
Analyzing the CMake Build System
KimHao Nguyen

University of Nebraska-Lincoln, USA
ThanhVu Nguyen

George Mason University, USA
Quoc-Sang Phan

Facebook, USA

ABSTRACT
CMake is one of the most widely used build automation tools in
the industry. Facebook engineers often rely on examining large
and complex CMake build files for various program analyses tasks.
In this paper, we report on some of the unique challenges when
analyzing CMake files at Facebook.

KEYWORDS
build system, cmake, build conditions, symbolic execution

ACM Reference Format:
KimHao Nguyen, ThanhVu Nguyen, and Quoc-Sang Phan. 2022. Analyz-
ing the CMake Build System. In 44nd International Conference on Soft-
ware Engineering: Software Engineering in Practice (ICSE-SEIP ’22), May
21–29, 2022, Pittsburgh, PA, USA. ACM, New York, NY, USA, 2 pages. https:
//doi.org/10.1145/3510457.3513064

1 INTRODUCTION
CMake is a well-known build automation tool used in many large
and influential projects such as MySQL, Boost, Webkit, KDE, and
Android Studio. CMake itself is not a build system such as Make,
but instead works by generating the appropriate build scripts for
various build systems in different platforms. For example, it gen-
erates GNU Makefiles for Linux and Visual Studio project files for
Windows.

Similar to many organizations and companies such as INRIA
and Netflix, Facebook relies on CMake to build many of its internal
and public projects. While Facebook is actively developing Buck,
another build system with more advanced features and Python-
like language, Facebook engineers still work directly with CMake
to build projects, especially those from companies acquired by
Facebook (e.g., WhatsApp) as they do not use Buck and rely on the
more standard CMake automation tool.

Other than the obvious use of building software, Facebook engi-
neers have a couple of uses that require proper CMake analysis.

Use 1: Converting CMake to Buck. Buck is the default system
to build, run, and test programs at Facebook. Thus, most internal
tools are built to support and extract information from Buck files,
often named BUCK. For example, to fuzz a function foo, the fuzzing
infrastructure consumes a harness of foo and a BUCK file to com-
pile the harness. Bottom-up data flow analysis tools extract target
dependency in BUCK files to build their call graphs. Thus, if a team

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICSE-SEIP ’22, May 21–29, 2022, Pittsburgh, PA, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9226-6/22/05. . . $15.00
https://doi.org/10.1145/3510457.3513064

wants to run these internal tools on a CMake project, the first step
is converting CMakeLists.txt files into BUCK files.

Currently, there are no existing tools to convert CMake files to
Buck and thus such conversions are painfully done and maintained
by hand. Converting a 500 LoC, average-sized CMakeLists.txt
file to BUCK is often a one-week project for an engineer highly
experienced with both CMake and Buck (and the initial conversion
will likely contain bugs).

Use 2: Extracting Build Conditions. The flexibility of CMake lan-
guage allows a file, a directory, or a whole library to be added or
removed at CMake runtime depending on the configuration. Here
are some scenarios where we need to find the configuration that a
specific file is compiled during the build.
• Crash dump analysis. When WhatsApp crashes on a user’s de-
vice, the security team analyze the stack trace to determine, for
example, if the crash is exploitable or an adversary was actively
fuzzing the app. When such a stack trace starts from the function
foo in the file bar.cc, the first step to reproduce the crash is to
figure out the set of compilation flags that builds bar.cc.

• Static analysis. Static analyzers are run automatically when engi-
neers submit patches for code review. Suppose the patch consists
a change in bar.cc, the static analyzer needs need full informa-
tion how to parse bar.cc into an abstract syntax tree. Hence, it
needs to find a build configuration that includes bar.cc. This
is not possible at Facebook at the moment, and many files have
been missed by the tool, leading to potential false negatives.
While there is some recent work on analyzing certain forms of

Makefiles to extract build information, there is no work on ana-
lyzing CMake scripts, which are different from Makefiles in both
syntax and semantics1.

In addition to the unique uses of CMake at Facebook, the ability
to analyze CMake and especially its build conditions has many
advantages. Build conditions can help developers find orphan code
sections, files, or compilation options that are never used and deter-
mine what patches or code changes affect a compilation configura-
tion. They also allow engineers to estimate the project’s build time
and size. Moreover, these conditions can reveal interesting prop-
erties, e.g., the complexity of the build conditions and “influential”
compilation or linkage options affecting how files are built.

Analyzing CMake. We are developing a static analysis for CMake
that targets the above uses. The analysis consists of two main
phases: lexing/parsing the CMake code into AST and recursively
visiting and transforming nodes in the AST into equivalent Buck
scripts or into logical formulae representing build conditions. Thus,
we aim to use a static analysis to solve both problems of converting
to Buck and collecting build conditions.

In our experience, we find that parsing CMake is relatively
straightforward as we can reuse the CMake parser or an existing
1We could analyze Makefiles generated from CMake, but we would miss many build
conditions only presented in the original CMake files and discarded in the Makefiles.

https://doi.org/10.1145/3510457.3513064
https://doi.org/10.1145/3510457.3513064
https://doi.org/10.1145/3510457.3513064

ICSE-SEIP ’22, May 21–29, 2022, Pittsburgh, PA, USA KimHao Nguyen, ThanhVu Nguyen, andQuoc-Sang Phan

CMake parser. However, we have encountered several challenges
in analyzing and transforming CMake. Below we describe these
challenges and hope that they will inspire new program techniques
for the software research community. The code snippets below are
adapted from various CMake files used in the FOLLY open-source
library from Facebook.

