order to improve the quality of inferred invariants. In this paper,
we demonstrate that working directly with symbolic states generated by symbolic execution approaches can improve invariant
inference further. Our technique uses a counterexample-based algorithm that iteratively creates concrete states from symbolic states,
infers candidate invariants from both concrete and symbolic states, and then validates or refutes candidate invariants using symbolic
states. The refutation process serves both to eliminate spurious invariants and to drive the inference process to produce more precise
invariants. This framework can be employed to infer complex invariants that capture nonlinear polynomial relations among program
variables. The open-source SymInfer tool implements these ideas to automatically generate invariants at arbitrary locations in Java or
C programs. Our preliminary results show that across a collection of four benchmarks SymInfer improves on the state-of-the-art by
efficiently inferring more informative invariants than prior work.

Index Terms—Program Invariants, Numerical Invariants, Dynamic Analysis, Symbolic Execution, CounterExample Guided
Refinement, Program Testing and Verification

✦

1 INTRODUCTION

THE expressive power of programs lies in their ability
to concisely represent repeated sub-computations that

arise due to iteration or recursion. Developing software that
correctly orchestrates those sub-computations is challenging
as programmers learn when they study even basic sorting
algorithms. Classic approaches for defining, and under-
standing, the correctness of such algorithms rely on specifi-
cation of program invariants which define relationships that
must hold between program variables at a given location in
the program [1], [2], [3].

While invariants play a role in educating programmers
about complex algorithms, they also offer the potential to
improve programming practice. Research has demonstrated
how invariant specifications can be leveraged for fault-
detection and verification [3], [4], detecting security vulnera-
bilities [5], automating the repair of faults [6], and synthesiz-
ing low-level implementations [7]. A number of industrial-
strength tools provide support for reasoning about invariant
specifications [8], [9].

Despite the fact that programmers are exposed to the
concept of invariants early in their education, writing spec-
ifications is viewed as a burden and developers don’t gen-
erally add them to their code base [10]. One approach to
addressing this is to define implicit specifications, e.g., that
a null pointer should never be dereferenced or an array
should never be indexed out of bounds. While valuable, this

• ThanhVu Nguyen is with the Department of Computer Science, George
Mason University, USA.
Email: tvn@gmu.edu.

• KimHao Nguyen is with the University of Nebraska-Lincoln, USA.
Email:kdnguyen@cse.unl.edu.

• Matthew Dwyer is with the Department of Computer Science, University
of Virginia, USA.
Email:matthewbdwyer@virginia.edu.

does not address the potential benefit from program specific
invariants.

The seminal work by Ernst et al. on Daikon [11], [12]
addressed this problem by observing that invariants can be
thought of as latent properties of program behavior that
can be inferred by observing sets of program runs. Tech-
niques like Daikon can only determine candidate invariants –
since there may be executions that are not observed which
falsify the candidate. Nevertheless, these techniques have
proven valuable in overcoming the specification burden and
generating candidate invariants that can be subsequently
verified or falsified by other techniques [13]. Moreover, the
ability to reveal these latent properties serves as a rich
source of information for understanding undocumented
code [14], generating more formal documentation [11], lo-
calizing bugs [15], and even proving program termination
and non-termination properties [16].

Daikon [12], [14] works by observing concrete program
states that capture the values of variables at designated
locations of interest in the program when a program is run
on a given input. By sampling large numbers of inputs,
Daikon can efficiently determine relationships that may
hold among variables across those samples. Confirming that
those relationships constitute a true invariant has been a
focus of follow-on work to Daikon. Several invariant gener-
ation approaches (e.g., iDiscovery [17], PIE [18], ICE [19],
NumInv [20], G-CLN [21]) use a hybrid approach that
dynamically infers candidate invariants and then attempts
to verify that they hold for all inputs. When verification fails,
counterexamples are generated which help to refine the
invariant inference process to obtain more accurate results –
reporting only true invariants. This CounterExample Guided
Invariant Generation (CEGIR) approach iterates the inference
and verification processes until achieving stable results.

mailto:tvn@gmu.edu
kdnguyen@cse.unl.edu
matthewbdwyer@virginia.edu

2

An important class of invariants capture numerical re-
lations among program variables. Such numerical invariants
can take on different mathematical forms. Daikon can infer
conjunctive numerical invariant candidates, but its template
matching engine makes it inefficient to infer disjunctive in-
variants. Disjunctive invariants are required to encode prop-
erties of programs, but fortunately rich forms of disjunc-
tion can be captured by more complex numerical relations.
Nonlinear polynomial relations, e.g., x2 ≤ y2, arise in many
scientific, engineering, and safety- and security-critical soft-
ware [22], and can encode disjunctive information, e.g., x2 ≤
y2 implies x ≤ −y ∨ x ≤ y. Max/min-plus relations encode
properties that can be expressed in “tropical” algebra [23],
[24] and are able to encode a complementary form of dis-
junctive information, e.g., the max inequality max(x, y) ≥ 2
is equivalent to (x ≥ y ∧ x ≥ 2) ∨ (x < y ∧ y ≥ 2). As we
demonstrate, when used together nonlinear and max/min
invariants can express complex program properties, e.g.,
permutation and sortedness (S5.3), that cannot be expressed
with purely conjunctive formulae.

In this work, we present SymInfer, a CEGIR technique
that targets the inference of rich forms of numerical in-
variants using symbolic program states as a basis. Our key
insight is that symbolic states generated by a symbolic
execution engine are (1) compact encodings of large (po-
tentially infinite) sets of concrete states, (2) naturally diverse
since they arise along different execution paths, (3) explicit
in encoding relationships between program variables, (4)
amenable to direct manipulation and optimization, and
(5) reusable across many different reasoning tasks within
CEGIR algorithms.

We define algorithms for symbolic CEGIR that can be
instantiated using different symbolic execution engines, and
the SymInfer implementation uses symbolic states gener-
ated from Symbolic PathFinder [25] (SPF)—a symbolic ex-
ecutor for Java—and CIVL [26]—a symbolic executor for
C. SymInfer uses symbolic states for both invariant infer-
ence and verification. For inference, SymInfer uses symbolic
states to obtain concrete states to bootstrap a set of candidate
invariants using DIG [27], [28], [29]—a dynamic analysis
framework for inferring expressive numerical invariants.
For verification, SymInfer formulates verification conditions
from symbolic states to confirm or refute an invariant, solves
those using an SMT solver, and produces counterexamples
to refine the inference process.

We evaluated SymInfer over 4 distinct benchmarks, con-
sisting of 108 programs, and compared its performance to
state-of-the-art numerical invariant approaches. We find that
the use of symbolic states allows SymInfer to overcome sev-
eral limitations of existing CEGIR approaches. iDiscovery,
which uses Daikon for inference, does not support nonlinear
properties, and both ICE and PIE timeout frequently when
nonlinear arithmetic is involved. NumInv also uses DIG
to infer invariants, but it invokes KLEE [30] as a black
box verifier for candidate invariants and which causes it
to underperform relative to SymInfer for nonlinear and
disjunctive invariant inference. G-CLN can infer nonlinear
invariants for loops, but it requires manual problem-specific
configuration to generate and prove invariants, and even
then SymInfer infers more relevant invariants. Our evalua-
tion demonstrates that SymInfer establishes the state-of-the-

int cohendiv(int x, int y){
assert(x >= 0 && y >= 1);
int q=0; int r=x;
while(r >= y){

int a=1; int b=y;
while[L1](r >= 2*b){
a=2*a; b=2*b;

}
r=r-b; q=q+a;

}
[L2]
return q;

}

Concrete States

x y a b q r

15 2 1 2 0 15
15 2 2 4 0 15
15 2 1 2 4 7

...

4 1 1 1 0 4
4 1 2 2 0 4

...

Fig. 1: The cohendiv integer division program and concrete
states observed at location L1 on inputs (x = 15, y = 2)
and (x = 4, y = 1). Among the invariatns discovered by
SymInfer at L1, the key nonlinear equality x = qy + r
describes the precise semantics of the program.

art for inference of complex nonlinear invariants. Across the
benchmarks it is able to infer the ground truth specifications
for 106 of 108 programs; the next best tool can infer only 89.

Our prior work [31] made an initial step in exploiting
symbolic states for invariant inference. This paper signifi-
cantly extends those results to include: (1) a novel efficient
algorithm to generate inequalities; (2) support for max- and
min-plus formulae to represent disjunctive invariants; (3)
proofs of correctness and termination for the presented
algorithms; (4) support for Java and C programs; and (5)
a broader experimental evaluation that demonstrates the
cost-effectiveness of the approach and its superiority to
existing invariant inference techniques. The implementation
of SymInfer and all experimental data reported in this paper
are available at https://github.com/unsat/dig/. These re-
sults strongly suggest that symbolic states form a powerful
basis for computing program invariants. They permit an
approach that blends the best features of dynamic inference
techniques and purely symbolic techniques to enable a new
state-of-the-art.

2 OVERVIEW

To illustrate SymInfer, we show how inferred numerical
invariants can assist in understanding programs and an-
alyzing program complexity. We then describe techniques
using symbolic states to help remove spurious invariants to
achieve expressive and accurate invariants.

2.1 Applications of Numerical Invariants

Program Understanding. SymInfer can help understand
program behavior and discover unknown program prop-
erties. Consider the cohendiv integer division algorithm
in Figure 1; L1 and L2 mark the locations of interest. Given
this program and the considered locations, SymInfer auto-
matically discovers at L1 the (loop) invariants:

x = qy + r ay = b

b ≤ x y ≤ r 0 ≤ q 1 ≤ b 1 ≤ y

https://github.com/unsat/dig/

3

void tripple(int M, int N, int P){
assert (0 <= M && 0 <= N && 0 <= P);
int i = 0, j = 0, k = 0;
int t = 0; //counter variable
while(i < N){
j = 0; t++;
while(j < M){

j++; k = i; t++;
while (k < P){
k++; t++;

}
i = k;

}
i++;

}
[L]

}

Fig. 2: A program with three complexity bounds.

and at L2 the (postcondition) invariants:

x = qy + r ay = b

r ≤ y − 1 0 ≤ r r ≤ x

These relations are sufficiently strong to understand the
semantics and verify the correctness of cohendiv. The
key invariant is the nonlinear equality x = qy + r, which
captures the precise behavior of integer division: the div-
idend x equals the divisor y times the quotient q plus
the remainder r. The other inequalities also provide useful
information. For example, the invariants at the program exit
reveal several required properties of the remainder r, e.g.,
non-negative (0 ≤ r), at most the dividend (r ≤ x), but
strictly less than the divisor (r ≤ y − 1).

Also, these invariants might help check assertions in
the program. For example, we can assert and verify the
postcondition stating that the returned quotient is non-
negative because the discovered invariants at L2 implies
0 ≤ q.1

Complexity Analysis. Another rather surprising use of
SymInfer’s nonlinear numerical invariants is to characterize
the computational complexity of a program, which is useful
for identifying possible security problems [32], [33], [34].
Figure 2 shows the program tripple, adapted from Figure
2 of [35], with nontrivial runtime complexity; the program
has been modified to include a variable t which serves to
encode the number of loop iterations that are computed. At
first, tripple appears to take O(NMP) due to the three
nested loops. A closer analysis [35] shows a more precise
bound O(N +NM +P) because the innermost loop, which
is updated each time the middle loop executes, changes the
behavior of the outermost loop.

When given this program, SymInfer discovers an inter-
esting and complex postcondition at location L about the
variable t:

P 2Mt+ PM2t− PMNt−M2Nt− PMt2+

MNt2 + PMt− PNt− 2MNt+ Pt2 +Mt2+

Nt2 − t3 −Nt+ t2 = 0

1. SymInfer also found 0 ≤ q and other invariants at L2, but dis-
carded them because they are implied by other discovered properties
and thus are redundant.

This nonlinear equality is valid, but looks incomprehensible
and quite different than the expected bound N+NM+P or
even NMP . However, when solving this equation (finding
the roots of t), we obtain three solutions showing that this
program has different time complexities:

t =

0 when N = 0

P +M + 1 when N ≤ P

N −M(P −N) when N > P

Manual analysis shows these results represent the exact
bound of tripple and are more precise than the bound
O(N +MN + P) given in [35] Note that O(N +MN + P)
is still a correct upper bound of tripple, e.g., when N > P
then O(N +NM +P) = O(N +NM), which is equivalent
to O(N −M(P −N)) = O(N +MN).

2.2 SymInfer

To infer invariants, SymInfer integrates dynamic and sym-
bolic analyses using the counterexample-guided invariant gen-
eration (CEGIR) approach. SymInfer’s CEGIR consists of two
phases: a dynamic analysis that infers candidate (equality
and inequality) invariants from program execution traces or
concrete states, and a symbolic checker that checks candidates
against the program using symbolic states obtained from a
symbolic execution tool. If a candidate invariant is spurious,
the checker also provides counterexamples. Concrete states
from these counterexamples are obtained and recycled to
repeat the process, and produce more accurate results.

These steps of inferring and checking repeat until no new
counterexamples or (true) invariants are found. The CEGIR
technique exploits the observation that checking a (cheaply
generated) candidate solution is often easier than directly
inferring a sound solution [28].

2.2.1 Concrete States

Existing dynamic invariant analyses such as Daikon or DIG
instrument the program at considered locations to record
values of the local variables, and then, given a set of inputs,
execute the program to record a set of concrete states of the
program to generate candidate invariants. Figure 1 shows
several concrete states obtained at location L1 when running
cohendiv using inputs (x = 15, y = 2) and (x = 4, y = 1).

However, inferring invariants on just concrete states of-
ten produces undesirable results. On several hand-selected
sets of inputs that seek to expose diverse concrete states,
running Daikon on cohendiv results in very simple in-
variants, e.g., 4 ≤ x and 0 ≤ q at location L1. These
are clearly much weaker than the key nonlinear invariant
for this example. Moreover, the invariant on x is actually
spurious since clearly values smaller than 4 can be passed
as the first input which will reach L1. The more powerful
DIG invariant generator permits the identification of the
key equality invariant, but it too will yield the spurious
4 ≤ x invariant. Spurious invariants are a consequence of
the diversity and representativeness of the inputs used, and
the observed concrete states. Leveraging symbolic states can
help address this weakness.

4

Path Conditions (ΠL1) Variable Mappings (σL1)
0 < y ∧ y ≤ x q 7→ 0; r 7→ x; a 7→ 1; b 7→ y
0 < y ∧ 2y ≤ x q 7→ 0; r 7→ x; a 7→ 2; b 7→ 2y

0 < y ∧ 2y + y ≤ x < 4y q 7→ 2; r 7→ x− 2y; a 7→ 1; b 7→ y
...

...

Fig. 3: Symbolic states at location L1 in the program
cohendiv in Figure 1.

2.2.2 Symbolic States

SymInfer symbolically executes the program to compute
the symbolic states at a considered program location L. A
symbolic state compactly encodes a large (potentially infi-
nite) set of concrete states. Symbolic states consist of path
conditions describing execution paths to L and mappings
from program variables at L to symbolic values. For exam-
ple, Figure 3 shows the symbolic states at location L1 of
cohendiv.

To check a candidate invariant p, SymInfer asks a con-
straint solver to determine the validity of p with respect
to the symbolic states. If the solver finds a counterexample
disproving p, SymInfer extracts concrete states from the
counterexample and saves them for subsequent inference.
Otherwise, SymInfer accepts and saves p as an invariant.

SymInfer can return spurious invariants because the
solver might timeout or return unknown, or because sym-
bolic execution might not be able to explore all program
paths to compute precise symbolic states. Consequently,
SymInfer is designed to explore program states incremen-
tally and adaptively to minimize cost while finding accurate
invariants (S3.2).

2.2.3 Inferring Numerical Invariants

SymInfer uses a CEGIR algorithm to find polynomial equal-
ities at program locations of interest. For each considered
program location, SymInfer creates an equation template
c1t1 + c2t2 + · · · + cntn = 0. This template contains n
unknown coefficients ci and n terms ti, with one term for
each possible multiplicative combination of relevant pro-
gram variables, up to some degree d.

SymInfer uses symbolic states to obtain many possible
concrete states and substitute their concrete values into
the template to form an instantiated linear equation. After
obtaining at least n concrete states, SymInfer solves the
resulting set of equations for the n unknown coefficients ci.
SymInfer then extracts candidate invariants by substituting
the solutions back into the template. Now, SymInfer enters
a CEGIR loop that checks the candidate invariants by using
symbolic states. We discard any spurious invariants and
use the corresponding counterexample concrete states to
infer new candidates until no additional true invariants are
found.

