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ABSTRACT 
 
A recently developed fuzzy logic resource allocation algorithm that enables a collection of unmanned air vehicles 
(UAVs) to automatically cooperate as they make meteorological measurements will be discussed.  The goal of the 
UAVs’ coordinated effort is to measure the atmospheric index of refraction.  Once in flight no human intervention is 
required.  A fuzzy logic based planning algorithm determines the optimal trajectory and points each UAV will sample, 
while taking into account the UAVs’ risk, reliability, and mission priority for sampling in certain regions.  It also 
considers fuel limitations, mission cost, and related uncertainties.  The real-time fuzzy control algorithm running on each 
UAV renders the UAVs autonomous allowing them to change course immediately without consulting with any 
commander, requests other UAVs to help, changes the points that will be sampled when observing interesting 
phenomena, or to terminate the mission and return to base.  The control algorithm allows three types of cooperation 
between UAVs.  The underlying optimization procedures including the fuzzy logic based cost function, the fuzzy logic 
decision rule for UAV path assignment, the fuzzy algorithm that determines when a UAV should alter its mission to help 
another UAV and the underlying approach to quantifying risks are discussed.  Significant simulation results will show 
the planning algorithm’s effectiveness in initially selecting UAVs and determining UAV routes.  Likewise, simulation 
shows the ability of the control algorithm to allow UAVs to effectively cooperate to increase the UAV team’s likelihood 
of success. 
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1. INTRODUCTION 
 

Knowledge of meteorological properties is fundamental to many decision processes.  Due to personnel limitations and 
risks, it is useful if related measurement processes can be conducted in a fully automated fashion.  Recently developed 
fuzzy logic based algorithms that allow a collection of unmanned air vehicles (UAVs) and an interferometer platform 
(IP)1 to automatically collaborate will be discussed.  The UAVs measure the index of refraction in real-time to help 
determine the position of an electromagnetic source (EMS).  The IP is actually an airplane with an interferometer 
onboard that measures emissions from the electromagnetic source whose position is to be estimated.  Each UAV has 
onboard its own fuzzy logic based real-time control algorithm.  The control algorithm renders each UAV fully 
autonomous; no human intervention is necessary.  The control algorithm aboard each UAV will allow it to determine its 
own course, change course to avoid danger, sample phenomena of interest that were not pre-planned, and cooperate with 
other UAVs. 
 
Section 2 provides an overview of the meteorological sampling problem, and a high level description of the planning and 
control algorithms that render the UAV team fully autonomous.  Section 3 discusses the electromagnetic measurement 
space, UAV risk, and the planning algorithm. Section 3 also describes the UAV path construction algorithm that 
determines the minimum number of UAVs required to complete the task, a fuzzy logic based approach for assigning 
paths to UAVs and which UAVs should be assigned to the overall mission.  Section 4 describes the control algorithm 
that renders the UAVs autonomous.  Section 4 also describes the priority for helping (PH) algorithm, a part of the 
control algorithm based on fuzzy logic that determines which UAV should help another UAV requesting help.  The three 
subclasses of help requests are also discussed in this section.  Section 5 presents experimental results including UAV 
path determination, UAV path assignment, determination of which UAVs should fly the mission and the result of a 
request for help during the mission.  Finally, section 6 provides a summary.  
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2. METEOROLOGICAL SAMPLING AND COOPERATIVE AUTONOMOUS PLATFORMS 
 

For many applications it is useful to be able to make meteorological measurements in real-time.  Examples include 
determining the index of refraction of the atmosphere to facilitate geo-location1; determination of the presence and extent 
of such phenomena as radio holes and ducts, which may interfere with communications; tracking atmospheric 
contaminants2; and sand suspended in the atmosphere that can interfere with sensors. 
 
The fuzzy logic based planning and control algorithms that have been developed allow a collection of UAVs making up 
the UAV team to engage in cooperative sampling of the atmosphere in real-time without human intervention.  Each 
UAV will have its own control algorithm allowing it to determine new optimal trajectories in real-time subject to 
changing conditions.  Also, the control algorithm on the UAVs will allow them to cooperate to increase the probability 
of mission success.  There will be two different types of cooperation allowed by the control algorithm and three classes 
of help requests which are discussed in section 4. 

