
SymInfer: Inferring Numerical Invariants using Symbolic States
ThanhVu Nguyen

George Mason University
USA

KimHao Nguyen
University of Nebraska-Lincoln

USA

Hai Duong
Independent Researcher

Vietnam

ABSTRACT
We demonstrate the implementation and usage of SymInfer, a
tool that automatically discovers numerical invariants using con-
crete and symbolic states collected from dynamic and symbolic
executions. SymInfer supports expressive invariants under various
forms, including nonlinear equalities, octagonal inequalities, and
disjunctive min/max invariants. Experimental results show that
SymInfer is effective in generating complex invariants and can of-
ten discover unknown, yet useful program properties. Video demo:
https://www.youtube.com/watch?v=VEuhJw1RBUE.

KEYWORDS
invariant inference, symbolic execution, dynamic analysis
ACM Reference Format:
ThanhVu Nguyen, KimHao Nguyen, and Hai Duong. 2022. SymInfer: In-
ferring Numerical Invariants using Symbolic States. In 44th International
Conference on Software Engineering Companion (ICSE ’22 Companion), May
21–29, 2022, Pittsburgh, PA, USA. ACM, New York, NY, USA, 5 pages. https:
//doi.org/10.1145/3510454.3516833

1 INTRODUCTION
Program invariants describe properties that always hold at a pro-
gram location. Examples of invariants include program pre- and
post-conditions, loop invariants, and assertions. Invariants are orig-
inally used to help program verification in Hoare logic but have also
found uses in many other programming tasks, such as documenta-
tion, testing, debugging, code generation, and synthesis [5, 9, 10].

An important class of invariants captures numerical relations
among program variables. Such numerical invariants can take on dif-
ferentmathematical forms and have various uses. Simple linear poly-
nomial invariants such as 0 ≤ 𝑥 ≤ length(𝐴) − 1 and 𝑥 ≡ 𝑦 − 1 can
be used to capture out-of-bound indexing or off-by-one errors. More
complex nonlinear polynomial relations arise in many scientific, en-
gineering, and safety- and security-critical software [3], and can en-
code disjunctive information, e.g., 𝑥2 ≤ 𝑦2 implies 𝑥 ≤ −𝑦 ∨ 𝑥 ≤ 𝑦.
Max/min-plus relations encode properties that represent a com-
plementary form of disjunctive information, e.g., the inequality
max(𝑥,𝑦) ≥ 2 is equivalent to (𝑥 ≥ 𝑦 ∧ 𝑥 ≥ 2) ∨ (𝑥 < 𝑦 ∧ 𝑦 ≥ 2).

In [8, 10], we introduce SymInfer, a technique that targets the
inference of rich forms of numerical invariants using symbolic pro-
gram states captured by a symbolic execution tool. Among many

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICSE ’22 Companion, May 21–29, 2022, Pittsburgh, PA, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9223-5/22/05. . . $15.00
https://doi.org/10.1145/3510454.3516833

Program Source
(C, Java, Java

bytecode)

Symbolic States
(CIVL, SPF)

Inference
Nonlinear Eqts
q*y + r = x

r^2 + 3*x = 19
Ieqs

x*y <= z
3 <= y

Max/Min
max(x,y) <= z - 4

min(z,0) <= w

Postprocessing
(simplification,

removing
redundancy

Invariants

Instrumentation
(CIL, ASM)

Figure 1: SymInfer Overview

benefits, symbolic states allow SymInfer to check and remove spuri-
ous invariants inferred from concrete states (i.e., program execution
traces) by dynamic invariant generation tools, such as Daikon [5]
and DIG [9]. Moreover, for many types of invariants, SymInfer
can directly compute invariants over symbolic states. Our evalu-
ation demonstrates that SymInfer establishes the state-of-the-art
for inference of complex numerical invariants, especially nonlinear
ones. Across benchmarks consisting of 108 challenging programs
consisting of complex semantics and invariants, SymInfer is able
to infer the ground truth invariants for 106 of 108 programs; the
next best tool can infer only 89.