SymInfer also generates linear inequalities in the forms
of (i) octagons, which are inequalities over two terms, and
(ii) max/min-plus constraints, which are a form of disjunctive
invariants. The early version of SymInfer [31] does not
support max/min relations and can only infer octagonal
inequalities using a CEGIR divide-and-conquer algorithm,

e.g., repeatedly invokes symbolic states to guess and tighten
lower and upper bounds of candidate inequalities.

The current version of SymInfer takes advantage of
advances in constraint solvers and uses linear optimiza-
tion to obtain directly from symbolic state the bounds for
both octagonal and max/min inequalities. This optimization
approach is much more efficient and allows SymInfer to
discover more challenging and expressive invariants than
the previous CEGIR approach (e.g., the user can configure
SymInfer to generate max/min invariants as well as non-
linear inequalities over an arbitrary number of variables
instead of the default octagonal linear inequalities).

Finally, in a post-processing phase, from the obtained
invariants, SymInfer uses an SMT solver to check and re-
move any redundant invariants that are logical implications
of other invariants. For instance, we suppress x2 = y2 if
x = y is also found because the latter implies the former.

3 SYMBOLIC STATES

The behavior of a program at a location L can be precisely
represented by the set of all possible values of the variables
in scope at L. We refer to such values as concrete L-states of
the program and define them as:

Definition 3.1 (Concrete State). A concrete L-state is a map-
ping σL from program variables in scope at L to concrete values.

Figure 1 shows several concrete L-states in the cohendiv
program. Dynamic analyses such as Daikon and DIG an-
alyze concrete states to infer invariants. These techniques
instrument the program at location L to take “snapshots” of
the state of the program at L and then execute the program
on a set of inputs to record a set of concrete states, which
are values of some/all variables at L.

In contrast, a symbolic L-state is formulated in terms of
a set of input variables that capture the values of program
inputs in order to represent a (potentially infinite) set of
concrete states:

Definition 3.2 (Symbolic State). A symbolic L-state is a tuple
⟨σL,ΠL⟩, where σL is a map from program variables in scope at
L to symbolic expressions over input variables, and ΠL is the path
condition, which is a logical formula over the input variables that
the inputs must satisfy to reach L.

The concrete states defined by a symbolic state are feasible
– realizable at L on some program execution. Figure 3
shows several symbolic states at location L1 of the program
cohendiv. SymInfer uses the technique described in S3.1
to collect symbolic states.

Finally, an invariant is a logical formula that always holds
at a program location. For efficiency, invariant generation
tools typically infer invariants under a certain template or
form.

Definition 3.3 (Template-based Invariant). An invariant un-
der a template βτ is a tuple ⟨L, βτ ⟩ where L is a program point
and β is a formula, which has the form τ and ranges over program
variables in scope at L, that holds over all concrete or symbolic
states of L.

Section 2 shows invariants under different forms obtained
by SymInfer for the example program, e.g., nonlinear equal-
ities and octagonal linear inequalities.

5

input : program P , location L, maxdepth k
output : symbolic states sstates

1 Π, σ ← symexe(P,L, k) //invoke symbolic execution

2 sstates← Π
3 foreach variable v ∈ σ do
4 sstates = sstates ∧ (v ≡ σ(v))

5 return sstates

Fig. 4: getSymbolicstates: calling a symbolic ex-
ecution tool to obtain symbolic states

Concrete states, symbolic states, and invariants are dif-
ferent representations of properties at a program location.
Concrete states describe program properties precisely, but
there may be (infinitely) many to consider, and analyz-
ing a smaller, finite subset of concrete states may lead to
spurious invariants that dramatically underapproximate the
set of program states. Program invariants overapproximate
program states at L, but they generally have a compact
form that can be leveraged to support understanding and
reasoning about properties at L. Symbolic states serve as
an intermediate representation between concrete states and
invariants that might be inferred from the concrete states.

3.1 Obtaining Symbolic States
To obtain symbolic states, we modify the search process of a
symbolic execution tool. We require that these tools produce
underapproximating symbolic encodings of program states,
which ensures that generated symbolic states only define
feasible concrete states. First, we introduce a new method
vtrace and insert a vtrace call at each location of interest
in the program. Next, we intercept the search process of the
symbolic execution tool whenever it enters a vtrace call.
Most symbolic execution tools already maintain information
such as location, path conditions Π, and variable mappings
σ, and thus we just need to access and record this informa-
tion. Thus, we obtain a symbolic L-state ⟨σL,ΠL⟩ whenever
the program enters a vtrace call at some program location
L and obtain a set of symbolic L-states if the program hits
L multiple times (e.g., in a loop). There are potentially an
infinite number of symbolic states at L, thus we adapt the
symbolic execution tool to just return the symbolic L-states
encountered during a search of a given depth k.

Figure 4 summarizes the process of invoking the sym-
bolic execution tool to obtain symbolic states (line 1). SymIn-
fer uses logical formulae to represent symbolic states and
reuse these formulae for invariant checking and inference.
For each symbolic L-state, we create the formula (lines 2 – 4)

ΠL ∧
∧
v∈σ

(v = σL(v)).

For example, the formulae representing the symbolic state
in the first row of Figure 3 is

(0 < y ∧ y ≤ x) ∧ (q = 0 ∧ r = x ∧ a = 1 ∧ b = y)

This formula generalizes the first, x = 15, y = 2, a = 1, b =
2, q = 0, r = 15, and fourth, x = 4, y = 1, a = 1, b =
1, q = 0, r = 4, concrete states listed in Figure 1. Since
each symbolic state represents a path leading to L, we can

obtain a formula capturing multiple paths leading to L by
taking the disjunction of formulae representing individual
symbolic L-states.

The user of SymInfer can insert vtrace calls to multiple
locations of interests and SymInfer will extract the appro-
priate set of symbolic states for those locations. Moreover,
the user can specify subsets of variables in scope at L to
vtrace, e.g., vtrace(x,y,z), to obtain symbolic traces
relevant to only those variables.

3.2 Using Symbolic States

Symbolic states can help invariant generation in many ways.
We describe techniques using symbolic states to check and
compute candidate invariants and to generate diverse con-
crete states.

As mentioned in S3.1, the number of symbolic states
varies with the given symbolic execution depth. A low
depth means few states. Few states will tend to encode a
small set of concrete L-states, which limits verification and
refutation power. Few states will also tend to solve veri-
fication condition faster. To address this cost-effectiveness
tradeoff, rather than try to choose an optimal depth, our
algorithm computes the lowest depth that yields symbolic
states that change verification outcomes. In essence, the
algorithm adaptively computes a good cost-effectiveness
tradeoff for a given program, location of interest, and in-
variant.

3.2.1 Symbolic States as a “Verifier”
Figure 5 shows how we use symbolic states to check, or
refute, a property. The algorithm is incremental and obtains
symbolic states at a greater depth to increase the accuracy
of verification.

The algorithm iterates with each iteration considering a
different depth, k. The body of each iteration (lines 6 – 23)
works as follows. For each iteration we use the function
getSymbolicStates, which implements the technique
described in S3.1, to generate the set of symbolic L-states
reachable at depth less than or equal to k (line 7). Note that
these states can be cached and reused for a given P and L.

We next create a verification condition (vc) by conjoin-
ing the symbolic states (i.e., the disjunction of individual
symbolic states such as those in Figure 3) and the states to
be blocked. We use these block states to avoid generating
the same concrete states or counterexample inputs (when
check returns a counterexample, we (e.g., the algorithm in
Figure 8) use it to obtain concrete states, and then block the
counterexample so that we do not generate it again). If the
resulting formula implies a candidate property p then that
candidate is consistent with the set of symbolic states. We
use an SMT solver to check the negation of this implication.

The solver can return sat indicating that the property is
not an invariant (lines 14 – 17). In this case, we query the
solver for a model which represents a concrete state that is
inconsistent with the proposed invariant. This counterexam-
ple state is saved so that the inference algorithm can search
for invariants that are consistent with it. The solver can also
return unsat indicating the property is a true invariant;
at least as far as the algorithm can determine given the
symbolic states at the current depth. Finally, the solver

6

input : program P , location L, property p, clauses to
block

output : proved status is proved, counterexample cex

1 is proved← unknown // is p proved?
2 result, result′ ← unknown, unknown
3 cex← ∅
4 nochanges, nochangesmax ← 0,NOCHANGES_MAX
5 k, kmax ← ddef , dmax // default and max depth
6 while k < kmax do
7 sstates← getSymbolicStates(P,L, k)
8 vc← (

∨
sstates) ∧ (¬block)

9 result′ ← checkSMT(¬(vc⇒ p))
10 if result′ ≡ result then
11 if nochanges ≡ nochangesmax then
12 break

13 nochanges← nochanges + 1

14 if result′ ≡ sat then
15 is proved← False
16 cex← getModel()
17 break

18 else if result′ ≡ unsat then
19 is proved← True

20 else if result′ ≡ unknown then
21 is proved← unknown

22 result← result′

23 k ← k + 1

24 return is proved, cex

Fig. 5: check: check a candidate property using
symbolic states.

can also return unknown, indicating it cannot determine
whether the given property is true or false.

For the latter two cases, we increment the depth and ex-
plore a larger set of symbolic states generated from a deeper
symbolic execution. Lines 9 – 12 work to determine when
increasing the depth does not influence the verification. In
essence, they check if the same result is computed at several
consecutive adjacent depths and if so, they return (line 12).

Correctness and Termination: This check function
guarantees that refuted candidates are not invariant because
running the program with the generated counterexample
inputs would violate these candidates. However, results
only hold over the symbolic states obtained up to the con-
sidered depth and might not hold in general. The function
terminates because the loop executes for at most dmax−ddef
iterations.

3.2.2 Symbolic States as an “Optimizer”

Figure 6 shows how we use symbolic states to compute an
upper bound of a term. The algorithm directly computes an
inequality of the form t ≤ c, where t is a term (e.g., x−y) and
c is some integer value. The approach leverages the power
of modern constraint solvers, which, in addition to finding
satisfiability assignments, can find optimal assignments with
respect to objective constraints using linear optimization
techniques [36].

This algorithm, similarly to the one in Figure 5, in-
crementally obtains symbolic states at a greater depth to
improve accuracy. The main difference is that instead of

input : program P , location L, term t
output : upper bound value of t within a predefined

v_max range

1 v, result, result′ ←∞,∞,∞
2 nochanges, nochangesmax ← 0,NOCHANGES_MAX
3 k, kmax ← ddef , dmax // default and max depth
4 while k < kmax do
5 sstates← getSymbolicStates(P,L, k)
6 result′ ← MAX(

∨
sstates, t)

7 if result′ ≡ result then
8 if nochanges ≡ nochangesmax then
9 break

10 nochanges← nochanges + 1

11 if result′ ≡ unknown then
12 v ←∞
13 else if result′ ≤ vmax then
14 v ← result′

15 else if result′ > vmax then
16 v ←∞
17 break

18 result← result′

19 k ← k + 1

20 return v

Fig. 6: optimize: find the upper bound value of a
term from symbolic states.

checking satisfiability of a formula, we use the “optimizer”
component of the solver to find the maximum value of the
given term from symbolic states (line 6).

The solver returns two possible values: a concrete integer
value or unknown. If the returned value is less than or equal
to a parameterized vmax bound, it is saved and the algo-
rithm repeats the process using a higher depth. Otherwise,
if the solver returns unknown or a value larger than the
bound, then we save the result as ∞, which produces a
trivial invariant t ≤ ∞ that would be discarded. We also
break out of the loop in the latter case because a result larger
than some bound at some depth k will remain larger than
that bound at any depth larger than k.

Correctness and Termination: Similarly to the check
function in Figure 5, optimize guarantees that discarded
results are those with bounds greater than the considered
bound (or that cannot be determined). However, the results
only hold over symbolic states at a given depth and might
not hold in general. The function terminates because the
loop executes for at most dmax − ddef iterations.

3.2.3 Bootstrapping DIG with Concrete States

SymInfer generates candidate invariants using existing con-
crete state-based invariant inference techniques like DIG. In
this application, we only need a small number of concrete
states to bootstrap the algorithms to generate a diverse set
of candidate invariants since symbolic states will be used to
refute spurious invariants. In prior work [27], [29], fuzzing
was used to generate inputs and that could be used here as
well, but we instead exploit symbolic states which allows us
to force diversity among generated concrete states, e.g., one
per symbolic state.

7

input : program P , location L, symbolic depth k,
number of requested concrete states n

output : set of concrete states cstates, clauses to block

1 block← false
2 cstates← ∅
3 sstates← getSymbolicStates(P,L, k)
4 inputVars← getInputs(P)
5 foreach s ∈ sstates do
6 if checkSMT(s.Π) then
7 model← getModel()
8 cstates← cstates ∪ (L,eval(s.σ,model))
9 block← block ∨ (

∧
v∈inputVars

v ≡ model[v])

10 while |cstates| < n ∧ |sstates| > 0 do
11 s← choose(sstates)
12 if checkSMT(s.Π ∧ ¬block) then
13 model← getModel()
14 cstates← cstates ∪ (L,eval(s.σ, model))
15 block← block ∨ (

∧
v∈inputVars

v ≡ model[v])

16 else
17 sstates← sstates− {s}

18 return cstates, block

Fig. 7: getConcreteStates: generate concrete
states from symbolic states.

Figure 7 shows how we use symbolic states to generate a
diverse set of concrete states—at least one for each symbolic
state. The loop on line 5 considers each such state, checks
the satisfiability of the states path condition Π and then
extracts the model from the solver. Next, we bind concrete
values to variables in the model to obtain a concrete state,
which is then accumulated. Then we block the model to
avoid generating the same concrete state in the future.

The loop on line 10 generates additional concrete states
up to the requested number, n. We randomly pick a sym-
bolic state and then call an SMT solver to generate a solution
that has not already been computed. When a solution is
found, we use the same processing as in lines 7–8 to create a
new concrete state; otherwise, we block that symbolic state
as in line 17 and continue. Note that it is possible that we
cannot obtain exactly n concrete states as requested and
therefore cannot perform intended tasks (e.g., for equation
solving, as discussed in S4.1.1).

Correctness and Termination: SymInfer generates sym-
bolic states representing all possible paths up to a
given bound, so generated invariants will be correct
with respect to the paths found in that bound. Function
getConcreteStates terminates because (1) the depth
bounded symbolic execution (line 3) returns a finite set of
states which guarantees termination of the loop on line 5,
and (2) the loop on line 10 terminates, since at each iter-
ation either the set of concrete states computed increases
monotonically (newly added states cannot carry over from
prior iterations since prior states are explicitly blocked from
the SMT call (lines 12 and 15)) or the set of symbolic
states decreases monotonically (depth bounded symbolic
execution produces a finite set of symbolic states).

3.3 Benefits of Symbolic States
Symbolic states are useful as a basis for efficient inference of
invariants for several reasons:

Symbolic states are expressive: Dynamic analysis has
to observe many concrete states to obtain useful results.
Many of those states may be equivalent from a symbolic
perspective because a symbolic state can encode a poten-
tially infinite set of concrete states. SymInfer exploits this
expressive power to infer and refute candidate invariants
from a huge set of concrete states by processing a single
symbolic state.

Symbolic states are relational: Symbolic states encode
the values of program variables as expressions over free-
variables capturing program inputs. This permits relation-
ships between variables to be gleaned from the state.

Symbolic states can be reused: Invariant generation has
to infer or refute candidate invariants relative to the set of
observed concrete states. This can grow in cost as the prod-
uct of the number of candidates and the number of concrete
states. A disjunctive encoding of observed symbolic states
can be constructed once and reused for each of the candidate
invariants, which can lead to performance improvement.

Symbolic states can be used for optimization: We can
use a constraint solver to check guessed invariants from
symbolic states. However, for certain types of invariants, we
can eschew guessing and directly use the solver to compute
invariants. For example, instead of checking if x+ y ≤ 10 is
an invariant, we just query the solver to find the least upper
bound of the term x+ y from symbolic states. Thus, instead
of performing multiple guesses and checks, we can obtain
the desired invariant with a single call to the solver.

Symbolic states form a sufficiency test: The diversity of
symbolic states found during depth-bounded symbolic exe-
cution combined with the expressive power of each of those
states provides a rich basis for inferring strong invariants.
We have observed that for many programs a sufficiently rich
set of observed states for invariant inference will be found
at relatively shallow depth. That is, the invariants generated
and consistent with symbolic states at depth 10 are the same
as those at depth 11. Consequently, we employ an adaptive
and incremental approach that increases depth only when
new states lead to changes in candidate invariants.

4 THE SYMINFER APPROACH

SymInfer uses symbolic states to generate equality and
inequality forms of numerical invariants. First, we present
a CEGIR technique that integrates a dynamic inference
algorithm from DIG, which generates (nonlinear) equality in-
variants from concrete states, with symbolic states to check
and refine invariants. Then, we present an optimization
technique to compute inequality invariants directly from
symbolic states.