2 CHALLENGES IN ANALYZING CMAKE
The CMake language is Turing-complete and can theoretically per-
form any computation. In contrast, Buck (more specifically the Sky-
lark language) is not Turing-complete and intentionally designed to
be not as powerful. Similarly, to facilitate automate reasoning, the
fragment of logical formula we use to capture build conditions is
also less powerful (e.g., quantifier free, no uninterpreted functions).

While theoretically powerful, CMake is not intended for gen-
eral programming and in practice, we can replace common uses in
CMake with Buck (as Facebook engineers have done manually) or
use logical formulae to capture CMake’s build conditions. Nonethe-
less, to automate CMake analysis and transformation, we need to
overcome several challenges, some of which also appear in Make-
files and other shell scripting languages. While there are existing
works on analyzing very restricted subsets of Makefiles such as
Linux KBuild Makefiles (e.g., [1–3]), these do not apply to general
Makefiles and especially CMake.

def foo():
a = True
bar()
assert(a)

Scoping. CMake has different scoping rules com-
pared to most languages. The assertion in the code on
the right would hold in languages such as Python and
Buck because bar cannot modify variables declared
in the parent scope. However, in CMake, bar has a copy of 𝑎 in its
scope and can opt to modify 𝑎 in its parent scope and violate the
assertion. Thus, analyzing CMake is difficult as we need to deter-
mine and track parent variables that are exposed and modified by
the callee. The task is further complicated due to indirect changes
(e.g., bar modifies 𝑎 through a sequence of variable expansions).

Variable Expansion. Similar to a scripting language such as Make,
variable expansions are used frequently in CMake. However, due
to CMake’s treatment of lists being semi-colon separated lists (e.g.,
the list “a; b; c” has three elements), its expansion can be tricky to
analyze. For example, the code below demonstrates how expansions
in CMake can produce potentially surprising and confusing results.
set(A x y) # A has 2 elements ["x","y"]
set(B z k) # B has 2 elements ["z","k"]
set(C ${A} ${B}) # C has 4 elements ["x","y","z","k"]
set(D "${A} ${B}") # D has 3 elements ["x","y z","k"]
set(E ${A}${B}) # E has 3 elements ["x","yz","k"]
foo(x ${A} "${A}") # foo has 4 arguments: ["x","x","y","x;y"]

Moreover, variable expansions are sometimes nested, making it
difficult to reason about data flow, e.g., to determine the destina-
tion of set() or how variables are used as command arguments.
The code below demonstrates how nesting can make it difficult in
determining the value of 𝑋 through nesting.
set(FOO_AND_BAR X)
set(A INNER)
set(VAR_INNER AND)
set(${FOO_${VAR_${A}}_BAR} 7)
message(${X}) # X is 7

Reasoning over Strings. CMake uses string to represent all kinds
of values (e.g., numbers, bools, lists). In contrast, Buck and logical
formulae have richer types. Thus, transforming CMake to Buck or
logical formulae would require either emulating the string handling
mechanism in Buck or inferring proper variable types.
set(FLAGS -O2 -m -s) # FLAGS is a string "-O2;-m;-s"
if("-O" IN_LIST FLAGS) # FLAGS treated as list
False

endif()
if(FLAGS MATCHES "-O") # FLAGS treated as string
True

endif()

Moreover, depending on how strings are used, CMake can interpret
them differently (e.g., hybrid of strings and lists) as demonstrated in
the code above. Variable expansion is also used in conditions (in fact,
it can be used anywhere). CMake uses another mini-language, in-
dependent of the CMake grammar to parse conditional expressions.
This makes analyzing and collecting build conditions non-trivial as
we might have to do multiple passing to fully instantiate the correct
conditions. In general, while these reasonings can be achieved with
careful analysis, the transformation can be difficult due to indirect
complex variable expansions and modifications.

Symbolic Inputs. Static analysis often represents input variables
symbolically to reason about all possible input values. However,
representing a CMake variable symbolically is challenging. Using
a single string like CMake does internally is precise, but would
be expensive for current constraint solvers (e.g., split string by
semicolon character to test if an element is in a list or not). Using
an array or list of strings would be less expensive, but we have to
handle various forms of string expansions and manipulations used
in CMake. More importantly, these arrays would be unbounded or
have large bounds, which makes automated reasoning inefficient.
We note that recent existing static and symbolic techniques for
KBuild Makefiles only work for input options that have three values
(here we are dealing with arbitrary strings).

Side-Effects. CMake allows side-effects and typical CMake usage
often invokes arbitrary shell commands with unpredictable results
(e.g., using complex regex’s, compiling programs, deleting or modi-
fying files). These behaviors are in general discouraged in Buck as it
aims to have predictable behaviors for reproducible builds and accu-
rate artifact caching. Moreover, while many of these commands can
be abstracted or modeled, providing logical models or mocks for
system commands often invoked in CMake is notoriously manual
and difficult (as shown in the Klee symbolic execution tools).

ACKNOWLEDGMENT
This material is based in part upon work supported by the National
Science Foundation under grant numbers 1948536, 2107035 and a
gift from Facebook.

REFERENCES
[1] Paul Gazzillo. 2017. Kmax: Finding all configurations of kbuild makefiles statically.

In Foundations of Software Engineering. 279–290.
[2] ThanhVu Nguyen and KimHao Nguyen. 2020. Using Symbolic Execution to Ana-

lyze Linux KBuild Makefiles. In International Conference on Software Maintenance
and Evolution (ICSME). IEEE, 712–716.

[3] Reinhard Tartler, Christian Dietrich, Julio Sincero, Wolfgang Schröder-Preikschat,
and Daniel Lohmann. 2014. Static analysis of variability in system software: The
90,000# ifdefs issue. In USENIX Annual Technical Conference. 421–432.

	Abstract
	1 Introduction
	2 Challenges in Analyzing CMake
	References