 
The first type of cooperation that the UAVs may exhibit is to support each other if there is evidence that an interesting 
physical phenomenon has been discovered.  If one UAV seems to have discovered a radio hole, it can request that 
another UAV or UAVs help determine the extent of the radio hole so the IP can fly around it.  Similar cooperation can 
be carried out if a UAV may have discovered other elevated extended weather systems.  

 
The second type of cooperation that the UAVs can exhibit through their control algorithm is when a UAV is 
malfunctioning or may be malfunctioning.  If a UAV’s internal diagnostics indicate a possible malfunction, then it will 
send out an omni-directional request to the other UAVs for help.  Each UAV will calculate its priority for providing help 
using a fuzzy logic procedure described below.  The UAVs send their priority for providing help message back to the 
requesting UAV.  The requester subsequently sends out a message informing the group of the ID of the highest priority 
UAV.  The high priority UAV then proceeds to aid the requester. 

 
The support provided by the helping UAV can take on different forms.  If the requester suspects a malfunction in its 
sensors, the helper may measure some of the same points originally measured by the UAV in doubt.  This will help 
establish the condition of the requester’s sensors.  If additional sampling indicates the requester is malfunctioning, and 
represents a liability to the group it will return to base.  In this case the supporter may take over the mission of the 
requester, whether or not the supporter samples all the remaining sample points of the requester; subsequently, 
abandoning its original points depends on the sample points’ priorities.  A fuzzy logic based procedure for determining 
sample point priorities is discussed below.  If it is established that the requester is not malfunctioning or the requester 
can still contribute to the mission’s success it may remain in the field to complete its current mission. 

 
3. MEASUREMENT SPACE, THE PLANNING ALGORITHM, AND RISK  

 
The measurement space consists of the electromagnetic propagation environment where UAVs and the IP make their 
measurements.  This environment includes sample points and the desirable neighborhoods that surround them.  The 
sample points or the desirable neighborhoods are where the UAVs will make measurements.  The method of determining 
the sample points and desirable neighborhoods is described below. 
 
The measurement space also includes taboo points and the undesirable neighborhoods that surround them.  The taboo 
points are points of turbulence and other phenomena that could threaten the UAVs.  The undesirable neighborhoods 
surrounding them also represent various degrees of risk.  The method of specifying taboo points and quantifying the 
degree of risk associated with their undesirable neighborhoods employs fuzzy logic and is discussed in subsection 3.2. 
 
3.1 Planning algorithm 
 
The planning algorithm allows the determination of the minimum number of UAVs needed for the mission subject to 
fuel constraints, risk, UAV cost, UAV speed, and importance of various points for sampling.  Risk refers to turbulent 
regions or regions undesirable for other reasons, e.g., the presence of enemy observers or physical obstructions.  Risk 
may also be incurred if the UAV’s propulsion or sensor systems are considered unreliable.  The planning algorithm 
automatically establishes the order in which to send the UAVs taking into account the UAV’s value; speed; onboard 
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sensor payload; onboard resources such as fuel, computer CPU and memory; etc.  The priority of sample points and their 
desirable neighborhoods are taken into account.  The planning algorithm also calculates the optimal path around 
undesirable regions routing the UAVs to or at least near the points to be sampled. 
 
In the planning phase, the location of the EMS is unknown.  Some positions are more likely than others for the EMS’s 
location.  When establishing likely positions for the EMS, human experts are consulted.  The experts provide subjective 
probabilities of the EMS being located at a number of positions.  These likely EMS locations are referred as hypothesis 
positions.  Ray-theoretic electromagnetic propagation3 is conducted from each hypothesis position to each interferometer 
element on the IP.  The points on the sampling grid nearest the points of each ray’s passage are the sample points.  The 
priority of a sample point is related to the subjective probability of the hypothesis position from which the associated ray 
emerges.  Sample points arising from the highest probability hypothesis positions have priority one; sample points 
associated with lower probability hypothesis positions, priority two; etc. 
 