4.1 Nonlinear Equalities
At a high level, we treat concrete state values as points in
Euclidean space and compute geometric shapes enclosing
these points. For example, the values of the two variables
x, y are points in the (x, y)-plane. We then can determine if
these points lie on a line, represented by a linear equation of
the form c0 + c1x+ c2y = 0.

8

input : program P , location L, degree d, symbolic
depth k

output : nonlinear equalities up to deg d at L

1 cstates← ∅
2 invs← ∅
3 vars← getVars(P,L)
4 terms← createTerms(vars, d)
5 cstates, block← getConcretStates(P,L, k, |terms|)
6 candidates← inferEqts(terms, cstates)
7 while candidates ̸= ∅ do
8 cexs← ∅
9 foreach p ∈ candidates do

10 is proved, newCexs← check(P,L, p, block)
11 cexs← cexs ∪ newCexs
12 if is proved then invs← invs ∪ {p}
13 if cexs ≡ ∅ then break
14 block← block ∪ cexs
15 cstates← cstates ∪ cexs
16 newCandidates← inferEqts(terms, cstates)
17 candidates← newCandidates− invs

18 return invs

Fig. 8: Algorithm for finding (potentially nonlinear)
polynomial equalities. The check function described
in S3.2.1 is used to validate invariants.

Thus, we treat equalities as unbounded geometric
shapes, e.g., lines and planes, to obtain a set or con-
junction of linear equalities over program variables. To
support nonlinear equalities, we create terms to repre-
sent nonlinear information from the given variables up
to a certain degree. For example, the set of 10 terms
{1, r, y, a, ry, ra, ya, r2, y2, a2} consists of all monomials up
to degree 2 over the variables {r, y, a}. In total, we enumer-
ate

(|V |+d
d

)
monomial terms over n variables up to the given

degree d.
SymInfer uses the equation solving technique in DIG to

find equality invariants over these terms by using concrete
states. First, we form an equation template

c1t1 + c2t2 · · ·+ cntn = 0 (1)

where ti are the generated terms and ci are real-valued
unknowns to be solved for. Next, we instantiate the template
with concrete state values to obtain concrete and linear
equations. For example, instantiating the template with the
concrete state r = 3, y = 2, a = 6 produces the equation
c1 + 3c2 · · · + 36cn = 0. We then solve these equations for
the unknown coefficients using a standard linear equation
solving technique such as Gauss-Jordan elimination [37].
Finally, we combine solutions for the unknowns (if found)
with the template to obtain equality relations.

4.1.1 Inferring Equalities

Figure 8 defines our CEGIR algorithm for computing non-
linear equality invariants. It consists of two phases: an initial
invariant candidate generation phase and then an iterative
invariant refutation and refinement phase.

Lines 4 – 6 define the initial generation phase. We first
create terms to represent nonlinear polynomials. Because
solving for n unknowns requires at least n unique equations,

we use symbolic states as described in S3.2.3 to generate a
sufficient set of concrete states.

The initial candidate set of invariants is iteratively re-
fined on lines 7 – 17. The algorithm refutes or confirms
them using symbolic states as described in S3.2.1. Any
property that is proven to hold is recorded in invs and
counterexample states, cexs, are accumulated across the
set of properties. Generated counterexample states are also
blocked so that they are not generated again.

If no property generated counterexample states, then
the algorithm terminates returning the verified invariants.
The counterexamples are added to the set of states that are
used to infer new candidate invariants; this ensures that
new invariants will be consistent with the counterexample
states (line 15). These new results may include some already
proven invariants, so we remove those from the set of
candidates considered in the next round of refinement.

Example: We demonstrate the algorithm by finding the
nonlinear equalities b = ya and x = qy + r at location L1
in the cohendiv program in Figure 1, when using degree
d = 2.

For the 6 variables {a, b, q, r, x, y} at L1, together with
d = 2, SymInfer generates 28 terms {1, a, . . . , y2}. SymInfer
uses these terms to form the template c1+c2a+. . . c28y

2 = 0
with 28 unknown coefficients ci. SymInfer then uses the
obtained symbolic states to generate concrete states such as
those given in Figure 1 to form (at least) 28 linear equations.
From this set of initial equations SymInfer extracts 6 equali-
ties.

Now, SymInfer iteratively refines the inferred invariants.
In iteration #1, SymInfer cannot refute 2 of these candidates
x = qy + r, b = ya (which are actually true invariants) and
thus saves these as invariants. SymInfer finds counterexam-
ples for the other 4 equalities2, and creates new equations
from the counterexamples. SymInfer next combines the old
and new equations and solves them to obtain 4 candidates, 2
of which are the already saved ones. In iteration #2, SymIn-
fer obtains counterexamples for the 2 new candidates. With
the help of the new counterexamples, SymInfer generates 3
candidates, 2 of which are the saved ones. In iteration #3,
SymInfer obtains counterexamples disproving the remain-
ing candidate and again uses the new counterexamples to
generate new candidates. This time SymInfer only finds the
two saved invariants x = qy + r, b = ya and thus stops.

Correctness and Termination: The algorithm returns
(potentially nonlinear) equalities that are correct up to the
considered symbolic depth (since it uses the check function
in S3.2.1 to check invariants with respect to the given depth).
The algorithm terminates because linear equation solving
provides a solution space containing all possible coefficients
for an equality invariant and each added counterexample
input decreases the dimension of the solution space by one.
Thus if we keep finding counterexamples, then the solution
space will keep decreasing, and eventually, that will stop
when the dimension of the solution space becomes zero (i.e.,
no equalities found). The full termination proof is provided
in the supplementary appendix.

2. Spurious results often have many terms and large coefficients, e.g.,
190qr + 10r2 − 10x2 − 551q − 2929r + 2929x = 0

9

a b c d e

Fig. 9: (a) A set of 6 points in 2D and its approximation using
the (b) polyhedral, (c) octagonal, (d) zone, and (e) interval
shapes, represented by the conjunctions of inequalities of
the forms c1v1 + c2v2 ≤ c, ±v1 ± v2 ≤ c, v1 − v2 ≤ c, and
±v ≤ c, respectively.

Insufficient Traces: This algorithm might fail to produce
equality invariants due to insufficient traces. More specif-
ically, if the getConcreteStates call on line 5 fails to
obtain |terms| concrete states, then we cannot form the
necessary equations to solve for |terms| unknowns and
thus the inferEqts call on line 6 produces no results.

if(x==1&&y==2){
[L]
..

}

The example on the right illustrates
the situation. The program has exactly 1
concrete L-state (i.e., {(x = 1∧ y = 2)}),
thus we can form only a single equation
and cannot solve for 2 or more unknowns. While it is pos-
sible to mitigate the problem in specific cases (e.g., equation
solving is not even needed here), it is challenging for more
general cases (e.g., if we do not have enough traces to solve
n unknowns, do we consider only some subsets of those
unknowns? and if so, which subsets to consider?).

Fortunately, this problem, in which every considered
variable at a location has a fixed value, rarely happens. In
the above program, if L has another variable z that is not
fixed to a value, then we can generate a large number of
concrete traces, e.g., {(x = 1, y = 2, z = 0), (x = 1, y =
2, z = 1), (x = 1, y = 2, z = 2), . . . }, and form equations
to obtain the invariants x = 1 and y = 2. Thus, as long as
some of the considered variables are “free”, we can generate
sufficient traces for equation solving.

Note that for this example, even if we cannot obtain the
equalities x = 1 ∧ y = 2 due to insufficient traces, we can
still infer inequalities that are exactly equivalent, i.e., x ≤
1 ∧ 1 ≤ x ∧ y ≤ 2 ∧ 2 ≤ y, using the inference technique
described next in S4.2.

4.2 Linear Inequalities
SymInfer supports several forms of inequality invariants.
Below we describe inequalities using different geometric
shapes and then present a linear programming approach
that computes inequalities directly from symbolic states.
SymInfer supports both linear (default) and nonlinear (con-
figurable by the user) inequalities.

Figure 9 shows several types of convex polygons (poly-
hedra in 2D) that represent different forms of inequalities
over two variables. Figure 9a shows a set of points created
from concrete states. Figures 9b, 9c, 9d, and 9e approximate
the region enclosing these points using the polyhedral,
octagonal, zone, and interval shapes that are represented
by conjunctions of inequalities of different forms as shown
in Figure 9. Note that these forms of relations are sorted
in decreasing order of expressive power and computational
cost. For example, while interval relations are less expressive
than zone relations, computing an interval, i.e., the upper

a b d c

Fig. 10: (a) Three possible shapes of a max-plus line segment:
max(c1 + v1, c2) ≤ v2 (top), max(c1 + v2, c2) ≤ v1 (right),
max(c1 + v1, c2 + v2) ≤ c3 (left); (b) approximation of the
points in Figure 9a using a max-plus polygon; (c) two possi-
ble line segment of weak max-plus; and (d) approximation
of points using a weak max-plus polygon.

and lower bounds of a variable, is much cheaper than
computing the convex hull of a zone.

4.2.1 Octagonal Relations
While inequalities represented by a general polyhedron are
expressive, computing a polyhedron is expensive (exponen-
tial time in the number of dimensions or variables) and
often produces many complex and spurious invariants [29].
SymInfer thus focuses on octagonal invariants, whose shape
and inequality form are shown in Figure 9c. Octagonal
invariants can be computed efficiently from concrete states
(linear time complexity [29]) and are also relatively expres-
sive (e.g., can represent zone and interval inequalities as
shown in Figure 9). Thus, the computation of octagonal
relations also produces zone and interval relations for free.
By balancing expressive power with computational cost,
octagonal invariants are especially useful in practice for
detecting bugs in flight-control software, and performing
array bound and memory leak checks [22], [38].

The edges of an octagon are represented by a conjunction
of eight inequalities of the form

c1v1 + c2v2 ≤ k, (2)

where v1, v2 are variables, c1, c2 ∈ {−1, 0, 1} are coeffi-
cients, and k is a real-valued constant. For example, from
the concrete states in Figure 1, we can build an octagon
represented by inequalities such as 4 ≤ x ≤ 15 and
3 ≤ x− y ≤ 13.

4.2.2 Max- and Min-plus Relations
The convex polygons shown in Figure 9 represent conjunc-
tions, but not disjunctions, of numerical relations. Disjunc-
tive invariants, which represent the semantics of branching,
are more difficult to analyze, but are crucial to many pro-
grams. For example, after if (p) {a=1;} else {a=2;},
neither a = 1 nor a = 2 is an invariant, but

(p ∧ a = 1) ∨ (¬p ∧ a = 2)

is a disjunctive invariant.
SymInfer supports a form of disjunctive invariants by

using a special type of nonconvex polyhedra in the max-
plus (max) algebra [23], [24], [39]. Briefly, max inequalities
are analogous to polyhedra inequalities, but use (max,+)
instead of the (+,×) of standard arithmetic. These operators
allow max relations to form shapes that are nonconvex in the
classical sense. For example, the max relation max(x, y) ≤ 5,
which is equivalent to (x ≥ y) ⇒ x ≤ 5 ∧(x < y) ⇒ y ≤ 5,
can be simplified to x ≤ 5 ∨ y ≤ 5—a nonconvex area.

10

Figure 10a shows the three possible shapes of a max line
segment in 2D. Figure 10b depicts a max polygon repre-
sented by a set of four lines connecting the points shown in
Figure 9a.

Similarly to polyhedra, computing a general max convex
hull is expensive and can result in many spurious inequal-
ities. We thus focus on a “weaker” form of max invariants
introduced in [28] that retains much of the general forms
expressive power, but avoids the high computational cost.

Weak max invariants have the form:
max(c0, c1 + v1, . . . , ck + vk) ≤ vj + d

vj + d ≤ max(c0, c1 + v1, . . . , ck + vk),
(3)

where vi are program variables, ci ∈ {0,−∞}, d is a real
numbers or −∞, and k is a constant, e.g., k = 2 in 2D.

Weak max relations are thus a strict subset of general
max relations. For example, the weak max form cannot
represent general max relations like max(x + 7, y) ≤ z or
max(x, y) ≤ max(z, w), but it does support zone relations
like x − y ≤ 10 and x = y and disjunctive relations like
max(x, y) ≤ z and max(x, 0) ≤ y + 7. Geometrically, weak
max polyhedra are a restricted kind of max polyhedra in
which a right angle cannot occur because their formula,
max(x, y) ≤ 0, is inexpressible using the weak max form.
Figure 10 compares general and weak max polyhedra in 2D.

The advantage of these restrictions is that they admit
a straightforward and efficient algorithm to compute the
bounded weak max polyhedron over a set of finite points
representing concrete states in k dimensions. The algorithm
first enumerates all possible weak relations over k variables
and then finds the unknown parameter d in each relation
from the given points. The resulting set of relations repre-
sent the weak max polyhedron enclosing the points.

Dually, SymInfer also computes weak min invariants,
whose form is similar to the one in Eq 3 but with min instead
of max:

min(c0, c1 + v1, . . . , ck + vk) ≤ vj + d,

vj + d ≤ min(c0, c1 + v1, . . . , ck + vk).
(4)

The algorithm for computing these invariants over concrete
states is similar to the one for weak max invariants described
above.

4.2.3 Inferring Inequalities
SymInfer uses a single algorithm, shown in Figure 11, to
infer octagonal and (weak) max and min invariants. The
key idea is to compute the invariant t ≤ k where the
term t represents different forms of octagonal and max/min
inequalities and the constant k is the upper bound of t.

The algorithm consists of two phases. First, we invoke
createTerms to enumerate terms over program variables
(lines 3– 4). For octagonal inequalities, each term t involves
two variables so that t ≤ k is an octagonal constraint of
the form in Eq 2. Given n variables, we create

(n
2

)
variable

pairs, and for each pair x, y, obtain 8 terms of the octagonal
form in Eq 2 in which x and y are associated with one of
the 3 coefficients {−1, 0, 1}, e.g., −1 × x + 1 × y gives the
term −x + y (and our goal is to find the upperbound k
to form the octagonal inequality −x + y ≤ k). In total, we
generate

(n
2

)
×(23−1) octagonal terms (we exclude the term

0× x+ 0× y, which simplifies to 0).

input : program P , location L, symbolic depth k
output : octagonal or max/min inequalities at L

1 invs← ∅
2 vars← getVars(P,L)
3 termsoct ← createTermsieq(vars, d = 1, coefs =

(−1, 0, 1), subsetSize = 2)
4 termsminmax ← createTermsminmax(vars, d)
5 foreach t ∈ termsoct ∪ termsminmax do
6 k ← optimize(P,L, t)
7 if k ̸=∞ then
8 invs← invs ∪ (t ≤ k)

9 return invs

Fig. 11: Algorithm for finding octagonal and
max/min-plus inequalities. The optimize function
described in S3.2.2 is used to find upper bound
values of terms.

For max inequalities, t involves combinations of vari-
ables of the weak form in Eq 3. Given n variables, we create(n
n−1

)
tuples of variables, and for each tuple of k variables,

obtain 2k−1 terms of the form in Eq 3 in which each of the
k − 1 variables is associated with one of the 2 coefficients
{0,−∞}. For example, the invariant max(0,−∞ + x, 0 +
y) ≤ z+d generates the term max(0, y)−z that we optimize
to compute an upperbound k that forms the max inequality
max(0, y) − z ≤ k. In total, we generate

(n
n−1

)
× 2k−1 max

terms. We also do the same to obtain min terms of the form
in Eq 4.

Then, we use the optimize function described in S3.2.2
to compute the smallest upper bound k of each term t from
symbolic states (lines 5– 8). If k is found, we obtain the
candidate invariant t ≤ k; otherwise, we discard the relation
t ≤ k.

We also use the same approach to find the lower bound
of a term t (i.e., k ≤ t, which is also an octagonal inequality)
by computing the upper bound of the term −t. For example,
if t ∈ {−2, 3, 7} then we have t ≤ 7 and −t ≤ 2, which is
equivalent to −2 ≤ t. The function createTerms generates
both terms t and −t.

Correctness and Termination: This algorithm returns
inequalities that are correct up to the considered symbolic
depth (since it uses optimize to obtain the upper bounds
with respect to the given depth). The algorithm termi-
nates because the enumerated terms are finite and each
optimize call terminates.

Note that the previous version of SymInfer [31] com-
putes the upper bound for a term using a CEGIR approach,
which repeatedly invokes symbolic states to guess and
tighten the candidate upper bounds. This approach, which
invokes the solver multiple times to check guessed results,
is slower than the described optimization-based algorithm,
which invokes the solver once to find the upper bound.
However, the CEGIR algorithm, provided in the supplemen-
tary appendix, might be useful when computing the upper
bound directly from symbolic states is not possible (e.g.,
when symbolic states or terms involve complex arithmetic
not supported by the constraint solver’s optimizer).

