
The Challenges of Shift Left Static Analysis
Quoc-Sang Phan

Meta
USA

Kim-Hao Nguyen
University of Nebraska-Lincoln

USA

ThanhVu Nguyen
George Mason University

USA

Abstract—In the software development industry, static analysis
is used early in the development process, often as soon as a source
file is saved or immediately after a commit is submitted. This
approach, known as ”shifting left,” helps identify and address
potential issues early on, before they become more difficult
and costly to fix. However, implementing this approach can be
challenging, as demonstrated through our experience at Meta.
One specific challenge is dealing with build issues and figuring
out which files and code to give to the static analyzers. These
problems arise because the compilation and inclusion of files
depend on various configurations, such as compilation flags
and the platforms used to build the files. The purpose of this
paper is to highlight these challenges and encourage the research
community to find solutions.

Index Terms—static analysis, shift left, configurable software,
conditional compilation, variability, build system

I. STATIC ANALYSIS

In recent years, static analysis has been gaining popularity
in the industry [1]–[3]. These tools have been shown to be
effective in identifying serious vulnerabilities, such as those
listed in the OWASP Top 10 [4] or CWE Top 25 [5]. Addi-
tionally, they can scale to large codebases, e.g., Zoncolan [6]
is used at Meta to analyze thousands of changes daily across
100 million lines of code. Furthermore, static analysis provides
useful information, including source file and line numbers,
which can assist developers in understanding and resolving
defects. Moreover, static analysis can provide useful trace
information, including source file and line numbers, which
can assist developers in understanding and debugging defects.

Meta developers consider static analysis to be an essential
component of their continuous development process [7]. For
example, the developer Alice might use an integrated devel-
opment environment (IDE) with fast intraprocedural analyzers
such as Clang-Tidy [8] and Clang Static Analyzer [9] to
quickly report defects when the source file is saved. After
Alice commits, her code changes are sent to server running
Phabricator [10], which creates a diff entry for code review.
Phabricator then launches a series of jobs that use cloud
machines to clone the repository with Alice’s commit, run
the diff through tests, and employ more expensive interpro-
cedural analysis tools including Infer [11], Pysa [12], and
Zoncolan [6]. If all tests pass, Alice can then request code
review, which includes feedback and suggestions from the
analyzers, and commit the diff to the main codebase.

At Meta, the use of static analyzers, particularly those that
focus on identifying security vulnerabilities (such as static
application security testing, or SAST), has been emphasized

and shifted to the “left” of the software development life cycle
between the coding and review phases:

coding → static analysis → code review→
integration → deployment

Thus, SAST tools are applied early, often as soon as a
source file is saved or a commit is submitted for code review.
This approach is appealing because it allows developers to
discover and fix bugs and security vulnerabilities at earlier
stage, making debugging more efficient and cost-effective. In
this paper, we use the term “shift left static analysis” or SLSA
to refer to this practice of shifting static analysis to the left.

As with any approach, SLSA has its own set of challenges.
Distefano et al. [2] has identified issues with the scalability
and accuracy of SAST tools such as Infer and Zoncolan.
However, as we will describe below, even the initial step
of applying these tools to code presents unique difficulties,
especially in complex and dynamic development environments
such as the one at Meta. The goal of this paper is to outline
these challenges and motivate further research to address them.

II. CHALLENGES IN SHIFTING LEFT

The first law of find bugs in software is that “you cannot
check code that you do not see” [1]. For a SAST tool to
properly analyze a system, it must have access to the program
code and know how to build it. This is typically achieved by
providing the SAST tool with a build configuration, such as a
script that specifies the compilation flags and files to be built.
The tool then initiates the build process, captures information
about the included files and how they are compiled, and
analyzes them. Many major SAST tools support this process,
including Coverity and Facebook Infer, which can intercept
build system calls to capture compiled files and commands,
and Infer and Clang-Tidy, which can consume a compilation
database generated by CMake.

However, this seemingly innocent task of producing relevant
source code to a SAST tool can become challenging for
complex and highly-configurable systems that import or in-
clude many external code files or libraries. For example, some
systems include third-party libraries that are only included
under specific configurations, such as when compiled with
certain flags or options. In the past, a security expert would
manually select the appropriate configuration when running
the SAST tool. However, in the SLSA approach, SAST tools
must be automatically configured and run on an engineer’s



void buffer_overflow(char* tainted_data){
#ifdef FLAG_BAR
char buf[20] = "Hello World!";
std::memcpy(buf, tainted_data, sizeof(tainted_data));

#endif // #ifdef FLAG_BAR
}

Fig. 1. baz.cc

machine or in the cloud with no manual intervention. This
introduces several new challenges described below.