Each sample point is surrounded by what are referred to as desirable neighborhoods.  Depending on local weather, 
topography, etc., the desirable neighborhoods are generally concentric closed balls with a degree of desirability assigned 
to each ball.  The degree of desirability characterizes the anticipated variation in the index of refraction.  If for that 
region of the measurement space, the spatial variation of the index of refraction is slow, the degree of desirability may 
assume its maximum value of unity for a ball of radius measured in miles.  For regions of space where the index of 
refraction’s spatial variation is greater, the degree of desirability may fall off much more rapidly, approaching the 
minimum value of zero after just a mile or two. 
 
The desirable region need not have spherical geometry.  Rotational symmetry may be broken by a variety of processes, 
e.g., an elevated duct, a radio hole, etc. 
 
3.2 UAV risk and the fuzzy risk tree  
 
A point may be labeled taboo for a variety of reasons.  A taboo point and the undesirable neighborhoods containing the 
point generally represent a threat to the UAV.  The threat may take the form of high winds, turbulence, icing conditions, 
mountains, etc.  The undesirable neighborhoods around the taboo point relate to how spatially extensive the threat is.   
A method of quantifying risk and incorporating it into the path assignment algorithm is presented that offers conceptual 
improvements over an approach previously developed1.  This section uses fuzzy logic to quantify how much risk a given 
neighborhood poses for a UAV.  This quantitative risk is then incorporated into the UAV’s cost for traveling through the 
neighborhood as described in subsection 3.3.  Once the cost is established an optimization algorithm is used to determine 
the best path for the UAV to reach its goal. 
 
When determining the optimal path for the UAVs to follow both the planning algorithm and the control algorithm 
running on each UAV take into account taboo points and the undesirable neighborhood around each taboo point.  The 
path planning algorithm and control algorithm will not allow a UAV to pass through a taboo point.  The concept of risk 
is based on human expertise and employs rules each of which carry a degree of uncertainty.  This uncertainty is born of 
linguistic imprecision4, the inability of human experts to specify a crisp assignment for risk.  Owing to this uncertainty it 
is very effective to specify risk in terms of fuzzy logic. 
 
Risk is represented as a fuzzy decision tree5-10.  The risk subtree defined below is a subtree of the larger risk tree that was 
actually used.  The risk tree is used to define taboo points and the undesirable neighborhoods surrounding the taboo 
points.  
 
The root concepts on the risk tree use the membership function defined in (1-3), 
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where “taboo point” is the point at which the risk phenomenon has been observed.  The root concepts used on the risk 
subtree are given in (4).   
 
Root_concept ∈RC={Mountains, High Tension Wires, Buildings, Trees, Smoke Plumes, Suspended Sand, 
Birds/Insects, Other UAVs, Air Polution, Civilian, Own Military, Allied Military, Neutral Military, Cold, 

Heat, Icing, Rain, Fog, Sleet, Snow, Hail, Air Pocket, Wind, Wind Shear, Hostile Action/Observation} 

 
(4) 

 
The values taken by the quantity l∆ will be discussed in a future publication. 
 
The fuzzy membership function for the composite concept “risk” is defined as 
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with the “Undesirable Neighborhood” defined as follows: 
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The parameter, iτ , of the ith UAV, UAV(i) is defined such that it is preferred that UAV(i) not fly through the undesirable 
neighborhood given in (6).  Instead it is preferred that UAV(i) should only fly through points within an “Acceptable 
Neighborhood” as defined in (7), the complement of the set defined in (6). 
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3.3 Cost matrix 
 
The best path algorithm is actually an optimization algorithm that attempts to minimize a cost function to determine the 
optimal trajectory for each UAV to follow, given a priori knowledge.  The cost function for the optimization algorithm 
takes into account various factors associated with the UAV’s properties, mission and measurement space.  Two 
significant quantities that contribute to the cost are the effective distance between the initial and final proposed positions 
of the UAV and the risk associated with travel. 
 