The envisioned users for SymInfer are researchers, software en-
gineers, and students who are interested in learning program in-
variants and using them in tasks such as program understanding,
verification, and general program analysis. The challenge we ad-
dress is the need for an automatic invariant generation technique
and tool that accurately infer expressive invariants to capture the
precise semantics of complex programs. The methodology we intro-
duce is invariant analysis using a combination of symbolic and con-
crete states, (§2) and SMT solving and optimization. Experimental
results on large benchmarks consisting of complex programs with
nontrivial programs show the effectiveness of SymInfer [8, 10].

The algorithmic and experimental details of SymInfer are avail-
able in [8, 10]. This paper extends that work by providing details
about the implementation and usage of SymInfer, which is open-
source and available at https://github.com/unsat/dig.

2 SYMINFER
The command-line tool SymInfer takes as inputs a programwritten
in C, Java, or Java bytecode (.class) marked with target locations,
and returns invariants found at those locations. Fig. 1 gives an
overview of SymInfer, which composes of the following phases

1 Instrumentation: SymInfer instruments code to obtain
symbolic states using symbolic execution tool and concrete
states during program execution

2 Symbolic states collection: SymInfer invokes a symbolic
execution tool to obtain symbolic states

3 Invariant inference: SymInfer uses several algorithms to
infer different forms of numerical invariants

https://www.youtube.com/watch?v=VEuhJw1RBUE
https://doi.org/10.1145/3510454.3516833
https://doi.org/10.1145/3510454.3516833
https://doi.org/10.1145/3510454.3516833
https://github.com/unsat/dig

ICSE ’22 Companion, May 21–29, 2022, Pittsburgh, PA, USA ThanhVu Nguyen, KimHao Nguyen, and Hai Duong

int cohendiv(int x, int y){

assert(x >= 0 && y >= 1);

int q=0; int r=x;

while(r >= y){

int a=1; int b=y;

while[L1](r >= 2*b){

a=2*a; b=2*b;

}

r=r-b; q=q+a;

}

[L2]

return q;

}

Concrete States
𝑥 𝑦 𝑎 𝑏 𝑞 𝑟

15 2 1 2 0 15
15 2 2 4 0 15
15 2 1 2 4 7

.

.

.

4 1 1 1 0 4
4 1 2 2 0 4

.

.

.

Symbolic States
Path Conditions (ΠL1) Variable Mappings (𝜎L1)

0 < 𝑦 ∧ 𝑦 ≤ 𝑥 𝑞 ↦→ 0; 𝑟 ↦→ 𝑥 ;𝑎 ↦→ 1;𝑏 ↦→ 𝑦

0 < 𝑦 ∧ 2𝑦 ≤ 𝑥 𝑞 ↦→ 0; 𝑟 ↦→ 𝑥 ;𝑎 ↦→ 2;𝑏 ↦→ 2𝑦
0 < 𝑦 ∧ 2𝑦 + 𝑦 ≤ 𝑥 < 4𝑦 𝑞 ↦→ 2; 𝑟 ↦→ 𝑥 − 2𝑦;𝑎 ↦→ 1;𝑏 ↦→ 𝑦

.

.

.
.
.
.

Figure 2: Example program and concrete and symbolic states
observed at location L1.

4 Post-processing: SymInfer performs several simplification
and filtering steps before returning invariants to user

Example. We use the C cohendiv integer division algorithm in
Fig. 2 to demonstrate how SymInfer works. L1 and L2 mark the
locations of interest, i.e., we want to infer the inner loop invariants
at L1 and the program post-conditions at L2.