11

4.2.4 Nonlinear Inequalities
By default, SymInfer generates the described octagonal and
max/min-plus relations. However, the user can easily con-
figure SymInfer to generate more expressive inequalities
by either specifying a command line argument and setting
environment variables of SymInfer.

For example, by default function createTermsieqs in
Figure 11 generates octagonal terms such as x, x− y. These
terms are linear (degree d = 1), have coefficients -1, 0, 1, and
involve at most two variables (subsetSize=2). SymInfer
allows the user to change these parameters to generate
more expressive invariants involving more variables (e.g.,
using subsetSize=3 would generate invariants such as
x + y − z ≤ s), having larger coefficients (changing the
coefficients range to (-5,5) would produce invariants such as
2x− 5y ≤ z), and with higher degrees (setting d = 2 would
generate nonlinear inequalities such as x2 + z + w ≤ 7).
The user also can introduce new terms to represent desired
information (e.g., we can obtain relations involving expo-
nential properties such as 2x ≤ y by representing 2x with a
new term). The trade-off is that SymInfer would take longer
to generate and analyze these richer invariants.

4.3 Post-Processing
Depending on the number of variables and form of invari-
ants, SymInfer could generate many invariants (e.g., each
octagonal and max/min term can produce an invariant
candidate). Reporting too many invariants, even if they are
all valid, would be a burden to the user and reduce the
general effectiveness of the tool. Thus, SymInfer uses a post-
processing step to reduce the number of reported invariants.

The post-processing consist of two parts; both aim to
reduce the number of reported invariants. The first part
simply checks generated invariants against all cached con-
crete states and removes violated ones. This part is efficient
(we simply instantiate and check candidate relations with
concrete values), but removes few results (because most
generated invariants are already valid).

The second part attempts to remove redundant invari-
ants, i.e., from a set of candidate invariants, we extract a
subset of independent relations such that every member of
the set is not implied by other relations in that set. This part
is time-consuming because we essentially invoke the solver
to check every candidate invariant, but is effective in reduc-
ing invariants because many invariants can be obtained by
the combination of others. Our experiences show that this
part can effectively reduce many inequalities to just a few
strongest and relevant ones–making it much easier for the
user to analyze and use the reported results.

5 IMPLEMENTATION AND EVALUATION

SymInfer is implemented in Python/SAGE [40]. The tool
takes as input a program with marked target locations, i.e.,
using the vtrace method discussed in S3.1, and generates
invariants at those locations.

Currently, SymInfer supports programs written in Java,
(Java) bytecode, and C. SymInfer uses the Z3 SMT
solver [41] to check and produce models representing coun-
terexamples. We also use Z3 to identify and remove redun-
dant invariants in post-processing. We use the same backend

algorithms to infer and analyze invariants, but call different
symbolic execution frontend tools to obtain symbolic states
(Symbolic PathFinder (SPF) [25] for Java and bytecode pro-
grams and CIVL [26] for C programs). Our experiments
focus on evaluating SymInfer on Java programs, and we
discuss SymInfer’s performance on C programs in S5.6.

SymInfer leverages the increasingly popular and afford-
able multicore architecture. The tool performs many inde-
pendent tasks in parallel, e.g., running symbolic execution at
different depths, generating invariants at different locations,
computing upper bounds for terms, and checking candidate
invariants. Parallel processing is crucial to the performance
of SymInfer as it allows the tool to process and analyze thou-
sands of candidate invariants at multiple program locations
simultaneously.

To evaluate SymInfer we consider 6 research questions:

• RQ1: How well does SymInfer infer nonlinear in-
variants describing complex program semantics and
correctness conditions?

• RQ2: How well does SymInfer generate expressive
invariants to capture program runtime complexity?

• RQ3: How well does SymInfer infer min and max-
plus invariants to prove disjunctive invariants?

• RQ4: How does SymInfer perform on programs in-
volving non-trivial properties not directly supported
by SymInfer?

• RQ5: How does the depth of symbolic states influ-
ence the ability of SymInfer to infer invariants?

• RQ6: How does SymInfer compare to other invariant
generation tools?

To investigate these questions, we used 4 benchmark
suites consist of 108 Java programs described in detail in the
following subsections. These programs come with known
or documented invariants. To compare the invariants in-
ferred by SymInfer, we manually checked consistency with
the documented invariants and we encoded documented
invariants and used Z3 to determine that the inferred results
imply them.

For our experiments, we use SymInfer’s default settings
to infer nonlinear equalities, octagonal and max/min re-
lations. For equalities, SymInfer uses the default setting
DIG [29] that limits the number of generated terms up to
200. This allows us, for example, to infer equalities up to
degree 5 for a program with 4 variables and up to degree
2 for a program with 12 variables). For octagonal and
max/min inequalities, we consider upper and lower bounds
(the v_max value in Figure 6) within the range [−20, 20];
we rarely observe inequalities with large bounds. SymInfer
can either choose random values in a range, [−300, 300] by
default, for bootstrapping, or use the algorithm in Figure 7.
Our experience shows that we do not need very large input
values to generate precise invariants. We start SPF with
depth 7 and CIVL with depth 20; these seem to be good
default search depths for almost all our test programs. All
these parameters can be changed by SymInfer’s user; we
chose these default values based on our experience.

SymInfer has several sources of randomness, e.g., the
generation of concrete states from the Z3 and the collection
of symbolic states symbolic execution tools. In our experi-
ments, we ran SymInfer 5 times on each program and report

12

TABLE 1: Experimental results for NLA programs. ✓: pro-
duce results that match or imply documented invariants. ∗:
require minor modifications to work.

Invs Time(s)
Prog L V T E, I, M NL(d) T Exp Correct

Bresenham 1 5 5 1,2,2 1(2) 78.5 64.5 S ✓
CohenCu 1 5 6 3,2,1 2(2) 16.0 12.5 E ✓
CohenDiv 2 6 20 4,15,1 4(2) 84.7 61.9 E ✓
Dijkstra 2 5 19 7,10,2 4(3) 98.2 76.4 E ✓
DivBin 2 5 15 3,8,4 1(2) 47.3 32.9 S ✓
Egcd 1 8 11 3,8,0 3(2) 104.7 67.6 S ✓
Egcd2 2 10 60 5,25,30 5(2) 165.2 71.7 R ✓
Egcd3 3 12 92 9,42,41 9(2) 406.0 220.4 R ✓
Fermat1 3 5 27 3,8,16 3(2) 241.8 110.5 M ✓
Fermat2 1 5 9 1,2,6 1(2) 310.3 190.2 M ✓
Freire1∗ 1 3 4 1,1,2 1(2) 3.8 1.8 E ✓
Freire2∗ 2 4 4 4,0,0 4(2) 6.4 3.0 E ✓
Geo1 1 4 7 1,6,0 1(2) 11.1 4.3 M ✓
Geo2 1 4 8 1,6,1 1(2) 15.4 4.3 M ✓
Geo3 1 5 10 1,7,2 1(3) 53.2 34.4 E ✓
Hard 2 6 21 5,11,5 3(2) 63.8 39.5 S ✓
Knuth∗ 1 8 13 4,5,4 4(3) 197.7 82.6 M ✓
Lcm1 3 6 32 4,21,7 4(2) 96.8 44.2 S ✓
Lcm2 1 6 9 1,6,2 1(2) 96.5 73.3 S ✓
MannaDiv 1 5 7 1,6,0 1(2) 202.9 195.5 E ✓
Prod4br 1 6 9 1,6,2 1(3) 69.6 31.4 E ✓
ProdBin 1 5 7 1,6,0 1(2) 75.3 35.4 S ✓
Ps2 1 3 4 1,3,0 1(2) 3.4 1.5 E ✓
Ps3 1 3 4 1,3,0 1(3) 3.4 1.5 E ✓
Ps4 1 3 4 1,3,0 1(4) 3.3 1.4 E ✓
Ps5 1 3 4 1,3,0 1(5) 3.7 1.7 E ✓
Ps6 1 3 4 1,3,0 1(6) 3.9 1.8 E ✓
Sqrt1 1 4 6 2,4,0 1(2) 4.6 1.8 E ✓

the median results (e.g., the median results of the runtimes
and number of invariants collected over 5 runs).

The experiments reported were run on a 64-core AMD
CPU 4 GHZ Linux system with 64 GB of RAM. SymInfer
and all experimental benchmarks and results are available
at https://github.com/unsat/dig/.

5.1 RQ1: Programs With Nonlinear Invariants
In this experiment, we use programs from the NLA test-
suite [29] in the SV-COMP benchmark [42]. This testsuite
consists of 28 programs implementing mathematical func-
tions such as intdiv, gcd, lcm, and power sum. Although
these programs are relatively small (under 50 LoCs), they
contain nontrivial structures such as nested loops and non-
linear invariant properties. To the best of our knowledge,
NLA is the largest benchmark of programs containing non-
linear arithmetic. Many of these programs have also been
used to evaluate other numerical invariant systems [16],
[31], [43], [44].

These programs come with known program invariants
at various program locations (e.g., mostly nonlinear equal-
ities for loop invariants). For this experiment, we evaluate
SymInfer by finding invariants at these locations and com-
paring them with known invariants.

Results
Table 1 presents the results of SymInfer for the 28 NLA
programs. Columns L and V show the number of locations
where we obtain invariants and the number of variables
at the location that has the largest number of variables,
respectively. The Invs group shows the total number of

discovered invariants (T) and from those the number of
equalities (E), octagonal inequalities (I), min and max-plus
inequalities (M), and nonlinear NL (equality) invariants and
the highest degree (D) among those. The Time group shows
the total time (T) in seconds. This time includes subtasks
such as symbolic execution (S), equation solving (E), upper
bound computation (M), and removing redundant results
(R). The Exp column lists the time for the most expensive
sub-task and indicates that task. Column Correct shows if
the obtained results match or imply the known invariants.
We also modified three programs (indicated with ∗) as
they contain external calls and floating-point values that
SymInfer currently does not support (details given below).

For all 28 programs, SymInfer generated correct invari-
ants that match or imply the known results. In most cases,
the discovered invariants matched the known ones exactly.
Occasionally, we obtained results that are equivalent or
imply the known results. For example, for some runs of
Sqrt1 we found the documented equalities t = 2a+ 1 and
s = (a+1)2, and for other runs we obtained t = 2a+1 and
t2 − 4s+ 2t = −1, which are equivalent to s = (a+ 1)2 by
replacing t with 2a+ 1.

SymInfer also discovered undocumented invariants. For
example, for Egcd1, which implements an extended GCD
algorithm, DIG identifies three equalities for loop invariants:
x = ai + bj, y = ak + bm, and 1 = im − jk. The first two
are documented invariants that assert the computation and
preservation of the Bézout identity in the loop3. The third
relation is a valid, but undocumented invariant, revealing a
potentially useful implementation detail: the product im is
exactly 1 more than the product jk whenever the program
reaches location L. Also, as shown in S2.1, for CohenDiv
SymInfer generated undocumented but useful inequalities
such as r ≥ 0, r ≤ x, and r ≤ y − 1 which state that the
remain r is non-negative, is at most the dividend x, but is
strictly less than the divisor y. Our experience shows that
SymInfer is capable of generating many invariants that are
unexpected yet correct and useful.

We had to modify three programs Freire1, Freire2,
Knuth to work with SymInfer. We changed the floating
point values used in Freire1, Freire2 to integers be-
cause SymInfer currently does not support floating point
arithmetic. We also remove the external library sqrt call
from Knuth (by replacing x == Math.sqrt(y) with x*x
== y) because SPF cannot obtain symbolic states from un-
known functions.

From Table 1, we see that the number of invariants, es-
pecially inequalities, obtained at a location is largely depen-
dent on the number of variables (i.e., the generated terms
over these variables). Programs such as Egcd2, Egcd3,
LCM1 have more invariants because multiple locations are
considered and also each location contains many variables.
Nonetheless, we consider the final number of invariants
reasonable, especially the stronger nonlinear equalities, and
thus can be directly presented and analyzed by the user.

The runtime of SymInfer is largely dependent on the
number of variables. While generally taking less than 2
minutes, for some programs the inference process can take

3. An extended GCD algorithm takes as input a pair of integers (a, b)
and, in addition to computing the gcd of a, b, also produces two integers
i, j satisfying the Bézout identity x = ai+ bj

https://github.com/unsat/dig/

13

TABLE 2: SymInfer’s results for computing programs’ com-
plexities. ✓: generates the expected bounds. ✓✓: obtains
more precise bounds than reported results. ∗: require minor
modifications.

Prog V T E,I,M NL(D) Time(s) Correct

cav09 fig1a 2 1 1,0,0 1(2) 5.7 ✓
cav09 fig1d 2 1 1,0,0 1(2) 5.8 ✓
cav09 fig2d 3 4 1,3,0 1(2) 23.8 ✓
cav09 fig3a 2 3 1,1,1 1(2) 3.5 ✓
cav09 fig5b 5 7 2,4,1 1(2) 10.0 ✓
pldi09 ex6 4 9 5,1,3 4(3) 9.1 ✓
pldi09 fig2 4 6 2,4,0 2(4) 43.3 ✓✓
pldi09 fig4 1 3 7 1,2,4 0(1) 13.5 ✓
pldi09 fig4 2 5 13 2,4,7 1(2) 14.4 ✓
pldi09 fig4 3 3 3 1,2,0 1(2) 35.1 ✓
pldi09 fig4 4∗ 4 6 1,3,2 1(2) 18.1 ◦
pldi09 fig4 5 3 3 1,2,0 1(2) 26.5 ✓
popl09 fig2 1 5 2 1,1,0 1(3) 50.6 ✓∗

popl09 fig2 2 4 2 1,1,0 1(3) 70.7 ✓✓
popl09 fig3 4 3 5 3,1,1 3(4) 44.0 ✓
popl09 fig4 1 3 3 1,2,0 1(3) 134.1 ✓
popl09 fig4 2 5 2 1,1,0 1(3) 51.1 ✓∗

popl09 fig4 3 5 19 3,1,15 1(2) 16.7 ✓
popl09 fig4 4 3 4 1,3,0 1(2) 10.0 ✓

a 5-7 minutes, e.g., Fermat1 is the slowest because it infers
invariants at 3 locations and Egcd3 searches for invariant re-
lations over 12 variables. Also, the most expensive subtasks
vary across the programs: symbolic execution dominate for
some programs (e.g., Bresenham, Egcd) while comput-
ing upper bounds is expensive for others (e.g., Fermat1,
Knuth) because these programs involve many variables and
thus generate many inequality candidate relations.

Note that our experiments use the typical wall-clock time
to measure the time elapsed between the start and end of the
program (by simply storing the start and end time values
and obtaining their difference). If we instead use user-cpu
time, which measures the CPU usage of a program, the time
would be larger because SymInfer exploits parallelism. For
example, for a run of CohenDiv, the user time is 370.51s but
the wall-clock time is 68.48s. Multiprocessing can help pro-
gram analysis scale, and SymInfer leverages this ability on
increasingly available and affordable multicore computers.

RQ1: SymInfer was able to discover complex and pre-
cise nonlinear invariants to describe the semantics and
correctness properties of 28/28 programs from the SV-
COMP NLA benchmark. In many cases, SymInfer found
undocumented but useful invariants revealing additional
facts about program semantics.

5.2 RQ2: Analyzing Computational Complexity
As shown in S2.1, nonlinear invariants can represent precise
program runtime complexity. More specifically, the roots of
nonlinear relationships yield obtain disjunctive information
that capture precise program complexity bounds.

To further evaluate SymInfer for discovering program
complexity, we collect 19 programs, adapted4 from exist-
ing static analysis techniques specifically designed to find
runtime complexity [35], [45], [46]. These programs, shown

4. We remove nondeterministic features in these programs because
SymInfer assumes deterministic behavior.

in Table 2, are small, but contain nontrivial structures and
represent examples from Microsoft’s production code [35].
For this experiment, we instrument each program with a
fresh variable t representing the number of loop iterations
and generate postconditions over t and input variables (e.g.,
see Figure 2).

Results

Table 2, which has a similar format as Table 1, shows the
results of SymInfer. Column Correct contains a ✓if SymIn-
fer generates invariants matching the bounds reported in
the respective work5, and ✓✓if the discovered invariants
represent more precise bounds than the reported ones.

For 18/19 programs, SymInfer discovered runtime com-
plexity characterizations that match or improve on re-
ported results. For cav09_fig1a, we found the invariant
mt− t2 − 100m+200t = 10000, which indicates the correct
bound t = m + 100 ∨ t = 100. For these complexity
analyses, we also see the important role of combining both
inequality and equality relations to produce informative
bounds. For popl09_fig3_4, SymInfer inferred a disjunc-
tive equality showing that t = n ∨ t = m and inequalities
asserting that t ≥ n ∧ t ≥ m, together indicating that
t = max(n,m), which is the correct bound for this program.
For pldi09_fig4_5, we obtained nonlinear results giving
two bounds t = n − m and t = m, which establish
the reported upper bound t = max(n − m,m). In two
programs, SymInfer obtained better bounds than reported
results (marked with ✓✓). The tripple program shown
in Figure 2 (pldi_fig2 in Table 2) is a concrete example
where the three inferred bounds are strictly less than the
previously best known bound.