For purposes of determining the optimal path, the UAV is assumed to follow a rectilinear path consisting of connected 
lines segments, where the beginning and ending points of each line segment reside on the UAV’s sampling lattice.  Let 
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A and B be two grid points on the UAV’s sampling grid with corresponding position vectors, BA rr
rr

and , 
respectively.  Denote the Euclidean distance between A and B as ( )BA r,rd

rr
.  Let ( )BA r,rv

rr
 be the speed at which the UAV 

travels in going from Ar
r

 to Br
r

.  If both BA rr
rr

and are sample points then the UAV travels at sampling velocity, 
otherwise it travels at non-sampling velocity.  The path cost is given by  
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where taboon is the number of taboo points, i.e., columns in the taboo point matrix 
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calculated.  The quantity, β , is an expert assigned parameter.  Note that ( )BA r,rtcos_path
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 is an effective time.  When 

risk is not present, i.e., ( )∑⋅
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 is the actual travel time.  When risk is 

present then the travel time is increased.  The time increase will be significant if the risk is high. 
 
If the candidate path for the mission consists of the following points on the UAV lattice given by the path matrix in (10), 
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Determining the optimal path for the the ith UAV consists of minimizing the total path cost given by (11) such that there 
is enough fuel left to complete the path. 
 
The planning algorithm determines the path each UAV will pursue, which points will be sampled, the minimum number 
of UAVs required for sampling the points and makes assignments of UAVs for measurements at particular points.  
UAVs are assigned as a function of their abilities to sample high priority points first.   The planning algorithm 
determines flight paths by assigning as many high priority points to a path as possible taking into account relative 
distances including sampling and non-sampling velocity, risk from taboo points, and UAV fuel limitations.  Once flight 
paths are determined, the planning algorithm assigns the best UAV to each path using the fuzzy logic decision rule for 
path assignment described in section 3.4.   
 
3.4 Decision rule for UAV path assignment 
 
The planning algorithm must assign UAVs to the flight paths determined by the optimization procedure described in 
section 3.3.  The planning algorithm makes this assignment using the following fuzzy logic based procedure.  To 
describe the decision rule it is necessary to develop some preliminary concepts and notation. 
 
Each UAV will fly from lattice point to lattice point, i.e., grid point to grid point, let one such route be given by the 
matrix of points, 
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where the ordering of points gives the direction of the route, i.e., starting at 1P

r
 and ending at 1P

r
.  Let the taboo points be 

those given in (9).  Let the degree of undesirability of the neighborhood associated with taboo points, tabooi n,,2,1i,t K
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Within the path specified by (12), let there be the following sample points to be measured, spj n,,2,1j,S K

r
= .  Let the 

function prio assign priorities to the sample points, i.e, ( )jSprio
r

 is the priority of the jth sample point.  The values that 

( )jSprio
r

 can take are positive integers with one representing the highest priority, two the next highest priority, etc.  The 

mission priority for Path is defined to be 
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(14) 

 
Furthermore, let the ( )( )Path,iUAVT  be the amount of time it will take UAV(i) to fly and make measurements along 
Path . 
 
The fuzzy degree of reliability experts assign to the sensors of UAV(i) is denoted as ( )( )iUAVsrµ .  This is a real number 
between zero and one with one implying the sensors are very reliable and zero that they are totally unreliable.  Likewise, 

( )( )iUAVnsrµ is the fuzzy degree of reliability of other non-sensor systems onboard the UAV(i).  This fuzzy concept 
relates to any non-sensor system, e.g., propulsion, computers, hard disk, deicing systems, etc.  The value of UAV(i) in 
units of $1000.00 is denoted as ( )( )iUAVV .  The amount of fuel that UAV(i) has at time t is denoted ( )( )t,iUAVfuel .  
All the UAVs participating in a mission are assumed to leave base at time, ott = . 
 