2.1 Instrumentation and States Collection
SymInfer takes as input a program with marked target locations
using a special vtrace(𝑥1, . . . , 𝑥𝑛) function and infers invariants
over the variables 𝑥1, . . . , 𝑥𝑛 . Using these vtrace calls, SymInfer
instruments the program to invoke symbolic execution tool to col-
lect symbolic states and adds “printf” statements to collect program
execution traces as concrete states.

SymInfer uses symbolic execution to compute symbolic states
at a considered program location L. Symbolic states consist of path
conditions Π describing execution paths to L and mappings 𝜎 from
program variables at L to symbolic values. Intuitively, symbolic
states capture the semantics of the program at L and also compactly
encode a large (potentially infinite) set of concrete states at L.

Example. For cohendiv, the input program is:
void vassume(int c);

void vtraceL1(int x, int y, in q, int r, in a, int b);

void vtraceL2(int x, int y, in q, int r);

int cohendiv(int x, int y){

vassume(x >= 1 && y >= 1);

...

while(1){

vtraceL1(x,y,q,r,a,b); // marked location

if (!(r >= 2*b))break;

a=2*a; b=2*b;

}

...

vtraceL2(x,y,q,r); // marked location

return q;

}

This input uses the function vassume to specify the precondition
that 𝑥,𝑦 begin positive. Note the user can call vtrace over just a
subset of variables to infer invariants only over those variables,
e.g., vtraceL1 is called over six variables while vtraceL2 is called
over only four variables. Also note how the while(c){..} loop is
transformed into while(1){vtrace(..); if (!c) break; ..}.
This is to capture (inductive) loop invariants, which hold the first
time the loop is entered and are preserved through the loop body.

For this C program we use the symbolic execution tool CIVIL
(see §3) and thus instrument code for CIVL usage as follows:
#include "civlc.cvh" //instr specifically for CIVL

$input int x; //instr: symbolic input

$input int y; //instr: symbolic input

//instr: collect concrete and symbolic states

void vtraceL1(int x, int y, in q, int r, in a, int b){

printf("L1; %d; %d; %d; %d; %d; %d\n",x,y,q,r,a,b);

$pathCondition();
}

...

int cohendiv(int x, int y){

$assume(x >= 1 && y >= 1); //instr: assumption

...

while(1){

vtraceL1(x,y,q,r,a,b); // marked location

if (!(r >= 2*b))break;

a=2*a; b=2*b;

}

...

vtraceL2(x,y,q,r); // marked location

return q;

}

Now SymInfer runs CIVL on the instrumented program to ob-
tain symbolic states at the target locations indicated by vtrace.
Fig. 2 shows the symbolic states at location L1 of cohendiv. As can
be seen, symbolic states provide a precise logical representation of
the program semantics at the target locations, and they also com-
pactly represents a large, potentially infinite, set of concrete states.
Fig. 2 also shows the concrete states at L1 when running the pro-
gram on inputs (15,2) and (4,1). Notice how symbolic states encode
these specific concrete states and those obtained when running the
program on different inputs.

2.2 Invariant Inference
SymInfer uses two algorithms to infer invariants: an iterative, coun-
terexample guided invariant refinement (CEGIR) approach to infer
(potentially nonlinear) equalities and an SMT-optimization based
technique to infer inequalities. The CEGIR approach uses symbolic
states to check candidate equalities while the SMT approach ex-
ploits advances in constraint solving to find inequalities directly
from symbolic states.

2.2.1 CEGIR. SymInfer uses a CEGIR algorithm to find polyno-
mial equalities of the form 𝑐1𝑡1 + 𝑐2𝑡2 + · · · + 𝑐𝑛𝑡𝑛 = 0, where 𝑐𝑖 are
coefficients and 𝑡𝑖 are terms that are multiplicative combinations
of relevant program variables. This algorithm iterates between two
phases: dynamic analysis that infers candidate equalities from con-
crete states obtained by running the program from sample inputs
and symbolic checker that checks candidates against the program

SymInfer: Inferring Numerical Invariants using Symbolic States ICSE ’22 Companion, May 21–29, 2022, Pittsburgh, PA, USA

using symbolic states obtained from symbolic execution. If a can-
didate invariant is spurious, the checker also provides counterex-
amples. Concrete states from these counterexamples are obtained
and recycled to repeat the process, and produce more accurate re-
sults. These steps of inferring and checking repeat until no new
counterexamples or (true) invariants are found.