A. False negatives caused by missing files

When thousands of engineers work together on a cross-
platform multi-feature application, the code they submit are
often compiled with different sets of compilation flags. This
results in a wide range of possible configurations. Without the
correct configuration, such as one that with options or flags
that include the buggy code, SAST tools will not even have
a chance to see and identify bugs in code. This can produce
false positives, where the SAST tools conclude unsafe code
as safe—a soundness issue.

Consider the scenario where Alice submitted a diff that
adds a new buggy source file baz.cc shown in Fig. 1.
Because memcpy does not check if the number of bytes
to copy is smaller than the size of the buffer to copy to,
this code snippet has a potential buffer overflow vulnerability,
allowing a malicious user to execute arbitrary code. While
being dangerous, this kind of vulnerability and many others
involving unsafe memory usage can be detected using the
popular taint analysis supported by many SAST tools.

However, defects in the code may be missed by SAST tools
if the tool does not have access to the newly added code.
For instance, consider the scenario where the file baz.cc
implements an experimental feature that is not ready for
production. To build this feature on-demand, Alice adds a new
flag FLAG_FOO to CMakeLists.txt in the same diff to
control the inclusion of baz.cc. As a result, baz.cc is only
compiled when CMake is run with the option -DFLAG_FOO.

Because it is not possible to predict which flags will be
added to the program, the automated Phabricator process will
trigger the SAST job with only one hardcoded configuration
that does not include additional flags such as FLAG_FOO.
Thus, SAST tools may not have access to the code that
includes the new feature and the bugs in it may not be detected.

B. False negatives caused by missing code

This problem is related to missing files and code, as
discussed in Section II-A, but is caused by the use of the
preprocessor directive #ifdef in C and C++. For example,
if the vulnerable code snippet in Fig. 1 is only included when
the compilation flag DFLAG_BAR is set, then even if baz.cc
is checked by the SAST tool, the vulnerable code would
still not be analyzed, unless baz.cc is built with the flag
-DFLAG_BAR.

While false negative caused by conditional compilation has
been studied (e.g., [13]), existing research has been focusing

on finished products, and do not address this problem at diff
time. For example, the VAMPYR tool in [14] can identify a
set of configurations that cover all #ifdef blocks of changed
files, such as baz.cc in our example. However, this does not
solve the problem of diff-time analysis as we only need to
find the -DFLAG_BAR that covers the changed blocks, not all
blocks in the file.

There are existing static and dynamic (sampling) techniques
in variability-aware analyses. However, they generally do not
scale well with an exponentially large number of states.
For example, the WhatsApp VoIP module alone has nearly
two millions LoC and more than 10,000 #ifdef directives,
resulting in over a billion possible states. The work in [15]
suggests that these techniques are not sustainable and have
not been widely adopted by the industry or that they are
only effective for scenarios with a small configuration space
(e.g., Cppcheck by default analyzes all configurations of the
program [16]).

C. Optimization for intraprocedural analysis

Suppose we develop a safer function, safe_memcpy, that
performs bound checking before memory copying. However,
this function can only be used when the destination is a static
array (as in the example in Fig. 1). Thus, we want the SAST
tool to automatically replace all instances memcpy where the
destination is a static array with the safer safe_memcpy
function. In this case, we can search for this pattern on the
abstract syntax tree of baz.cc and ignore all files that are
not affected by the diff.

Currently, there is no efficient method available to analyze
and extract the compile command for baz.cc in large build
projects. This means that the SAST tool must initiate the entire
build process, which can take several hours, even though the
actual analysis only takes seconds. This creates a significant
inconvenience for Meta engineers as they have to build the
entire project to obtain the necessary information for static
analysis to run. This disrupts the workflow of users and hinders
the adoption of SLSA. Even at diff time, adding several
hours to the Phabricator job of hundreds or thousands of diffs
requires huge cloud resources, which may lead to pushback
from users.

D. Conclusion

We list several challenges to the SLSA approach, which en-
courages using SAST tools in early development cycles. While
there are many limitations in SAST tools themselves [2], we
argue that even gathering sufficient information, such as files
and compilation flags, to give to an SAST tool is a tedious
and manual task. Moreover, build languages do not have well-
defined syntax and semantics, making the problem even more
difficult. For example, CMake is Turing complete and supports
arbitrary command invocations [17]). Being able to effectively
overcome these challenges will further promote the use of
SAST tools and in particular make the SLSA approach used
at Meta and other companies realizable.