Let UAV(i)’s fuzzy grade of membership in the fuzzy concept “risk tolerance” be denoted as ( )( )iUAVtolrisk−µ .  The 
quantity, ( )( )iUAVtolrisk−µ , is a number between zero and one and will be simply referred to as UAV(i)’s risk tolerance.  
If the risk tolerance is near zero then the UAV should not be sent on very risky missions.  If the UAV’s risk tolerance is 
near one then it can be sent on very risky missions.  It seems natural to compare risk tolerance to value.  So the 
comparison can be carried out on the same footing, a fuzzy concept of value should be defined. 
 
The fuzzy grade of membership of each UAV that can be assigned to the mission in the fuzzy concept “Value” is defined 
as 
 

( )( ) ( )( )
( )( ){ }jUAVValuemax

iUAVValueiUAV
j

V ≡µ  
 
(15) 

 
The “max” operation in (15) is taken over the set of all possible UAVs that can be assigned to the mission. 
 
The advantage of the concept of “risk tolerance” is that it gives the user an extra concept to exploit.  If the UAV is not of 
great relative value, but it still might be needed for a crucial mission after the current one, it might be useful to give it a 
low risk tolerance so that it is not lost on the current mission.  This may allow it to be used on the following mission. 
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The final concept and related fuzzy membership function that will be defined is “slow”.  A UAV is said to be slow if it 
takes a long time to travel a particular path.  The fuzzy membership function for the concept “slow” is defined as 
follows: 
 

( )( ) ( )( )
( )( ){ }Path,jUAVTmax
Path,iUAVTPath,iUAV

j

slow ≡µ  
 
(16) 

 
A “slow” UAV experiences a higher relative mission risk since it is in the field longer and may be exposed to risk 
longer. 
 
To construct the fuzzy membership function for the fuzzy concept, “Assign UAV to Path” (AUP), make the following 
definitions: 
 

( )( ) ( )( ) ( )( )( )Path,iUAVTt,iUAVfuelPath,iUAVfactor fuelo1 −+≡ εχ ,  (17) 
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( )( ) ( )( ) ( )( ).Path,iUAVfactorPath,iUAVfactorPath,iUAVnum 21 ⋅≡  (20) 

 
The Heaviside step function denoted as χ in (17) takes the value one when its argument is greater than or equal to zero 
and is zero otherwise.  The quantity fuelε is added to the fuel term to make sure the UAV selected has more than enough 

fuel.  Given the definition of ( )( )Path,iUAVnum  the fuzzy membership function that gives the grade of membership of 
UAV(i) in the fuzzy concept “assign UAV to Path” is defined as 
 

( )( ) ( )( )
( )( )Path,jUAVnummax
Path,iUAVnumPath,iUAV

j

AUP ≡µ , 
 
(21) 

 
where the “max” operation in the denominator of (21) is taken over the set of all UAVs that can be assigned to the path. 
 
Given the fuzzy grade of membership it is necessary to defuzzify, i.e., make definite UAV-path assignments.  Simply 
assigning the UAV with the highest fuzzy grade of membership for a particular path to that path can give less than 
desirable results.  Another approach to defuzzification is as follows: assume that the following matrix has been 
determined ( )( ) ;n,,2,1j;n,,2,1i;Path,iUAV pathUAVjAUP KK ==µ where UAVn and pathn are the number of UAVs and 

paths, respectively.  Further assume that pathUAV nn ≥ .  There must be an assignment of a one UAV to each path.  The 

number of ways of doing this is path
path
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n n

n
n

P UAV
path
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⎞
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⎝

⎛
= !.  Let the set of paths be denoted as set_Path .  Let the 

thp assignment of UAVs to paths be denoted by the set of ordered pairs  
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where )p,j(index is defined to be a function that gives the UAV index as a function of path index pathn,,2,1j K= , and 

permutation index P,,2,1p path
UAV

n
nK= .  Let ( ){ }P,,2,1p|pPermset_Perm path

UAV
n
nK=≡   The approach to defuzzification 

currently used is to select the permutation p  such that the following cost function is maximized 
 

( )( )( )( ) set_Permp,Path,p,kindexindexUAV)set_Path,p(Cost
pathn

1k
kAUPAUP ∈∑=

=
µ . 