Example. We show how SymInfer find the nonlinear equalities
𝑏 = 𝑦𝑎 and 𝑥 = 𝑞𝑦+𝑟 at location L1 in cohendiv. For demonstration
purpose we only consider nonlinear equations up to degree 𝑑 = 2.

For the six variables {𝑎, 𝑏, 𝑞, 𝑟, 𝑥,𝑦} at L1, together with 𝑑 = 2,
SymInfer generates 28 terms {1, 𝑎, . . . , 𝑦2} and uses them to form
the template 𝑐1 + 𝑐2𝑎 + . . . 𝑐28𝑦2 = 0 with 28 unknown coefficients
𝑐𝑖 . SymInfer then collect concrete states such as those given in
Fig. 2 by executing the program on random inputs and using these
concrete states to form (at least) 28 linear equations. From this set
of initial equations SymInfer extracts six equalities.

Now, SymInfer iteratively refines the inferred invariants. In
iteration #1, SymInfer cannot refute two of these candidates 𝑥 =

𝑞𝑦 + 𝑟, 𝑏 = 𝑦𝑎 (which are actually true invariants) and thus saves
these as invariants. SymInfer finds counterexamples for the other
four equalities and creates new equations from the counterexamples.
SymInfer next combines the old and new equations and solves them
to obtain four candidates, two of which are the already saved ones.
In iteration #2, SymInfer obtains counterexamples for the 2 new
candidates. With the help of the new counterexamples, SymInfer
generates 3 candidates, 2 of which are the saved ones. In iteration
#3, SymInfer obtains counterexamples disproving the remaining
candidate and again uses the new counterexamples to generate new
candidates. This time SymInfer only finds the two saved invariants
𝑥 = 𝑞𝑦 + 𝑟, 𝑏 = 𝑦𝑎 and thus stops.

2.2.2 SMT. To infer inequalities, we previously used [8] a CEGIR
approach that iterates between computing candidates from concrete
states and checking them using symbolic states. In a more recent
work [10], we use symbolic states to directly compute inequality
relations. This approach works by first enumerate octagonal terms,
such as 𝑥 − 𝑦, 𝑥 + 𝑦, and min/max-plus terms, such as𝑚𝑖𝑛(𝑥,𝑦, 𝑧).
Then, for each term 𝑡 , we use an SMT solver to compute the smallest
upperbound 𝑘 for 𝑡 from symbolic states. If 𝑘 is found, we obtain
the candidate invariant 𝑡 ≤ 𝑘 . Otherwise (i.e., if 𝑘 is ∞ or cannot
be determined), we discard the relation 𝑡 ≤ 𝑘 .

Similarly, we also compute the largest lower-bound 𝑘′ to obtain
the inequality 𝑘′ ≤ 𝑡 . This approach leverages the power of modern
constraint solvers, which, in addition to finding satisfiability as-
signments, can find optimal assignments with respect to objective
constraints using linear optimization techniques.

Example. For the six variables at L1, SymInfer enumerates
(6
2
)

pairs of variables (𝑎, 𝑏), (𝑎, 𝑞), . . . (𝑥,𝑦) and for each pair forms
eights terms involving at most two variables such as {𝑎, 𝑏, . . . ,−𝑎 −
𝑏, 𝑎 + 𝑏}. Then, for each term 𝑡 SymInfer computes the smallest
upperbound 𝑘 and the largest lower-bound 𝑘′ to form the invariant
𝑘′ ≤ 𝑡 ≤ 𝑘 . For example, for the term −𝑎 − 𝑦, SymInfer infers
−∞ ≤ −𝑎 − 𝑦 ≤ −2, which simplifies to 2 ≤ 𝑎 + 𝑦 (the input 𝑦 is
assumed to be ≥ 1 but has no upperbound and 𝑎 is initialized with
1 and always doubled).