For popl09_fig2_1 and popl09_fig4_2 (marked
with ✓∗), we obtained similar complexity bounds as the
reported results. However, the reported results also give
the preconditions leading to the bounds (thus more infor-
mative than ours), but also have some incorrect bounds
(our complexity results are correct). For example, in
popl09_fig2_1, we got 3 bounds t = m + n − a − b,
t = n − a, and t = 0 (when we do not enter the
loop). The reported results give 4 bounds, three of which
are similar to ours and also include preconditions (e.g.,
n > a ∧ m > b ⇒ t = n + m − a − b indicates that
t = n+m−a−b occurs when n > a∧m > b). However, one
of these 4 reported bounds, (a ≥ n ∧ b < m) ⇒ t = m − b,
is incorrect because under this condition the program does
not enter the loop and thus has t = 0 instead of t = m − b
(m− b is positive because of the condition b < m).

We were not able to obtain sufficiently strong invariants
to show the reported bound for pldi09_fig4_4. However,
if we create a new term representing the quotient of an
integer division of two other variables in the program, and
obtain invariants over that term, we obtain more precise
bounds than those reported in [35].

5. In Table 2, results for programs prefixed with pldi09, popl09,
and cav09 are from [35], [45], [46], respectively.

14

TABLE 3: Disjunctive Invariant results. ✓: produce results
that match or imply documented invariants. ∗: require mi-
nor modifications.

Prog L V T E,I,M NL(D) Time(s) Correct

strncpy 1 3 4 0,2,2 0(1) 6.6 ✓
oddeven2 1 4 5 2,1,2 1(2) 4.5 ✓
oddeven3 1 6 7 3,2,2 2(3) 10.3 ✓
oddeven4∗ 1 8 10 4,3,3 3(4) 92.4 ✓
oddeven5 1 10 39 2,2,35 1(2) 207.0 ✓
partd1 2 3 5 1,2,2 1(2) 10.3 ✓
partd2 2 4 5 1,2,2 1(3) 58.1 ✓
partd3 4 5 12 1,7,4 1(4) 151.9 ✓
partd4 5 6 16 0,11,5 0(1) 158.5 ✓
partd5 6 7 22 0,16,6 0(1) 192.9 ✓
parti1 2 3 5 1,2,2 1(2) 10.2 ✓
parti2 3 4 8 1,4,3 1(3) 66.0 ✓
parti3 4 5 12 1,7,4 1(4) 182.0 ✓
parti4 5 6 16 0,11,5 0(1) 185.0 ✓
parti5 6 7 22 0,16,6 0(1) 218.0 ✓

RQ2: We demonstrate a rather surprising application
of SymInfer’s invariants. SymInfer was able to discover
unexpected and difficult invariants capturing the precise
complexity bounds of 18/19 programs. In some cases,
these results help reveal unknown or more informative
complexity bounds.

5.3 RQ3: Disjunctive Invariant Results

In this experiment, we evaluate SymInfer’s max/min invari-
ants on benchmark programs used in existing disjunctive
invariant analysis work [24], [28]. These programs, listed
in Table 3, typically have many execution paths, e.g., the
sorting method oddeven5 contains 12 serial “if” blocks and
thus 212 paths.

The documented correctness assertions for these pro-
grams require reasoning about disjunctive invariants, but
do not involve higher-order logic. For example, the sorting
procedures are asserted to produce a sorted output, but
are not asserted to produce a permutation of the input.
Surprisingly, SymInfer discovers undocumented nonlinear
relations that represent such permutation properties.

Results
Table 3, which has similar format as Table 1, shows the
experimental results. For all 15 programs, the discovered
invariants are sufficiently strong to prove the correctness of
these programs (i.e., they match or imply the documented
assertions).

For strncpy, which simulates the C strncpy function
to copy the first n characters from a (null-terminated) source
s to a destination d, SymInfer inferred two min-plus invari-
ants

min(|s|, n)− |d| ≤ 0 , min(|d|, n)− |s| ≤ 0,

which represent the relation

(n ≥ |s| ∧ |d| = |s|) ∨ (n < |s| ∧ |d| ≥ n)

This captures the desired semantics of strncpy: if n ≥ |s|,
then the copy stops at the null terminator of s, which is
also copied to d, so d ends up with the same length as s.

However, if n < |s|, then the terminator is not copied to d,
so |d| ≥ n.

As a second example, for oddevenN , which sorts the in-
put elements x0, . . . , xN and stores the results in y0, . . . , yN ,
SymInfer’s inferred max/min invariants prove the outputs
y0 and yN hold the smallest and largest elements of the
input, i.e., y0 = min(xi) and yN = max(xi). SymInfer’s
octagonal inequalities also show that the results are sorted,
i.e., y0 ≤ y1 ≤ · · · ≤ yN . These results are equivalent to the
documented invariants and similar to those obtained using
purely static analyses [24].

As shown in Table 3 SymInfer also found nonlinear
relations, even though the documented invariants do not
contain any such properties. Similarly to the complexity
example mentioned in S2.1, these nonlinear properties are
rather unexpected and complicated, but capture surpris-
ingly useful and interesting program information. For ex-
ample, for oddeven2, SymInfer found two equalities:

x0 + x1 − y0 − y1 = 0 (5)

x2
1 − x1y0 − x1y1 + y0y1 = 0 (6)

The first linear equality shows that the sum of the inputs are
the same as the outputs, which is true for sorting numbers.
The second nonlinear inequality is undocumented, yet when
combined with the first equation, yields useful information
stating that the outputs y′s are permutations of the inputs
x′s. To see this, first notice that the second inequality con-
tains the disjunctive information that x1 is either y1 or y0:

(x2
1 − x1y0 − x1y1 + y0y1 = 0) ⇒ (x1 − y0)(x1 − y1) = 0

Next, combining these two cases x1 = y1 ∨ y0 with Eq 5
shows that the outputs y0, y1 are permutations of the inputs
x0, x1, i.e., x1 = y0 ⇒ x0 = y1 and x1 = y1 ⇒ x0 = y0:

(x1 = y0) ∧ (y0 + y1 − x0 − x1 = 0) ⇒ (x0 = y1)

and
(x1 = y1) ∧ (y0 + y1 − x0 − x1 = 0) ⇒ (x0 = y0)

For other programs, we also derive permutation proper-
ties from the obtained invariants through the same reason-
ing. For example, for OddEven3, SymInfer discovered three
nonlinear equalities:

x0 + x1 + x2 − y0 − y1 − y2 = 0 (7)

x2
1 + x1x2 + x2

2 − x1y0 − x2y0 − x1y1 − x2y1+ (8)
y0y1 − x1y2 − x2y2 + y0y2 + y1y2 = 0

x3
2 − x2

2y0 − x2
2y1 + x2y0y1 − x2

2y2 + x2y0y2+ (9)
x2y1y2 − y0y1y2 = 0

As before, we first factor the highest-degree equality
(Eq 9) to obtain (x2 − y0)(x2 − y1)(x2 − y2) = 0, i.e.,
x2 = y0 ∨ y1 ∨ y2). Then for each case we combine with
the other equations to obtain all possible permutations (for
3 variables). We illustrate the case when x2 = y0, whose
combination with Eq 8 shows that x1 = y1 ∨ x1 = y2:

(x2
1 + x1x2 + x2

2 − x1y0 − x2y0 − x1y1 − x2y1 + y0y1

−x1y2 − x2y2 + y0y2 + y1y2 = 0) ∧ (x2 = y0)

⇒ (x1 − y1)(x1 − y2) = 0

15

These results are then combined with Eq 7 (e.g., when
x2 = y0 ∧ x1 = y2, we have x0 = y1) to derive permutation
properties (e.g., x2 = y0∧x1 = y2∧x0 = y1 is a permutation
of three numbers):

(x0 + x1 + x2 − y0 − y1 − y2 = 0) ∧ (x2 = y0 ∧ x1 = y2)

⇒ x0 − y1 = 0

Thus by doing this for all cases, these nonlinear results
reveal that the resulting outputs form the six permutations
of the three inputs for OddEven3.

While we obtained the documented invariants for all
these benchmark programs with default settings in SymIn-
fer, we had to increase the number of terms (parameterized
in SymInfer) to find the undocumented nonlinear relations
for oddeven4 (indicated with ∗) because these relations
have degree 4, which would require using more terms as
the program involves 8 variables (by default SymInfer uses
at most 200 terms).

SymInfer failed to obtain the undocumented nonlinear
invariants for some challenging problems due to equation
solving timeout. For example, the permutation of oddeven5
would require a nonlinear equation of degree 5, which
would require 3003 terms over the 10 variables in the
program. Sage was not able to solve equations involving
this many unknowns and thus SymInfer cannot infer the
nonlinear equations to represent permutations over 5 num-
bers. Despite this SymInfer was able to infer other invariants
about sortedness, largest, and smallest values, which match
the documented invariants. A better, potentially external,
equation solver might improve the scalability of SymInfer.

RQ3: SymInfer found sufficiently strong max/min and
nonlinear invariants to establish the correctness of 15/15
programs requiring disjunctive invariants. We also dis-
covered expressive undocumented nonlinear invariants
that capture the higher-order permutation property of
sorting algorithms.

5.4 RQ4: Checking Assertions
Several existing works generate invariants to verify given
assertions or specifications. For example, to prove an asser-
tion assert(p) in a program, PIE [18] computes an invari-
ant p’ that is sufficiently strong to prove p, i.e., p′ ⇒ p. In
contrast, SymInfer does not require given assertions to gen-
erate invariants (i.e., its goal is invariant discovery instead of
finding invariants to prove specific goals). Nonetheless, we
still can use SymInfer to discover invariants and compare
them to the given assertions (e.g., using the Z3 solver).

In this experiment, we evaluate SymInfer on the 46
HOLA benchmark programs used in several static analyses
(e.g., [47], [48], [49]). Similarly to the NLA programs, these
programs are small (less than 50 LoC), but contain nontrivial
structures including nested loops or multiple sequential
loops and are part of the program synthesis competition
SyGuS [50]. These programs are annotated with various
assertions representing loop invariants and postconditions.
These assertions do not involve nonlinear properties, but
involve various non-trivial relations such as inequalities that
are not expressible using octagonal relations and disjunc-
tions that are not expressible using max/min invariants.

TABLE 4: SymInfer’s runs on HOLA benchmarks. ✓: pro-
duce sufficiently strong invariants to prove assertions. ◦:
fail to make sufficiently strong invariants. ∗: require minor
modifications.

Prog L V T E,I,M NL(D) Time(s) Correct

H01 1 2 4 1,3,0 0(1) 2.8 ✓
H02 1 2 4 1,3,0 0(1) 2.7 ✓
H03 1 1 1 0,1,0 0(1) 48.2 ✓
H04 1 1 1 0,1,0 0(1) 7.9 ✓
H05 1 2 3 1,2,0 1(3) 3.7 ✓
H06 1 2 4 1,3,0 0(1) 10.1 ✓
H07 1 3 4 1,3,0 0(1) 6.9 ✓
H08 1 2 2 0,2,0 0(1) 13.2 ✓
H09 2 1 2 0,2,0 0(1) 127.5 ✓
H10 1 2 3 0,3,0 0(1) 3.4 ✓
H11 1 2 2 2,0,0 0(1) 15.6 ✓
H12 1 1 2 0,2,0 0(1) 5.3 ✓
H13 1 2 2 1,1,0 0(1) 2.7 ✓
H14 1 2 4 1,3,0 1(2) 4.6 ✓
H15 1 1 1 0,1,0 0(1) 1.9 ✓
H16 1 3 4 0,1,3 0(1) 3.5 ✓
H17 1 2 3 1,2,0 1(3) 2.9 ✓
H18 1 2 4 2,1,1 2(2) 3.1 ✓
H19 1 2 5 1,2,2 0(1) 8.8 ✓
H20 1 5 3 2,1,0 1(2) 102.6 ✓
H21 1 2 2 1,1,0 1(2) 5.1 ✓
H22 1 3 6 2,4,0 0(1) 3.5 ✓
H23 1 1 1 0,1,0 0(1) 1.7 ✓
H24 1 2 2 0,2,0 0(1) 245.0 ✓
H25 1 2 4 1,3,0 0(1) 10.0 ✓
H26 1 2 4 1,3,0 0(1) 42.8 ✓
H27 1 1 1 0,1,0 0(1) 43.5 ✓
H28 1 2 3 0,3,0 0(1) 3.0 ✓
H29 1 4 5 2,3,0 0(1) 12.3 ✓
H30 1 2 2 2,0,0 0(1) 15.7 ✓
H31 2 3 6 0,6,0 0(1) 63.1 ✓
H32∗ 1 2 3 1,2,0 0(1) 2.9 ✓
H33 1 2 3 1,2,0 0(1) 41.5 ✓
H34 1 5 16 5,1,10 3(2) 20.4 ✓
H35 1 2 5 1,2,2 0(1) 2.8 ✓
H36 1 4 8 2,6,0 0(1) 64.2 ✓
H37 1 2 4 1,1,2 0(1) 3.7 ✓
H38 1 2 3 1,2,0 0(1) 2.8 ✓
H39 1 2 2 0,2,0 0(1) 17.7 ✓
H40 1 2 4 1,3,0 0(1) 8.1 ✓
H41 1 4 11 2,2,7 1(2) 6.5 ✓
H42 1 3 5 2,3,0 1(2) 8.9 ◦
H43 1 3 2 0,2,0 0(1) 4.2 ✓
H44 1 3 6 0,3,3 0(1) 4.3 ✓
H45 1 2 4 1,3,0 0(1) 53.4 ✓
H46 1 1 2 0,2,0 0(1) 2.7 ✓

Results

Table 4 shows the results. Column Correct shows whether
SymInfer’s generated invariants match or imply the anno-
tated assertions.

For 45/46 programs, SymInfer discovered invariants are
sufficiently strong to show the assertions. In most of these
cases, we obtained correct and stronger invariants than the
given assertions. For example, for H23, SymInfer inferred
the invariants i = n, n2 − n − 2s = 0, and −i ≤ n, which
imply the postcondition s ≥ 0. For H29, we obtained the
invariants b+ 1 = c, a+ 1 = d, a+ b ≤ 2, and 2 ≤ a, which
imply the given postcondition a+ c = b+ d.

On one hand, this is expected because these assertions
just involve linear properties and SymInfer has been shown
to work with programs with much harder invariants. On
the other hand, SymInfer was able to find undocumented
nonlinear invariants, whose combinations with other invari-

16

TABLE 5: Symbolic states at different depths. check: check-
ing candidate invariants (invalid (SAT), valid (UNSAT),
unknown (?)) and max: optaining the upper bound values
of terms (found (SAT), unknown (?)).

solver
Prog T(s) check S/U(?) max S(?)

Bresenham 64.5 242,192 170
CohenCu 1.1 228,230 (1) 182
CohenDiv 15.8 572,1771 (10) 1893
Dijkstra 1.0 194,140 (21) 117
DivBin 32.9 385,804 788
Egcd 67.6 1053,3102 2705
Egcd2 38.5 176,511 (1) 123
Egcd3 38.7 192,368 (5) 56
Fermat1 44.1 567,1153 (59) 629 (75)
Fermat2 48.3 200,425 (23) 213 (27)
Freire1 1.3 48,55 45
Freire2 0.9 0,968 0
Geo1 0.9 85,210 187 (2)
Geo2 0.9 85,201 184 (3)
Geo3 0.9 192,157 (1) 150
Hard 39.5 701,1253 (3) 1436
Knuth 36.3 1053,2922 (375) 1218 (135)
Lcm1 44.2 1050,2326 (2) 2410
Lcm2 73.3 330,788 852
MannaDiv 4.1 192,514 (20) 354
Prod4br 31.0 377,540 (5) 598
ProdBin 35.4 196,398 (5) 399 (1)
Ps2 1.0 35,131 110
Ps3 1.0 35,120 110
Ps4 1.0 35,120 110
Ps5 1.0 35,120 110
Ps6 1.0 35,120 110
Sqrt1 0.9 77,307 285

ants allow Z3 to establish assertions under forms that are
not supported by SymInfer. For example, H08 contains a
postcondition x < 4 ∨ y > 2, which has a disjunctive form
of strict inequalities. SymInfer did not produce this invari-
ant, but instead produced a correct and stronger relation
x ≤ y, which implies this condition. Nonlinear invariants
also allow us to check the assertions involving conditional
information such as if(c) assert (p); where the prop-
erty p only holds when the condition c holds. For example,
for H18, we obtained the nonlinear relations j2 − 100j = 0
and fj = 100f , which imply j = 0 ∨ j = 100 and thus the
annotated conditional assertion f ̸= 0 ⇒ j = 100.