 
(23) 

 
If the number of paths exceeds the number of UAVs a similar procedure is taken where all possible permutations of path 
assignment to UAVs are considered and the assignment that is made is the one that maximizes a cost function analogous 
to (23). 
 

4. CONTROL ALGORITHM 
 
Each UAV has a real-time algorithm onboard it that allows recalculation of paths during flight due to changes in 
environmental conditions or mission priorities.  These changes typically become apparent after the planning algorithm 
has run during the pre-flight stage.  As in the case of the planning algorithm the control algorithm uses an A-star 
algorithm11 to do the best path calculation, employs fuzzy logic and solves a constrained optimization problem.   
This has proven successful for real-time application. 
 
The control algorithms’ recalculation of flight paths can be triggered by a number of events such as weather broadcasts 
that indicate new taboo regions or emergence of new or elimination of old sample points.  For those changes that do not 
require UAVs supporting each other, the control algorithm does not differ from the planning algorithm.  The control 
algorithm is faster by virtue that it only need process those parts of the measurement space where there have been 
changes relative to sample or taboo points. 
 
A UAV may requests help if it discovers a potential elevated system like a radio hole, malfunctions or suspected 
malfunctions.  All of these conditions can result in help messages being transmitted between the UAVs.  These help 
messages can result in interactions between the UAVs based on transmission of the results of priority calculations for 
rendering support to the requesting UAVs.   
 
Currently in the control stage, when a UAV discovers an interesting physical phenomenon, is malfunctioning, or 
suspects due to internal readings that it is malfunctioning, it sends out a request for help.  Each UAV receiving this 
message calculates its priorities for providing assistance to the UAV in need.  This priority calculation gives rise to a 
number between zero and one, inclusive, which is subsequently transmitted to the original UAV desiring support.  The 
requesting UAV sends out an omni-directional message with the ID of the UAV with highest priority for contributing 
support.  The high priority UAV then flies into the necessary neighborhood of the requesting UAV to provide help. 
 
There are three classes of help request.  The first occurs when a UAV, the requester, determines it may have discovered 
an interesting physical phenomenon.  This phenomenon may be an elevated duct, radio hole, rain system or some other 
type of system with physical extent.  The requester desires to determine if the phenomenon has significant extent.  It will 
request that a helping UAV or UAVs sample likely distant points within this phenomenon. 
 
The second class of help request relates to a UAV that according to internal diagnostics may be experiencing a sensor 
malfunction.  This UAV will requests that another UAV or UAVs measure some of the points that the requesting UAV 
measured.  This will help determine if the UAV is actually malfunctioning.  If the requesting UAV is determined to be 
malfunctioning, then it will fly back to base, if it is capable.  The determination of whether it is actually malfunctioning 
requires some consideration.  Since the second UAV will probably be measuring a distant point at a time different than 
the original requesting UAV made its measurements, potential variation in the index of refraction over time must be 
taken into account. 
 
When a UAV sends out an omni-directional request for help, those UAVs receiving the message will calculate their 
fuzzy priority for helping, denoted as “PH”.  The UAV that will ultimately help the requester is the one with the highest 
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fuzzy priority for helping.  The fuzzy priority for helping takes into account a variety of properties of the potential 
helper.  The set of UAVs that receive the request for help from UAV(i) at time t is denoted as )t,i(help .  If UAV(i) 
requests help at time t and UAV(j) receives the message then UAV(j) will take into account the amount of time, 
denoted, ( )( )jUAVtime_help , it will take to fly from the point where it received the request to the point where it would 
provide support.  It also takes into account the amount of fuel UAV(j) has left at the time of the request, denoted 

( )( )t,jUAVfuel ;  UAV(j)’s fuzzy concept of price denoted as “price”, and UAV(j)’s fuzzy concept of “mission 
priority” at time, t .  Let the set of relevant UAV properties be denoted as prop_UAV and be defined as 
 

{ }.price,prio_mission,fuel,time_helpprop_UAV =  (24) 