Similarly, to infer min- and max-plus invariants such as 𝑘′ ≤
𝑚𝑖𝑛(𝑥,𝑦) ≤ 𝑘 , SymInfer performs the same process of generat-
ing terms and computing upper- and lower-bounds. In this exam-
ple, SymInfer found several such invariants, however, our post-
processing step determined that they are weaker than the other
obtained equalities and inequalities and therefore removed them.

2.3 Post-Processing and Invariant Results
Depending on the number of variables and form of invariants,
SymInfer could generate many invariants (e.g., each octagonal and
max/min term can produce an invariant candidate). SymInfer uses
a post-processing step, which consists of two parts, to reduce the
number of reported invariants. The first part simply checks gen-
erated invariants against all cached concrete states and removes
violated ones. This part is efficient (we simply instantiate and check
candidate relations with concrete values), but removes few results
(because most generated invariants are already valid). The second
part removes redundant invariants. From a set of candidate invari-
ants, we extract a subset of independent relations and check if every
member of the set is not implied by other relations in that set. This
part is more time-consuming, but effective in reducing many in-
equalities to just a few strongest and relevant ones–making it much
easier for the user to analyze and use the reported results.

Example. For the cohendiv program, SymInfer got 272 invari-
ants (4 equations, 41 inequalities, and 227 min/max) over the two
locations L1 and L2. After post-processing, the number of invariants
reduced to just 15 (8 at L1 and 7 at L2).

At the end, SymInfer returns at L1 (loop) invariants such as

𝑥 = 𝑞𝑦 + 𝑟 ; 𝑎𝑦 = 𝑏; 𝑏 ≤ 𝑥 ; 𝑦 ≤ 𝑟 ; 0 ≤ 𝑞; 1 ≤ 𝑏; 1 ≤ 𝑦

and at L2 the (post-condition) invariants such as

𝑥 = 𝑞𝑦 + 𝑟 ; 𝑟 ≤ 𝑦 − 1; 0 ≤ 𝑟 ; 𝑟 ≤ 𝑥

These relations are sufficiently strong to understand the seman-
tics and verify the correctness of cohendiv. The key invariant is
the nonlinear equality 𝑥 = 𝑞𝑦 + 𝑟 , which captures the precise be-
havior of integer division: the dividend 𝑥 equals the divisor 𝑦 times
the quotient 𝑞 plus the remainder 𝑟 . The other inequalities also
provide useful information. For example, the invariants at the pro-
gram exit reveal several required properties of the remainder 𝑟 , e.g.,
non-negative (0 ≤ 𝑟), at most the dividend (𝑟 ≤ 𝑥), but strictly less
than the divisor (𝑟 ≤ 𝑦 − 1).

3 DESIGN AND TOOL USAGE
SymInfer is implemented in Python and uses SymPy for equa-
tion solving (to infer equalities) and represent numerical relations.
SymInfer uses different instrumentation and symbolic execution
tools depending on the input program. For C, we use CIL [7] for
instrumentation and CIVL [11] for symbolic execution. For Java and
Java bytecode, we use the ASM library [2] for instrumentation and
Symbolic PathFinder [1] for symbolic execution. SymInfer uses
the Z3 SMT solver [4] to check and produce models representing
counterexamples. Z3 is also used to identify and remove redundant
invariants in post-processing.