We were not able to generate sufficiently strong invari-
ants to establish the assertion a ≡ 1 mod 2 in H42 because
this property cannot be expressed using SymInfer’s sup-
ported invariants or combination with nonlinear invariants.
Note that for H32, the path condition returned by SPF has
a strange form (many nested parentheses) that crashes the
Python AST parser, and thus we manually remove some
parentheses from this condition.

RQ4: SymInfer was able to generate invariants that to-
gether establish the assertions in 45/46 HOLA programs.
In many cases, SymInfer inferred correct and stronger in-
variants that prove asserted properties that are expressed
in a form that is not directly supported by SymInfer (e.g.,
strict inequalities).

5.5 RQ5: Using Symbolic States

A main novelty of SymInfer is that it exploits the symbolic
states computed by symbolic execution to improve invariant
inference. Table 5 reports the uses of symbolic states in
SymInfer from the NLA runs shown in Table 1. Column
T(s) shows the total time of executing symbolic execution
over multiple depths to obtain symbolic states. The next two
columns show the numbers of calls to Z3 to check invariants
(check) and compute the upperbounds of terms (max).
Column check reports the number of times Z3 disproves
(S) or proves (U) candidate invariants, or returns unknowns
(?). Column max reports the number of times Z3 returns
upper bound values (S) or unknown (?) (Z3’s optimization
technique returns ∞ for terms having no bounds).

Results

From these results, we see that SymInfer invokes Z3 many
times. This is due to two factors: (i) SymInfer produces
many octagonal and max/min-plus candidate invariants
(e.g., every pair of terms produces eight candidate octag-
onal inequalities), and (ii) we analyze each candidate using
symbolic states obtained at multiple depths as described in
S3.2 (i.e., after proving a candidate using symbolic states at
depth k, we check it again using symbolic states at depth
k + 1 and only stop when the candidate is either disproved
or remains unchanged for 3 consecutive depths).

We also see that Z3 returns more unknowns when com-
puting upper bounds than checking candidate invariants
(though for knuth the percentages of unknowns are ap-
proximately the same, 8% for checking and 10% for upper
bound finding). This might be because Z3 is more optimized
for finding satisfiability assignments than optimal assign-
ments (especially for complex max/min-plus terms).

Note that while being used frequently, constraint solving
tasks do not take up too much time as shown in Table 1. This
is because Z3 is generally efficient for numerical reasoning,
and SymInfer exploits parallelism and performs these tasks
simultaneously.

Figure 12 shows the effect of varying symbolic depth in
SymInfer from the above NLA runs. For the graph check
on the left, the y-axis lists the number of the invariants
remaining after being analyzed using the symbolic states at
the depths given in the x-axis. The invariants shown at
depth “zero” are newly-generated invariants that have not
been analyzed at any depth. SymInfer analyzes an invariant
starting at depth 7 (default) and increments the depth until
it either disproves that invariant or makes no progress in 3
consecutive depths (S3.2.1).

These results show that for each program we generate a
large number of invariants (i.e., depth 0) and disprove (and
remove) many of them at the default depth 7. Additional
depths help remove a modest number of additional invalid
results. Moreover, most programs do not require depths
beyond 7 (egcd is an exception that requires up to depth
24 to stabilize its results).

For the graph max on the right, the invariants at depth
“zero” represent newly-generated terms that we need to
find upper bounds for and at depth k are the number of
remaining terms after obtaining the upper bound values
using symbolic states at depth k. As described in S3.2.2

17

0 5 10 15 20 25

101

102

103

depth

#
ke

pt
in

vs
(c

he
ck

)

Bresenham CohenCu CohenDiv Dijkstra DivBin Egcd Egcd2 Egcd3 Fermat1
Fermat2 Freire1 Geo1 Geo2 Geo3 Hard Knuth Lcm1 Lcm2

MannaDiv Prod4br ProdBin Ps2 Ps3 Ps4 Ps5 Ps6 Sqrt1

0 5 10 15 20 25

101.5

102

102.5

depth

#
ke

pt
in

vs
(m

ax
)

Fig. 12: Candidate invariants removed over incremental symbolic depths. Depth 0 indicates purely dynamic, i.e., results
have not been checked with symbolic states at any depth. Depth 7 is the default and first depth that we check invariants.

SymInfer drops a candidate term if we found that it has
no upper bound or is larger than a parameterized threshold
value (by default set to 20). Similar to check, SymInfer in-
creases the symbolic depths to find upper bounds for a term
until the term is dropped or its value remains unchanged for
3 consecutive depths. Note that this graph does not show
programs that have no changes (e.g., they start with n terms
and never drop any of them).

Similarly to the check graph, we see that with additional
depth inference converges quickly for most programs; the
outlier egcd uses up to depth 24. However, different than
the check graph, the upper bounds are relatively stable and
do not change for most programs (those that are not shown).

RQ5: This experiment shows the effectiveness of using
depth-adaptive symbolic execution. First, symbolic states
are important and effective in detecting spurious invari-
ants, even at the shallow depth of 7. Second, additional
depths further help remove invalid results in more diffi-
cult programs. Third, SymInfer automatically increments
depth based on the structure of the program and the
state of the invariant inference algorithm, and thus can
accommodate programs requiring a range of symbolic
depths.

5.6 RQ6: Comparing Invariant Inference Approaches

SymInfer’s Performance on Java and C programs:
While the previous experiments report SymInfer’s results
on Java programs, SymInfer also supports C programs.
SymInfer automatically invokes the CIVL symbolic execu-
tion frontend tool on C programs to obtain symbolic states
and applies the same backend algorithms for invariant
inference and checking.

SymInfer’s results are similar for C or Java programs.
By default, CIVL appears to run faster than SPF on more

TABLE 6: Comparing SymInfer to other tools. Note that G-
CLN comes with 27 NLA programs.

NLA COMPLE DISJ HOLA

SymInfer 28/28 18/19 15/15 45/46
NumInv 26/28 18/19 0/15 45/46
G-CLN (w/cust.) 26/27 - - -
G-CLN (w/default) 5/27 - - -

PIE - - - 38/46
GSPACER - - - 41/46
Eldarica - - - 46/46

complex programs and slower than SPF on easier ones. For
example, for Lcm2 CIVL only took 27.3s while SPF took
73.3s, and for Ps2--6 CIVL took 3 seconds while SPF only
took a second. Thus, for complex programs whose runtimes
are dominated by symbolic execution (e.g., as shown in
Figure 12), SymInfer runs faster on the C versions. For the
mentioned Lcm2 program, the analysis of the took 48.5s
for the C version and 96.8s for the Java version, but both
analyses yield the exact 9 resulting invariants.

Thus, while different symbolic engine frontends produce
different symbolic states and runtimes, the resulting invari-
ant qualities are similar, showing the generality of using
symbolic states. The modular design of SymInfer also makes
it easy to add new front ends (e.g., to support another
language or symbolic execution engine, we just override
a few functions in SymInfer to invoke the new symbolic
execution tool and parse its results).

SymInfer Compared to Other Invariant Ap-
proaches: We compare SymInfer to two other invariant
generation tools NumInv and G-CLN, the verification tool
PIE, and the CHC solvers Eldarica and GSPACER. Table 6
summarizes the results on the benchmarks used in our
evaluation (- indicates that we were not able to run the tool
on this benchmark as discussed below).

18

NumInv: Our previous invariant work NumInv [20]
also relies on DIG’s algorithms to infer numerical invariants,
but calls the KLEE symbolic execution tool [30] as a black-
box to check invariants. NumInv works with C programs
and supports equalities of the form in Eq 1 and octagonal
inequalities of the form in Eq 2. Thus, as shown in Table 6,
NumInv achieved similar results as SymInfer for the NLA,
COMPLE(XITY), and HOLA programs, whose correctness
only rely on nonlinear equalities and linear inequalities.
Note that SymInfer was able to show the correctness of
2 more NLA programs than NumInv (28 vs. 26) because
SymInfer uses a better equation solver than the one used
in NumInv, which timed out when solving large equations
appeared in the two programs Edgcd2 and Egcd3.

NumInv does not support min and max invariants. Thus,
while it was able to generate similar equality and inequality
invariants as SymInfer for the DISJ programs (e.g., nonlinear
equations describing the permutation property of sorting
algorithms shown in S5.3), it cannot generate any of the
required max/min inequalities to capture the semantics of
these programs (0/15 in Table 6). For example, NumInv
cannot discover the min-plus invariants capturing the cor-
rectness property of strncpy and the max/min relations
showing that the first and the last output elements represent
the smallest and largest elements of the inputs for the
oddevenN sorting programs.

It is difficult to directly compare the efficiency of SymIn-
fer and NumInv. On one hand, using symbolic states al-
lows SymInfer to reuse the results and directly compute
inequalities as described in S5.5. On the other hand, the
LLVM-based KLEE symbolic engine used in NumInv runs
much faster than the Java SPF tool used in SymInfer. For
example, for Divbin, SymInfer took 32.9s just to run SPF to
obtain symbolic states but took 47.3s in total (thus only 14.4s
for equality and inequality invariants (including max/min
relations that NumInv does not consider) inference due to
the use of symbolic states). For this program, NumInv took
50.51s in total, but it repeatedly invoked KLEE as a black
box to check invariants. The algorithmic advantage of using
symbolic states allows SymInfer to run faster, despite using
a slower symbolic execution tool – SymInfer using KLEE to
generate symbolic states would run substantially faster.

G-CLN: The recent tool G-CLN [21] uses a gated con-
tinuous neural network to learn candidate invariants from
program traces and relies on user-supplied specifications
(e.g., postconditions) to check the invariants. G-CLN focuses
on nonlinear invariants (and also was evaluated on the NLA
benchmark). The experimental data of G-CLN consists of
pre-supplied concrete program traces for 27 NLA programs
(it does not have Bresenham) and Z3 formulae representing
the semantics and specifications (e.g., loop invariants or
post-conditions) for each program.

We ran the provided runscript, which invokes G-CLN
to learn invariants from given traces and checks candidate
invariants with provided specifications. We confirmed that
the generated invariants match or imply the correctness of
26/27 programs6 as shown in Table 6. The runtime7 of G-

6. For knuth, G-CLN only infers linear equalities a = d and t = 0.
7. The G-CLN paper runs its experiments on a GPU, which our

machine does not have, and thus we only run G-CLN on CPU.

CLN ranges from 8.9s for fermat2 to 78.7s for lcm1 (with
median around 26.5s).

We found a couple of limitations in the implementa-
tion of G-CLN. First, the tool requires user-supplied loop
invariants and post-conditions to check its results. This
guarantees sound results, but needs the user to provide this
information (in most programs, the given specifications are
either the exact documented invariants or something simi-
larly informative)Second, G-CLN relies on the given traces
and does not create new inputs or traces. G-CLN is very
sensitive to both of these factors. We reran it eliminating
the user-supplied specifications and using 90% of the traces
and found that G-CLN only obtained sufficiently strong
invariants for 20/27 programs. In addition to knuth, G-
CLN failed 5 new programs: egcd2, freire2, lcm1, lcm2,
and prod4br. For example, G-CLN was not able to infer the
documented invariants qx + sy = b, px + ry = a in egcd2
and 4r3 − 6r2 + 3r + 4x − 4a = 1 in freire2. Note that
these issues can be mitigated by using a CEGIR approach
like the one used in SymInfer, e.g., using symbolic states to
check invariants and generate counterexample inputs and
traces to improve inferred results.

Moreover, while learning invariants using gated
neural networks can be effective, we found that
G-CLN requires many specific settings from the
users for each program. For example, the parameter
limit_poly_terms_to_unique_vars is only used in
geo3, and drop_high_order_consts is only used in
prod4br. The dropout parameter is configured differently
for different programs: for fermat1, fermat2, and
ps2–ps6 it is 0; for mannadiv is 0.1; for freire2, and
cohencu it is 0.2; for sqrt1 it is 0.5; and for the rest
it is 0.3. The specifics of how inference is performed are
explicitly controlled by configuration parameters. For
some programs inequalities are disabled (e.g., egcd2,
egcd3, knuth, lcm1 have ineq=-1), while some use
different inequality inference methods (e.g., cohencu,
cohendiv/2, divbin/2, hard/2, mannadiv, ps2–ps6,
sqrt1 use ieq=1 and others use ieq=0). Note here
that program/2 means the second loop of cohendiv)
(thus these parameter settings are not for each program,
but also for each program location in some cases).
Moreover, for 12 programs, the runscript consists of
degree information for individual variables to control
the generation of terms. For example, prod4br has
max_deg=3,var_deg = {q : 3, p : 3, a : 0, b : 0, x : 1, y : 1}
to specify that terms such as xq and pq are not considered
because their degrees exceed 3.

In short, there are many parameters in G-CLN, and their
uses and values depend on different programs. When we
run without these customizations, G-CLN fails to discover
the expected invariants and in many cases produced run-
time errors. For example, with just the default settings (e.g.,
max_deg=2), G-CLN obtained sufficiently strong invariants
for only 5/27 programs and also gave runtime errors for
6 programs. Surprisingly, when using max_deg=4 (which
technically would help generate more terms and thus in-
variants), G-CLN produced runtime errors for 5 programs
and was not able to find sufficiently strong invariants for
any programs (e.g., even missing linear equalities such as
z = 6n+ 6 in cohencu).

19

We were not able to run G-CLN on new programs
because we do not know what parameters, settings, traces,
and user-supplied specifications should be provided. Given
that G-CLN requires extensive customization even on its
own benchmark programs, we believe that it is difficult
to make the tool work with new programs. Note that G-
CLN does not support max/min invariants so it will likely
fail to find those invariants, which are required in the DISJ
benchmark programs.

PIE: PIE [18] uses a CEGIR and decision learning ap-
proach to infer invariants to prove given specifications, e.g.,
assertions or pre and postconditions. Thus, PIE aims to find
sufficiently strong invariants to prove given specifications.

We were not able to directly run PIE because the original
PIE tool that works with C is no longer available and the
current version instead requires program models, which
we find difficult to obtain from high-level languages such
as C or Java. Nonetheless, in the NumInv work [20], we
were able to run the original PIE and found that it failed to
prove the annotated properties in 8 HOLA programs (e.g.,
it generates invariants that are too weak to establish them).
For example, for H37, PIE failed to prove the postcondition
if (n > 0) assert(0 <= m && m < n) which involves
both conditional assertions and strict inequalities. For this
program, SymInfer inferred 2 nonlinear equations and 3
inequalities8, which are correct and together show the asser-
tion. PIE also failed to find any of the high-degree nonlinear
invariants found by SymInfer (e.g., in NLA), even when we
ask it to find invariants to prove those nonlinear invariants.

CHC Solvers: Several verification works encode ver-
ification tasks (program semantics and desired property) as
Horn clauses, and then use a CHC solver to find invariants
to prove the given property. Thus, similar to PIE, these
works generate invariants to prove specific goals.

We evaluated two popular CHC solvers Eldarica [51]
and GSPACER [52] to prove the properties in the HOLA
programs. These CHC solvers work on formulae encoded
in the SMT-LIB format, and we directly use the SMT-LIB
files provided for the 46 HOLA programs available at [53].

Eldarica solved 46/46 HOLA programs, most of them
in under 3 seconds (except H34 took 11 seconds, and H32
took 18 minutes). GSPACER solved 41/46 programs, most of
them in under 1 second (except H18 took 3.8 minutes). Thus,
these tools are comparable to SymInfer and better than PIE.

However, just like PIE, these techniques focus on gen-
erating invariants to verify given goals (assertions or post-
conditions in the HOLA programs). Specifically, they can-
not infer invariants in the absence of a given property
whereas this is precisely what SymInfer is designed to do.
For example, when we change the postcondition of H19
to True, Eldarica and GSPACER simply generate True
as the invariants. These solvers also appear sensitive to
the given conditions. For H30, Eldarica was able to prove
the annotated postcondition c ≥ 0, but fails to terminate
when given something else, e.g., c = 100 or c = 499500.
For H30, GSPACER got timeouts in all cases, even with
the annotated postcondition. Eldarica and GSPACER also
did not terminate after 30 minutes when we attempt to

8. m2 = nx−m− x,mn = x2 − x,−m ≤ x, x ≤ m+ 1, n ≤ x

prove incorrect properties (e.g., the incorrect postcondition
y ̸= 100 in H19).