 
The fuzzy priority for helping denoted as PHµ  takes the form 
 

( ) ( )( ) ( )( ).jUAVwjUAV,iUAV
prop_UAV

PH α
α

α µµ ⋅∑=
∈

 
 

(25) 

 
The quantities αw  and αµ , for prop_UAV∈α are expert defined weights and fuzzy membership functions, 
respectively.  The fuzzy membership functions are defined in (26-29) and given below, 
 

( ) ( )( ) ( )( )
( )( ){ }

1

)t,i(helpk

time_help 1
kUAVtime_helpmax

jUAVtime_helpjUAV,iUAV

−

∈ ⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
+=µ , 

 
 

(26) 

 

( ) ( )( ) ( )( )
( )( ){ }kUAVfuelmax

jUAVfueljUAV,iUAV
)t,i(helpk

fuel

∈

=µ , 
 
 

(27) 

 

( ) ( )( ) ( )( )
( )( ){ }

1

)t,i(helpk

prio_mission 1
kUAVprio_missionmax

jUAVprio_missionjUAV,iUAV

−

∈ ⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
+=µ , 

 
 

(28) 

 

( ) ( )( ) ( )( )
( )( ){ }

1

)t,i(helpk

price 1
kUAVValuemax

jUAVValuejUAV,iUAV

−

∈ ⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
+=µ . 

 
 

(29) 

 
It is assumed that all evaluations are processed at time, t , so time dependence is suppressed in (25-29) for notational 
convenience.  A more sophisticated version of the control logic that takes path risk, changes in risk, UAV reliability, 
UAV, risk tolerance and missed sample points into account will be the subject of a future publication. 
 

5. COMPUTATIONAL EXPERIMENTS 
 
The planning and control algorithms described in the previous sections have been the subject of a large number of 
experiments.  This section provides a description of a small subset of these experiments. They serve to illustrate how the 
algorithms were tested.  Due to space limitations only experiments involving one or two UAVs are discussed. 
 
UAV experiments using only one UAV demonstrate how the planning and control algorithm, while avoiding taboo 
points, will determine the route the UAV flies so that it is successful in making measurements at sample points in space.  
Experiments using two UAVs illustrate how the control algorithm allows the UAVs to automatically support each other 
to increase the probability their joint mission is successful.   
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Figures 1-4 use the same labeling conventions.  Sample points are labeled by concentric circular regions colored in 
different shades of gray.  The lighter the shade of gray used to color a point, the lower the point’s grade of membership 
in the fuzzy concept “desirable neighborhood.”  The legend provides numerical values for the fuzzy grade of 
membership in the fuzzy concept “desirable neighborhoods”.  If the fuzzy degree of desirability is high then the index of 
refraction is considered to be close to the index of refraction of the sample point at the center of the desirable 
neighborhood.  This allows the UAV to make significant measurements while avoiding undesirable neighborhoods. 
 
Each sample point is labeled with an ordered pair.  The first member of the ordered pair provides the index of the sample 
point.  The second member of the ordered pair provides the point’s priority.  For example, if there are spn sample points 

and the thq sample point is of priority p ,then that point will be labeled with the ordered pair (q,p). 
 
Points surrounded by star-shaped neighborhoods varying from dark grey to white in color are taboo points.  As with the 
sample points, neighborhoods with darker shades of gray have a higher grade of membership in the fuzzy concept 
“undesirable neighborhood.”  The legend provides numerical values for the fuzzy grade of membership in the fuzzy 
concept “undesirable neighborhood.”  UAVs with high risk tolerance may fly through darker grey regions than those 
with low risk tolerance.  When comparing planning and associated control pictures, if a point ceases to be taboo, the 
neighborhood where it resides is marked by a very dim gray star as well as being labeled by a dialog box as being an 
“old taboo point.”  New taboo points and their associated undesirable neighborhoods are labeled with dialog boxes 
indicating that they are “new.” 
 
UAVs start their mission at the UAV base which is labeled with a diamond-shaped marker.  They fly in the direction of 
the arrows labeling the various curves in Figures 1-4.   
 