REFERENCES

[1] A. Bessey, K. Block, B. Chelf, A. Chou, B. Fulton, S. Hallem,
C. Henri-Gros, A. Kamsky, S. McPeak, and D. Engler, “A few billion
lines of code later: Using static analysis to find bugs in the real
world,” Commun. ACM, vol. 53, no. 2, p. 66–75, Feb. 2010. [Online].
Available: https://doi.org/10.1145/1646353.1646374

[2] D. Distefano, M. Fähndrich, F. Logozzo, and P. W. O’Hearn, “Scaling
static analyses at facebook,” Commun. ACM, vol. 62, no. 8, p. 62–70,
Jul. 2019. [Online]. Available: https://doi.org/10.1145/3338112

[3] F. Raimondi and B.-Y. E. Chang, “How automated reasoning im-
proves the Prime Video experience,” https://www.amazon.science/blog/
how-automated-reasoning-improves-the-prime-video-experience.

[4] “OWASP Top Ten,” https://owasp.org/www-project-top-ten/.
[5] “CWE Top 25 in 2022,” https://cwe.mitre.org/top25/archive/2022/2022

cwe top25.html.
[6] “Zoncolan: How Facebook uses static analysis to detect and prevent se-

curity issues,” https://engineering.fb.com/2019/08/15/security/zoncolan/.
[7] D. Feitelson, E. Frachtenberg, and K. Beck, “Development and

deployment at facebook,” IEEE Internet Computing, vol. 17, no. 4, p.
8–17, Jul. 2013. [Online]. Available: https://doi.org/10.1109/MIC.2013.
25

[8] “Clang-tidy,” https://clang.llvm.org/extra/clang-tidy/.
[9] “Clang Static Analyzer,” https://clang.llvm.org/docs/

ClangStaticAnalyzer.html.
[10] “Phabricator,” https://en.wikipedia.org/wiki/Phabricator.

[11] “Facebook Infer,” http://fbinfer.com/.
[12] “Pysa: An open source static analysis tool to detect and prevent security

issues in Python code,” https://engineering.fb.com/2020/08/07/security/
pysa/.

[13] P. Gazzillo and S. Wei, “Conditional compilation is dead, long live
conditional compilation!” in Proceedings of the 41st International
Conference on Software Engineering: New Ideas and Emerging Results,
ser. ICSE-NIER ’19. IEEE Press, 2019, p. 105–108. [Online].
Available: https://doi.org/10.1109/ICSE-NIER.2019.00035

[14] R. Tartler, C. Dietrich, J. Sincero, W. Schröder-Preikschat, and
D. Lohmann, “Static analysis of variability in system software: The
90,000 #ifdefs issue,” in 2014 USENIX Annual Technical Conference
(USENIX ATC 14). Philadelphia, PA: USENIX Association, Jun. 2014,
pp. 421–432. [Online]. Available: https://www.usenix.org/conference/
atc14/technical-sessions/presentation/tartler

[15] F. Medeiros, C. Kästner, M. Ribeiro, R. Gheyi, and S. Apel, “A
comparison of 10 sampling algorithms for configurable systems,”
in Proceedings of the 38th International Conference on Software
Engineering, ser. ICSE ’16. New York, NY, USA: Association
for Computing Machinery, 2016, p. 643–654. [Online]. Available:
https://doi.org/10.1145/2884781.2884793

[16] “Cppcheck,” https://cppcheck.sourceforge.io/.
[17] K. Nguyen, T. Nguyen, and Q.-S. Phan, “Analyzing the cmake build

system,” in 2022 IEEE/ACM 44th International Conference on Software
Engineering: Software Engineering in Practice (ICSE-SEIP). IEEE,
2022, pp. 27–28.

https://doi.org/10.1145/1646353.1646374
https://doi.org/10.1145/3338112
https://www.amazon.science/blog/how-automated-reasoning-improves-the-prime-video-experience
https://www.amazon.science/blog/how-automated-reasoning-improves-the-prime-video-experience
https://owasp.org/www-project-top-ten/
https://cwe.mitre.org/top25/archive/2022/2022_cwe_top25.html
https://cwe.mitre.org/top25/archive/2022/2022_cwe_top25.html
https://engineering.fb.com/2019/08/15/security/zoncolan/
https://doi.org/10.1109/MIC.2013.25
https://doi.org/10.1109/MIC.2013.25
https://clang.llvm.org/extra/clang-tidy/
https://clang.llvm.org/docs/ClangStaticAnalyzer.html
https://clang.llvm.org/docs/ClangStaticAnalyzer.html
https://en.wikipedia.org/wiki/Phabricator
http://fbinfer.com/
https://engineering.fb.com/2020/08/07/security/pysa/
https://engineering.fb.com/2020/08/07/security/pysa/
https://doi.org/10.1109/ICSE-NIER.2019.00035
https://www.usenix.org/conference/atc14/technical-sessions/presentation/tartler
https://www.usenix.org/conference/atc14/technical-sessions/presentation/tartler
https://doi.org/10.1145/2884781.2884793
https://cppcheck.sourceforge.io/

	Static analysis
	Challenges in shifting left
	False negatives caused by missing files
	False negatives caused by missing code
	Optimization for intraprocedural analysis
	Conclusion

	References