ICSE ’22 Companion, May 21–29, 2022, Pittsburgh, PA, USA ThanhVu Nguyen, KimHao Nguyen, and Hai Duong

3.1 Design
SymInfer has several designs to aid development and adoption. In
particular, SymInfer is designed to be configurable, extendable, and
take advantage of multicore (parallel) processing,

Configurability. SymInfer’s is highly configurable and contains
more than 30 settings allowing the user to control how the tool
works. By default, these settings are chosen to allow SymInfer to
work with a wide-range of benchmark programs, e.g., from those
with few simple linear invariants to those with complex nonlinear
relations involving dozen of variables. The user can change these
settings using command-line options or the settings.py file.

Several useful settings include: -maxdepth d (generate invari-
ants only up to degree 𝑑 and can significantly speed up SymInfer);
-nominmax/-noieqs/-noeqts (do not generate certain forms of
invariants); -se_min/maxdepth (controls the depth of symbolic
execution); -noss (do not use symbolic states and performs pure
dynamic invariant generation over randomly generated inputs);
-uterms "t1; t2; .." (infer invariants involving terms represent-
ing specific, complex information, e.g., 𝑡1 = 2𝑥 , 𝑡2 = log(𝑛)).

Extensibility. SymInfer is designed to be modular, allowing the
user to easily extend it to support new form of invariants. To support
new invariants, the user just needs to extend the Invariant and
Inference abstract classes and override abstract methods such as
infer check to take advantage of SymInfer’s current CEGIR and
SMT-based algorithms, post-processing, parallel computing, etc.

Multicore Processing. SymInfer leverages the increasingly popu-
lar and affordable multicore architecture. The tool performs many
independent tasks in parallel, e.g., running symbolic execution, gen-
erating invariants at different locations, computing upper bounds
for terms, and checking candidate invariants. Parallel processing
is crucial to the performance of SymInfer as it allows the tool to
process and analyze thousands of candidate invariants at multiple
program locations simultaneously.

Usage. The Github repository in §1 provides detailed instructions
for obtaining, building, and running SymInfer. The easiest way to
try SymInfer is through the provided Dockerfile, but the user can
also build SymInfer directly from source. SymInfer is designed to
be integrated easily with other projects and tools. The user can call
SymInfer as a blackbox or use its Python API to infer invariants
(e.g., the Dynamite project [6] calls SymInfer as a blackbox to infer
invariants program termination and non-termination analyses).

3.2 Run Output
Fig. 3 shows the results of running SymInfer on the cohendiv

program on a 64-core AMD CPU 4 GHZ Linux system with 64
GB of RAM. Here, SymInfer got 45 symbolic states for the two
target locations in 4.7s. Next, we got 41 inequality, 227 min/max,
and 4 equality invariants. After reprocessing, SymInfer reduced
the number of invariants from 272 to just 15 invariants.

We also see that the real (wall clock) time of the entire process
is just 20.89s even though accumulative time spent by all CPU is
368.18 seconds. This shows that SymInfer is effective in exploiting
multicore processing (i.e., without using multicore, the run time
would be 6 mins instead of just 21s).

time python3 -O syminfer.py ../tests/cohendiv.c -log 3

alg:INFO:analyzing '../tests/cohendiv.c'

alg:INFO:got 45 symstates at 2 locs in 4.69s

alg:INFO:got 41 ieqs in 0.65s

alg:INFO:got 227 minmax in 1.27s

alg:INFO:got 4 eqts in 13.24s

alg:INFO:check 272 invs using 456 traces (0.25s)

alg:INFO:simplify 272 invs (2.23s)

vtraceL1(8 invs): a*y - b == 0; q*y + r - x == 0; -q <= 0;

a - b <= 0; r - x <= 0; b - r <= 0; -b + y <= 0; -a - y <= -2

vtraceL2(7 invs): q*y + r - x == 0; -q <= 0; -r <= 0;

r - x <= 0; q - x <= 0; r - y <= -1; -q - x <= -1

--

Time: real 20.89 secs; usr 368.18 secs

Figure 3: Running SymInfer

4 EVALUATION
We evaluate SymInfers [10] using four benchmark suites consisting
of 108 programs. These programs come with known or documented
invariants, which we use as ground truths for comparison.