RQ6: SymInfer was able to infer more numerical invari-
ants than NumInv, G-CLN, PIE, Eldarica, and GSPACER.
The ability to exploit and reuse symbolic states allows
SymInfer to strike a balance between expressive power
and computational cost, while guaranteeing correctness,
to establish state-of-the-art performance in numerical in-
variant inference.

5.7 Threats to Validity

The chief threat to external validity lies in the general-
izability of the benchmarks used in our evaluation. Our
evaluation uses 4 different benchmarks developed by other
research groups and we use all of each of the benchmarks–
we do not select subsets of benchmarks. The benchmarks
are admittedly small programs and they clearly do not cap-
ture many aspects of complexity present in large software
projects. However, they do include complex computational
kernels that are characteristic of realistic programs, e.g., [35].
Moreover, invariant inference techniques can be applied
modularly to individual functions, so the complexity of
the enclosing software system is less relevant to assessing
the cost-effectiveness of such techniques. Finally, we aim
to promote comparative evaluation and reproducibility of
our results which is achieved by using standard benchmarks
and releasing our implementation9.

SymInfer makes use of multiple underlying analysis
tools, e.g., SPF, CIVL, SAGE, Z3, and DIG. These are widely
used and robust systems which provides a degree of confi-
dence that they are correct. That said, our primary means of
addressing the internal validity of our findings was to per-
form manual and automated checking of all experimental
results. For example, we ran independent checks, using an
SMT solver to discharge validity claims for implication or
equality formulae, to confirm that invariants computed by
SymInfer were valid invariants. We then manually checked
all of those results.

6 RELATED WORK

Daikon-based Dynamic Analyses: Ernst et al.’s pioneer-
ing work on Daikon [12] demonstrated that specifications
of program behavior can be inferred by observing concrete
program states. Daikon used a template-based approach to
define candidate invariants and, to mitigate cost, a rather
modest set of templates is used that do not capture nonlin-
ear or disjunctive properties. Many researchers have built
on the foundation of Daikon by adopting its template-
based approach. For example, iDiscovery [17] uses Daikon
templates for inference and then attempts to verify or refute
candidate invariants by running the symbolic execution tool
SPF. However, neither Daikon nor iDiscovery is capable of
inferring the expressive nonlinear or disjunctive invariants
that SymInfer can infer for the programs in Figures 1 and 2.

9. SymInfer and all experimental data are available at https://github.
com/unsat/dig/.

https://github.com/unsat/dig/
https://github.com/unsat/dig/

20

DIG: The DIG [27], [28], [29] dynamic invariant
generation approach focuses on numerical invariants and
supports more expressive families of templates, such as
nonlinear equations and octagonal inequalities, and there-
fore can compute more expressive numerical relations than
those supported by Daikon. However, DIG’s results are only
correct with respect to given program execution traces and
might not generalize (i.e., they can be spurious).

In [28], DIG is extended with max/min invariants to
infer disjunctive information and integrated with a theorem
prover using k-induction to prove valid invariants and
remove spurious ones. This work shows that many loop
invariants, especially those in complex nonlinear programs,
cannot be proved using standard induction (i.e., when
k = 1) and requires k-induction where k > 0. However, the
requirement that invariants being formally proved using k-
induction makes this work very expensive, e.g., the sorting
program oddeven5 shown in S5 takes over half an hour
to be proved. Due to this inefficiency, after disproving an
invariant, this work does not use counterexample inputs
to refine that invariant or to find new ones. NumInv [20]
combines DIG’s algorithms to infer nonlinear equations
and octagonal invariants and the symbolic execution tool
KLEE [30] to check and generate counterexamples to refine
those invariants. We compared NumInv to SymInfer in S5.6.

Static Analyses and Goal-Oriented Invariant Generation:
Static analyses based on the classical abstract interpretation
framework [54], [55], [56] generate sound invariants under
abstract domains (e.g., interval, octagonal, and polyhedra
domains) to overapproximate program behaviors to prove
the absence of errors [22]. Trade-offs occur between the
efficiency and expressiveness of the considered domains.
The work in [57] uses the domain of nonlinear polynomial
equalities and Gröbner basis to generate equality invariants
of the form in Eq 1. This approach is limited to programs
with assignments and loop guards expressible as polyno-
mial equalities and requires user-supplied bounds on the
degrees of the polynomials to ensure termination. The work
in [43] does not require upperbounds on polynomial degrees
but is restricted to non-nested loops. SymInfer also gen-
erates invariants under various domains, but it integrates
learning and checking candidate invariants using symbolic
states, and does not have limitations on program constructs
or require a priori degree knowledge.

Many static analyses generate invariants to prove spec-
ifications, e.g., assertions and pre and postconditions for a
function or program, and thus can exploit the given specifi-
cations to guide the invariant inference process. PIE [18] and
ICE [19] use CEGIR approach to learn invariants to prove
given assertions. To prove a property, PIE iteratively infers
and refines invariants by constructing necessary predicates
to separate (good) states satisfying the property and (bad)
states violating that property. ICE uses a decision learning
algorithm to guess inductive invariants over predicates sep-
arating good and bad states and generates “implication”
counterexamples to learn more precise invariants. For ef-
ficiency, they focus on octagonal predicates and only search
for invariants that are boolean combinations of octagonal
relations (thus do not infer nonlinear and disjunctive invari-
ants such as those shown in Figures 1 and 2). The data-
driven approach G-CLN [21] uses gated continuous neural

networks to learn numerical loop invariants from program
execution traces and uses traditional Hoare logic and Z3 to
check inductive loop invariants. We compared PIE and G-
CLN to SymInfer in S5.6, and found that without sufficiently
strong goals (e.g., given postconditions), these approaches
(PIE, ICE, G-CLN) cannot generate strong invariants like
those discovered by SymInfer. G-CLN also relies on substan-
tial problem-specific customizations to generate invariants.

CHC Solvers: Several verification works use con-
strained Horn clauses (CHC) to synthesize invariants to
prove safety properties [58], [59], [60], [61], [62]. These works
encode verification conditions, which consist of program se-
mantics (e.g., initial states, infeasible post states, state transi-
tions) and predicates with unknowns representing inductive
and safe invariants (satisfying the initial states but avoiding
the bad states) as Horn clauses, and then use a CHC solver
to find satisfying assignments for the unknowns to generate
the invariants. Thus, the problem of generating program
invariants to prove programs is reduced to the problem of
CHC satisfiability solving, which can be efficiently solved
due to advancements in CHC solving technologies.

Examples of CHC solvers include Eldarica [51], which
checks the satisfiability of Horn clauses over Presburger
arithmetic by combining Predicate Abstraction [63] and
CEGAR [64], and the solver works in [65], [66], which extend
Eldarica to support formulae over the theories of integers,
algebraic data-type, and bit vectors. SPACER [67], a popular
SMT-based model checking Horn solver, is used in Z3 and
CHC-based program analysis tools such as SeaHorn [58],
and has been built upon by other CHC solving techniques
such as GSPACER [52]. FreqHorn [59] learns candidate
invariants by analyzing samplings representing frequency
distributions of features found in the program (e.g, formulae
involving variables, constants, arithmetic, and comparison
operators in code). Other works, e.g., [62], [68], extend
FreqHorn to use execution traces in addition to program
features to learn invariants. In particular, [62] uses equation
solving to infer candidate invariants and generates coun-
terexamples to check if the invariants can be represented
using purely polynomial equations or they would need
conditional invariants.

Similar to the goal-oriented invariant generation tech-
niques, CHC solvers synthesize invariants to solve verifica-
tion conditions encoding specific program properties. Thus,
the generated invariants largely depend on the verification
goal. As a concrete example, for ps2, when given the doc-
umented postcondition y2 − 2x + y = 0, FreqHorn quickly
(within a second) found 3 invariants, y2 − 2x + y = 0,
y2−2x+y ≥ 0, and y ≥ 0, to prove the given postcondition.
When given a less precise post condition y − x ≤ 0,
FreqHorn finds 3 invariants: y ≥ 0, x − y ≥ 0, and
x−2y ≥ −1 (and no equality invariants). Interestingly, when
given something that is not an invariant, e.g., the wrong
postcondition y2 − 2x = 0, FreqHorn does not appear to
terminate (we manually kill its process after 15 minutes).
For a more complex example such as ps6, even when given
the documented postconditions, FreqHorn cannot generate
any invariants to prove the postconditions and also does not
appear to terminate. These tools (FreqHorn and the CHC
solvers Eldarica and GSPACER evaluated in S5.6) do not
generate invariants if the goal is not specified.

21

7 CONCLUSION

We introduce the concept of symbolic states as an inter-
mediate representation that can be leveraged to support
the automated generation of useful and complex invariants
for software systems. We propose a CEGIR approach that
exploits symbolic states to generate candidate invariants
and also to check or refute, and iteratively refine, those
candidates. A key to the success of these methods is the
ability to directly manipulate and reuse rich encodings of
large sets of concrete program states.

We present SymInfer which implements CEGIR using
symbolic states to efficiently discover rich invariants over
numerical variables at arbitrary program locations. Eval-
uation on a set of 108 programs comprising 4 different
benchmarks demonstrates that SymInfer is cost-effective in
discovering useful invariants to describe precise program
semantics, characterize the runtime complexity of programs,
and check nontrivial correctness properties. This offers com-
pelling evidence of the benefits of symbolic states in invari-
ant inference.

Moreover, continuing advances in symbolic reasoning
systems suggest that symbolic state representations are
positioned to become increasingly attractive for invariant
inference. For example, generating symbolic states can be
sped up for invariant inference by combining directed sym-
bolic execution [69] to target locations of interest, memoized
symbolic execution [70] to store symbolic execution trees
for future extension, and parallel symbolic execution [71] to
accelerate the incremental generation of the tree. Moreover,
we can apply techniques for manipulating symbolic states
in symbolic execution [30], [72] to significantly reduce the
complexity of the verification conditions sent to the solver.
In future work, we plan to explore how to extend and adapt
such optimizations from the general problem of symbolic
execution to the problem of invariant inference.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for helpful comments.
This material is based in part upon work supported by the
UNL Faculty Award, by the National Science Foundation
under grant numbers 1948536, 1617916, and 1901769, by the
U.S. Army Research Office under grant number W911NF-
19-1-0054, and by the DARPA ARCOS program under con-
tract FA8750-20-C-0507.

REFERENCES

[1] C. A. R. Hoare, “An axiomatic basis for computer programming,”
Communications of the ACM, vol. 12, no. 10, pp. 576–580, 1969.

[2] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduc-
tion to Algorithms. MIT press, 2009.

[3] C. A. Hoare, “Proof of a program: FIND,” Communications of the
ACM, vol. 14, no. 1, pp. 39–45, 1971.

[4] J. H. Perkins, S. Kim, S. Larsen, S. Amarasinghe, J. Bachrach,
M. Carbin, C. Pacheco, F. Sherwood, S. Sidiroglou, G. Sullivan
et al., “Automatically patching errors in deployed software,” in
Symposium on Operating systems principles, 2009, pp. 87–102.

[5] R. Bodik, R. Gupta, and V. Sarkar, “Abcd: eliminating array
bounds checks on demand,” in Programming language design and
implementation, 2000, pp. 321–333.

[6] P. Cashin, C. Martinez, W. Weimer, and S. Forrest, “Understand-
ing automatically-generated patches through symbolic invariant
differences,” in International Conference on Automated Software En-
gineering (ASE). IEEE, 2019, pp. 411–414.

[7] S. Srivastava, S. Gulwani, and J. S. Foster, “Template-based pro-
gram verification and program synthesis,” International Journal on
Software Tools for Technology Transfer, vol. 15, no. 5, pp. 497–518,
2013.

[8] “Coverity Scanner,” https://scan.coverity.com, accessed on Au-
gust 20, 2021.

[9] “The Infer Static Analyzer,” http://fbinfer.com/, accessed on Au-
gust 20, 2021.

[10] M. Das, S. Lerner, and M. Seigle, “Esp: Path-sensitive program
verification in polynomial time,” in Programming Language Design
and Implementation, 2002, pp. 57–68.

[11] M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant, C. Pacheco, M. S.
Tschantz, and C. Xiao, “The daikon system for dynamic detection
of likely invariants,” Science of computer programming, vol. 69, no.
1-3, pp. 35–45, 2007.

[12] M. D. Ernst, “Dynamically detecting likely program invariants,”
Ph.D. dissertation, University of Washington, 2000.

[13] C. Csallner, N. Tillmann, and Y. Smaragdakis, “Dysy,” in Interna-
tional Conference on Software Engineering. IEEE, 2008, pp. 281–290.

[14] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin, “Dynam-
ically discovering likely program invariants to support program
evolution,” Transactions on Software Engineering, vol. 27, no. 2, pp.
99–123, 2001.

[15] T.-D. B. Le, D. Lo, C. Le Goues, and L. Grunske, “A learning-to-
rank based fault localization approach using likely invariants,” in
International Symposium on Software Testing and Analysis, 2016, pp.
177–188.

[16] T. Le, T. Antonopoulos, P. Fathololumi, E. Koskinen, and
T. Nguyen, “Dynamite: dynamic termination and non-termination
proofs,” Proceedings of the ACM on Programming Languages, vol. 4,
no. OOPSLA, pp. 1–30, 2020.

[17] L. Zhang, G. Yang, N. Rungta, S. Person, and S. Khurshid,
“Feedback-driven dynamic invariant discovery,” in International
Symposium on Software Testing and Analysis. ACM, 2014, pp. 362–
372.

[18] S. Padhi, R. Sharma, and T. Millstein, “Data-driven Precondition
Inference with Learned Features,” in Programming Language Design
and Implementation. ACM, 2016, pp. 42–56.

[19] P. Garg, D. Neider, P. Madhusudan, and D. Roth, “Learning
invariants using decision trees and implication counterexamples,”
ACM Sigplan Notices, vol. 51, no. 1, pp. 499–512, 2016.

[20] T. Nguyen, T. Antonopoulos, A. Ruef, and M. Hicks,
“Counterexample-guided approach to finding numerical invari-
ants,” in Foundations of Software Engineering, 2017, pp. 605–615.

[21] J. Yao, G. Ryan, J. Wong, S. Jana, and R. Gu, “Learning nonlinear
loop invariants with gated continuous logic networks,” in Pro-
gramming Language Design and Implementation, A. F. Donaldson and
E. Torlak, Eds. ACM, 2020, pp. 106–120.

[22] P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monni-
aux, and X. Rival, “The Astrée analyzer,” in European Symposium
on Programming. Springer, 2005, pp. 21–30.

[23] D. Maclagan and B. Sturmfels, Introduction to tropical geometry.
American Mathematical Soc., 2015, vol. 161.

[24] X. Allamigeon, S. Gaubert, and É. Goubault, “Inferring min and
max invariants using max-plus polyhedra,” in Static Analysis
Symposium. Springer, 2008, pp. 189–204.

[25] S. Anand, C. S. Păsăreanu, and W. Visser, “JPF–SE: A symbolic
execution extension to Java Pathfinder,” in International Conference
on Tools and Algorithms for the Construction and Analysis of Systems.
Springer, 2007, pp. 134–138.

[26] S. F. Siegel, M. Zheng, Z. Luo, T. K. Zirkel, A. V. Marianiello,
J. G. Edenhofner, M. B. Dwyer, and M. S. Rogers, “Civl: the
concurrency intermediate verification language,” in International
Conference for High Performance Computing, Networking, Storage and
Analysis. IEEE, 2015, pp. 1–12.

[27] T. Nguyen, D. Kapur, W. Weimer, and S. Forrest, “Using dynamic
analysis to discover polynomial and array invariants,” in Interna-
tional Conference on Software Engineering. IEEE, 2012, pp. 683–693.

[28] ——, “Using dynamic analysis to generate disjunctive invariants,”
in International Conference on Software Engineering. IEEE, 2014, pp.
608–619.

[29] ——, “DIG: A Dynamic Invariant Generator for Polynomial and
Array Invariants,” Transactions on Software Engineering Methodol-
ogy, vol. 23, no. 4, pp. 30:1–30:30, 2014.

[30] C. Cadar, D. Dunbar, and D. R. Engler, “KLEE: Unassisted and
automatic generation of high-coverage tests for complex systems
programs,” in OSDI. USENIX Association, 2008, pp. 209–224.

https://scan.coverity.com
http://fbinfer.com/

22

[31] T. Nguyen, M. Dwyer, and W. Visser, “Syminfer: Inferring pro-
gram invariants using symbolic states,” in Automated Software
Engineering. IEEE, 2017, pp. 804–814.

[32] V. C. Ngo, M. Dehesa-Azuara, M. Fredrikson, and J. Hoffmann,
“Verifying and synthesizing constant-resource implementations
with types,” in Symposium on Security and Privacy. IEEE, 2017,
pp. 710–728.