Our experiments show that SymInfer is able to infer the ground
truth invariants for 106 of 108 programs; the next best tool can infer
only 89. In many cases, SymInfer found undocumented but interest-
ing invariants revealing useful facts about program semantics and
complexity bounds. The ability to exploit and reuse symbolic states
allows SymInfer to strike a balance between expressive power and
computational cost, while guaranteeing correctness, to establish
state-of-the-art performance in numerical invariant inference.

ACKNOWLEDGMENT
We thank the anonymous reviewers for helpful comments. This
material is based in part upon work supported by the National
Science Foundation under grant numbers 1948536, 2107035 and U.S.
Army Research Office under grant number W911NF-19-1-0054.

REFERENCES
[1] Saswat Anand, Corina S Păsăreanu, and Willem Visser. 2007. JPF–SE: A symbolic

execution extension to Java Pathfinder. In International Conference on Tools and
Algorithms for the Construction and Analysis of Systems. Springer, 134–138.

[2] Eric Bruneton, Romain Lenglet, and Thierry Coupaye. 2002. ASM: a code manip-
ulation tool to implement adaptable systems. Adaptable and extensible component
systems 30, 19 (2002).

[3] Patrick Cousot, Radhia Cousot, Jerôme Feret, Laurent Mauborgne, Antoine Miné,
David Monniaux, and Xavier Rival. 2005. The Astrée analyzer. In European
Symposium on Programming. Springer, 21–30.

[4] Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: An efficient SMT solver. In
International Conference on Tools and Algorithms for the Construction and Analysis
of Systems. Springer, 337–340.

[5] Michael D Ernst, Jeff H Perkins, Philip J Guo, Stephen McCamant, Carlos Pacheco,
Matthew S Tschantz, and Chen Xiao. 2007. The Daikon system for dynamic
detection of likely invariants. Science of computer programming 69, 1-3 (2007),
35–45.

[6] TonChanh Le, Timos Antonopoulos, Parisa Fathololumi, Eric Koskinen, and
ThanhVu Nguyen. 2020. DynamiTe: dynamic termination and non-termination
proofs. PACMPL 4, OOPSLA (2020), 1–30.

[7] George C Necula, Scott McPeak, Shree P Rahul, and Westley Weimer. 2002. CIL:
Intermediate language and tools for analysis and transformation of C programs.
In International Conference on Compiler Construction. Springer, 213–228.

[8] ThanhVu Nguyen, Matthew Dwyer, andWilliam Visser. 2017. SymInfer: Inferring
Program Invariants using Symbolic States. In Automated Software Engineering.
IEEE, 804–814.

[9] ThanhVu Nguyen, Deepak Kapur, Westley Weimer, and Stephanie Forrest. 2012.
Using Dynamic Analysis to Discover Polynomial and Array Invariants. In Inter-
national Conference on Software Engineering. IEEE, 683–693.

SymInfer: Inferring Numerical Invariants using Symbolic States ICSE ’22 Companion, May 21–29, 2022, Pittsburgh, PA, USA

[10] Thanhvu Nguyen, KimHao Nguyen, and Matthew Dwyer. 2021. Using Symbolic
States to Infer Numerical Invariants. Transactions on Software Engineering (TSE)
(2021).

[11] Stephen F Siegel, Manchun Zheng, Ziqing Luo, Timothy K Zirkel, Andre V Mari-
aniello, John G Edenhofner, Matthew B Dwyer, and Michael S Rogers. 2015. CIVL:
the concurrency intermediate verification language. In International Conference
for High Performance Computing, Networking, Storage and Analysis. IEEE, 1–12.

	Abstract
	1 Introduction
	2 SymInfer
	2.1 Instrumentation and States Collection
	2.2 Invariant Inference
	2.3 Post-Processing and Invariant Results

	3 Design and Tool Usage
	3.1 Design
	3.2 Run Output

	4 Evaluation
	References