[33] T. Antonopoulos, P. Gazzillo, M. Hicks, E. Koskinen, T. Terauchi,
and S. Wei, “Decomposition instead of self-composition for prov-
ing the absence of timing channels,” ACM SIGPLAN Notices,
vol. 52, no. 6, pp. 362–375, 2017.

[34] T. Nguyen, D. Ishimwe, A. Malyshev, T. Antonopoulos, and Q.-S.
Phan, “Using dynamically inferred invariants to analyze program
runtime complexity,” in International Workshop on Software Security
from Design to Deployment, 2020, pp. 11–14.

[35] S. Gulwani, S. Jain, and E. Koskinen, “Control-flow refinement and
progress invariants for bound analysis,” in Programming Language
Design and Implementation, 2009, pp. 375–385.

[36] N. Bjørner, A.-D. Phan, and L. Fleckenstein, “νz-an optimizing
SMT solver,” in International Conference on Tools and Algorithms for
the Construction and Analysis of Systems. Springer, 2015, pp. 194–
199.

[37] G. Strang, Introduction to Linear Algebra. Wellesley-Cambridge
Press Wellesley, MA, 1993, vol. 3.

[38] A. Miné, “Weakly relational numerical abstract domains,” Ph.D.
dissertation, École Polytechnique, France, 2004.

[39] D. Kapur, Z. Zhang, M. Horbach, H. Zhao, Q. Lu, and T. Nguyen,
“Geometric Quantifier Elimination Heuristics for Automatically
Generating Octagonal and Max-plus Invariants,” in Automated
Reasoning and Mathematics: Essays in Memory of William W. McCune.
Springer, 2013, vol. 7788, pp. 189–228.

[40] W. A. Stein et al., “Sage Mathematics Software,” https://www.
sagemath.org, accessed on August 20, 2021.

[41] L. De Moura and N. Bjørner, “Z3: An efficient SMT solver,” in
International Conference on Tools and Algorithms for the Construction
and Analysis of Systems. Springer, 2008, pp. 337–340.

[42] D. Beyer, “Software verification with validation of results,” in
TACAS. Springer, 2017, pp. 331–349.

[43] E. Rodrı́guez-Carbonell and D. Kapur, “Generating all polyno-
mial invariants in simple loops,” Journal of Symbolic Computation,
vol. 42, no. 4, pp. 443–476, 2007.

[44] R. Sharma, S. Gupta, B. Hariharan, A. Aiken, P. Liang, and A. V.
Nori, “A data-driven approach for algebraic loop invariants,” in
European Symposium on Programming. Springer, 2013, pp. 574–592.

[45] S. Gulwani, K. K. Mehra, and T. M. Chilimbi, “SPEED: precise and
efficient static estimation of program computational complexity,”
in Principles of Programming Languages. ACM, 2009, pp. 127–139.

[46] S. Gulwani, “SPEED: Symbolic complexity bound analysis,” in
Computer Aided Verification. Springer-Verlag, 2009, pp. 51–62.

[47] D. Beyer, T. A. Henzinger, R. Jhala, and R. Majumdar, “The
Software Model Checker BLAST,” International Journal on Software
Tools for Technology Transfer, vol. 9, no. 5-6, pp. 505–525, 2007.

[48] A. Gupta and A. Rybalchenko, “Invgen: An efficient invariant gen-
erator,” in International Conference on Computer Aided Verification.
Springer, 2009, pp. 634–640.

[49] B. Jeannet, “Interproc analyzer for recursive programs with nu-
merical variables,” 2014, https://pop-art.inrialpes.fr/interproc/
interprocweb.cgi, accessed on August 20, 2021.

[50] “SyGuS: Syntax-Guided Synthesis Competition,” https://www.
sygus.org, accessed on August 20, 2021.

[51] P. Rümmer, H. Hojjat, and V. Kuncak, “Disjunctive interpolants for
horn-clause verification,” in International Conference on Computer
Aided Verification. Springer, 2013, pp. 347–363.

[52] H. G. V. Krishnan, Y. Chen, S. Shoham, and A. Gurfinkel, “Global
guidance for local generalization in model checking,” in Interna-
tional Conference on Computer Aided Verification. Springer, 2020, pp.
101–125.

[53] “HOLA programs in SMT-LIB,” https://github.com/chc-comp/
eldarica-misc/tree/master/LIA/HOLA, accessed on August 20,
2021.

[54] P. Cousot and R. Cousot, “Abstract interpretation frameworks,”
Journal of logic and computation, vol. 2, no. 4, pp. 511–547, 1992.

[55] P. Cousot, “Abstract interpretation,” ACM Computing Surveys
(CSUR), vol. 28, no. 2, pp. 324–328, 1996.

[56] A. Miné, “The octagon abstract domain,” Higher-order and symbolic
computation, vol. 19, no. 1, pp. 31–100, 2006.

[57] E. Rodrı́guez-Carbonell and D. Kapur, “Automatic generation of
polynomial loop invariants: Algebraic foundations,” in Interna-
tional symposium on Symbolic and algebraic computation, 2004, pp.
266–273.

[58] A. Gurfinkel, T. Kahsai, A. Komuravelli, and J. A. Navas, “The
seahorn verification framework,” in International Conference on
Computer Aided Verification. Springer, 2015, pp. 343–361.

[59] G. Fedyukovich, S. J. Kaufman, and R. Bodı́k, “Sampling invari-
ants from frequency distributions,” in Formal Methods in Computer
Aided Design. IEEE, 2017, pp. 100–107.

[60] G. Fedyukovich, S. Prabhu, K. Madhukar, and A. Gupta, “Solv-
ing constrained horn clauses using syntax and data,” in Formal
Methods in Computer Aided Design. IEEE, 2018, pp. 170–178.

[61] G. Fedyukovich and R. Bodı́k, “Accelerating syntax-guided invari-
ant synthesis,” in International Conference on Tools and Algorithms for
the Construction and Analysis of Systems. Springer, 2018, pp. 251–
269.

[62] S. Prabhu, K. Madhukar, and R. Venkatesh, “Efficiently learning
safety proofs from appearance as well as behaviours,” in Interna-
tional Static Analysis Symposium. Springer, 2018, pp. 326–343.

[63] S. Graf and H. Saidi, “Construction of abstract state graphs with
PVS,” in International Conference on Computer Aided Verification.
Springer, 1997, pp. 72–83.

[64] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith,
“Counterexample-guided abstraction refinement for symbolic
model checking,” Journal of the ACM (JACM), vol. 50, no. 5, pp.
752–794, 2003.

[65] H. Hojjat and P. Rümmer, “The ELDARICA horn solver,” in Formal
Methods in Computer Aided Design. IEEE, 2018, pp. 158–164.

[66] ——, “Deciding and interpolating algebraic data types by reduc-
tion,” in International Symposium on Symbolic and Numeric Algo-
rithms for Scientific Computing (SYNASC). IEEE, 2017, pp. 145–152.

[67] A. Komuravelli, A. Gurfinkel, and S. Chaki, “Smt-based model
checking for recursive programs,” Formal Methods in System De-
sign, vol. 48, no. 3, pp. 175–205, 2016.

[68] G. Fedyukovich, S. Prabhu, K. Madhukar, and A. Gupta, “Quanti-
fied invariants via syntax-guided synthesis,” in International Con-
ference on Computer Aided Verification. Springer, 2019, pp. 259–277.

[69] K.-K. Ma, K. Y. Phang, J. S. Foster, and M. Hicks, “Directed
symbolic execution,” in Static Analysis Symposium. Springer-
Verlag, 2011, pp. 95–111.

[70] G. Yang, C. S. Păsăreanu, and S. Khurshid, “Memoized symbolic
execution,” in International Symposium on Software Testing and Anal-
ysis. ACM, 2012, pp. 144–154.

[71] M. Staats and C. Pǎsǎreanu, “Parallel symbolic execution for
structural test generation,” in International Symposium on Software
Testing and Analysis. ACM, 2010, pp. 183–194.

[72] W. Visser, J. Geldenhuys, and M. B. Dwyer, “Green: Reducing,
Reusing and Recycling Constraints in Program Analysis,” in Foun-
dations of Software Engineering. ACM, 2012, pp. 58:1–58:11.

ThanhVu Nguyen is an assistant professor in
the Department of Computer Science at George
Mason University, United States. His research
interests include dynamic invariant inference,
automatic program repair, and configurable sys-
tems analysis. His work in these areas has been
recognized with several of impact and distin-
guished paper awards.

https://www.sagemath.org
https://www.sagemath.org
https://pop-art.inrialpes.fr/interproc/interprocweb.cgi
https://pop-art.inrialpes.fr/interproc/interprocweb.cgi
https://www.sygus.org
https://www.sygus.org
https://github.com/chc-comp/eldarica-misc/tree/master/LIA/HOLA
https://github.com/chc-comp/eldarica-misc/tree/master/LIA/HOLA

23

Kim Hao is a sophomore pursuing a bachelor’s
degree in Computer Science and Mathematics
from the University of Nebraska-Lincoln, United
States. He is a member of the UNSAT research
group and advised by ThanhVu Nguyen. His re-
search interests are in software analysis, testing,
and verification. He has published in top soft-
ware engineering conferences, including ICSE,
OOPSLA, and ASE.

Matthew B. Dwyer is the Robert Thomson
Distinguished Professor in the Department of
Computer Science at the University of Virginia,
United States. His research interests include
software analysis, verification and testing and
his work in these areas has been recognized
over the years with several test-of-time and dis-
tinguished paper awards. He is a Fellow of the
IEEE and of the ACM.

24

APPENDIX A
CEGIR ALGORITHM FOR INFERRING INEQUALITIES

The algorithm presented in Figure 6 exploits the capability
of modern constraint solving to find the upper bound value
for a given term directly from symbolic states. However,
when the given term or symbolic states are too complex to
directly compute the upper bounds, we can use a CEGIR, it-
erative guess and check style to compute the upper bounds.

1 Function FINDUPPERBOUND(term, minV, maxV, P , L)
2 if minV ≡ maxV then return maxV
3 else if maxV − minV ≡ 1 then
4 cexInps← check (P,L, {term ≤ minV}, {})
5 if cexInps ≡ ∅ then return minV
6 else return maxV

7 else
8 midV← ⌈maxV+minV

2
⌉

9 cexInps← check (P,L, {term ≤ midV}, {})
10 if cexInps ≡ ∅ then
11 maxV = midV

12 else
13 //disproved
14 traces← exec (P,L, cexInps)
15 minV = max (instantiate (term, traces));

16 return FINDUPPERBOUND(term, minV, maxV, P ,
L)

Fig. 13: CEGIR algorithm for finding the upper bound
value of a term.

Figure 13 presents a CEGIR approach using divide and
conquer search technique to compute a integral upper
bound k of a term t. Similar to a binary search, this al-
gorithm computes k from a given interval by repeatedly
dividing an interval into halves that could contain k. We
start with the interval [minV,maxV] where maxV = −minV;
our experience is that inequalities are most useful with
small constants, so by default we set maxV = 20. Next
we check t ≤ midV where midV = ⌈maxV+minV

2 ⌉. If this
inequality is true, then k is at most midV and thus we
reduce the search to the interval [minV,midV]. Otherwise,
we obtain counterexample concrete state values showing
that t > midV and reduce the search to [minV′,maxV], where
minV ′ is largest the trace value observed for t. Thus this
approach gradually strengthens the guess of k by repeatedly
reducing the interval containing it.

The algorithm gives a precise upper bound value when
t ranges over the integers. The algorithm stops when minV
and maxV are the same (because we no longer can reduce
the intervals) or when their difference is one (because we
cannot compute the exact midV). Currently SymInfer does
not support real-valued bounds. However, the algorithm
can be extended to handle the case when t ranges over
the reals. More specifically, we can approximate real-valued
results by using rationals or fixed-precision floating point
values. This sacrifices precision, but preserves soundness,
e.g., the invariant is x ≤ 4.123 but we obtain x ≤ 4.2, which
is also an invariant, but less precise.

Example: We demonstrate the algorithm by finding the
octagonal inequalities at location L1 of the cohendiv ex-
ample. For demonstration purpose we restrict the bound to

[−10, 10]. We first check candidate relations r ≤ 10, y ≤
10, r + y ≤ 10, r − y ≤ 10, . . . and removes the invalid
ones. The remaining relations have upper bounds less than
or equal to 10.

For each remaining inequality candidate, we iterate to
find tighter upper bounds. For example, suppose we wish
to find k such that r−y ≤ k. Since r−y ≤ 10, the algorithm
sets midV = ⌈ 10+−10

2 ⌉ = 0 and thus tries to check r−y ≤ 0.
This succeeds. However, this turns out to be weaker than
necessary. In the next iteration #2, we tighten the bound to
⌈ 0−10

2 ⌉ = −5 and checks r−y ≤ −5. This time the algorithm
finds a cex showing that r−y = −3. In iteration #3, we relax
the bound to ⌈ 0−3

2 ⌉ = −1 and cannot refute r − y ≤ −1. In
iteration #4, we strengthen the bound to ⌈−1−3

2 ⌉ = −2 and
check r−y ≤ −2, in which case it can find a cex stating that
r − y = −1. At this point the algorithm accepts the tightest
bound r − y ≤ −1 found in iteration #3. The process for
finding the lower bounds is similar as described above.

Termination: The CEGIR algorithm for finding the up-
per bound of a term terminates because each recursive call
reduces the quantity maxV − minV. This happens either at
line 11, where the maxV is reduced, or at line 15, where minV
is increased. Line 11 is guaranteed to reduce maxV, since the
else case at line 7 guarantees that maxV−minV > 1. Line 15
is guaranteed to increase minV, since the counterexample is
a witness to the fact that the bound is greater than midV
which in turn is greater than minV.

APPENDIX B
EQUATION INFERENCE AND TERMINATION

We provide the termination proof for the equalities genera-
tion algorithm shown in Figure 8 of Section 4.1.1. The main
idea is that a new counterexample decreases the dimension
of the solution space of linear equation solving and the
process terminates when the dimension reaches zero.

Suppose that we need to find the relations between n
terms x1, x2, . . . , xn using m traces t1, t2, . . . , tm such that

ti =

1
xi1

xi2

...
xin

where xij is the concrete value of xj in the i-th trace. Let

M =

t1

T

t2
T

...
tm

T

and S = Nul M be the solution set of the homogeneous
matrix equation M · c = 0. Then, each solution

c =

c0
c1
...
cn

 ∈ S

represents one possible relationship between the terms xis:

c0 + c1x1 + c2x2 + · · ·+ cnxn = 0.

25

Now let tcex be a counterexample found by Z3, i.e., tcex
T ·

c ̸= 0 for some c ∈ S. tcex cannot be a linear combination of
t1, t2, . . . , tm. Otherwise, we can write tcex = a1tb1 + · · ·+
aktbk for some constants ai, bi. Then tcex

T · c = (a1tb1

T +
· · ·+ aktbk

T) · c = a1tb1

T c+ · · ·+ aktbk

T c = 0, which is a
contradiction. Hence, the new matrix

M ′ =

t1

T

t2
T

...
tm

T

tcex
T

has one more pivot position than M . The rank of a ma-
trix equals the number of pivot positions, so rank M ′ =
rank M + 1. By the Rank theorem, rank M + dimNul M =
rank M ′ + dimNul M ′ = n + 1, hence dimNul M ′ =
dimNul M − 1.

Because 0 ≤ dimNul M ′ ≤ n + 1, we generate at most
n + 1 counterexamples. Note that when dimNul M ′ = 0,
S = Nul M ′ = {0}, we found no meaningful relations and
stop the inference algorithm.

	Introduction
	Overview
	Applications of Numerical Invariants
	SymInfer
	Concrete States
	Symbolic States
	Inferring Numerical Invariants

	Symbolic States
	Obtaining Symbolic States
	Using Symbolic States
	Symbolic States as a ``Verifier''
	Symbolic States as an ``Optimizer''
	Bootstrapping DIG with Concrete States

	Benefits of Symbolic States

	The SymInfer Approach
	Nonlinear Equalities
	Inferring Equalities

	Linear Inequalities
	Octagonal Relations
	Max- and Min-plus Relations
	Inferring Inequalities
	Nonlinear Inequalities

	Post-Processing

	Implementation and Evaluation
	RQ1: Programs With Nonlinear Invariants
	RQ2: Analyzing Computational Complexity
	RQ3: Disjunctive Invariant Results
	RQ4: Checking Assertions
	RQ5: Using Symbolic States
	RQ6: Comparing Invariant Inference Approaches
	Threats to Validity

	Related Work
	Conclusion
	References
	Biographies
	ThanhVu Nguyen
	Kim Hao
	Matthew B. Dwyer

	Appendix A: CEGIR Algorithm for Inferring Inequalities
	Appendix B: Equation inference and termination