Figure 1 provides the sample points, taboo points and sample path for one UAV as determined by the planning 
algorithm.  It is important to notice that the UAV’s path passes directly through each sample point, i.e., through the 
center of the concentric circular regions representing the fuzzy degree of desirability of neighborhoods.  Fortuitously, the 
taboo points and their neighborhoods are so positioned that they do not interfere with the UAV’s measurement process 
or its return to base. 
 
Figure 2 depicts the actual path the UAV flies as determined by the UAV’s real-time control algorithm.  The path 
determined by the control algorithm differs from the one created by the planning algorithm due to real-time changes in 
taboo points.  After leaving the UAV base new weather data was acquired informing the UAVs that the exact position of 
the third sample point, i.e., the one labeled (3,1) actually resides within an undesirable neighborhood.  Due to the high 
priority of the sample point, the UAV flies into the taboo points’ undesirable neighborhood as indicated in Figure 2.   
 
In both the planning and control algorithms the UAV measures sample points of two different priorities, with the 
direction of the flight path selected so that the higher priority points are measured first.  By measuring high priority 
points first, the likelihood of an important measurement not being made is diminished, if the UAV can not complete its 
mission due to a malfunction, change in weather, etc. 
 
Also, due to movement of old taboo points or the emergence of new taboo points which are marked “New”, the path 
determined for the UAV using the control algorithm is significantly different than the one created by the planning 
algorithm.  The path change represents the control algorithm’s ability to reduce UAV risk. 
 
Figure 3 depicts the sampling path determined by the planning algorithm for an experiment involving two UAVs.  The 
first, UAV(1) follows the dashed curve; the second, UAV(2), the solid curve.  The UAVs were assigned to the different 
paths by the fuzzy path assignment decision rule described in section 3.  UAV(1) is assigned to sample all the highest 
priority points, i.e., the priority one points.  UAV(2) samples the lower priority points, i.e.; those with priority two.  Due 
to the greedy nature of the point-path assignment algorithm, the highest priority points are assigned for sampling first. 
 
Figure 4 depicts the actual flight path the UAVs take during real-time.  Initially, UAV(1) is successful in measuring 
sample points one and two as assigned it by the planning algorithm.  Just beyond sample point two, UAV(1) experiences 
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a malfunction.  UAV(1)’s real-time control algorithm subsequently sends out a help request informing the only other 
UAV in the field, UAV(2) of the malfunction.  UAV(2)’s control algorithm determines a new path for UAV(2) to fly so 
that the priority one points, labeled (3,1) and (4,1), that UAV(1) was not able to sample are subsequently measured.  
After UAV(2) measures sample point five, its new flight path allows it to measure sample points three and four.  
UAV(2)’s control algorithm determined it was very important that these priority one points be measured.  Unfortunately, 
due to the extra fuel expended in reassigning sample points three and four to UAV(2), UAV(2) did not have enough fuel 
to measure sample points seven and eight which were of priority two.  UAV(2)’s real-time control algorithm determined 
the best possible solution in the face of changing circumstances and limited resources. 
 
It is important to note that the control algorithms running on UAV(1) and UAV(2) direct both UAVs to alter their return 
flight to the base due to the emergence of new taboo points making the planning algorithm determined flight paths too 
dangerous.  The control algorithm uses each UAV’s fuzzy risk tolerance to determine how close each UAV may 
approach a taboo point. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 1: One UAV trajectory as determined by the planning 
algorithm. 

Figure 2: One UAV trajectory as determined by the  
real-time control algorithm. 

Figure 3: Trajectory of two UAVs as determined by the 
planning algorithm. 

Figure 4: During flight, updates about environmental 
changes cause the real-time control algorithms on the two 
UAVs to change their trajectories. 
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6. SUMMARY 
 
Fuzzy logic based planning and control algorithms that allow a team of cooperating unmanned air vehicles (UAVs) to 
make meteorological measurements have been developed.  The planning algorithm including the fuzzy logic based 
optimization algorithm for flight path determination and the UAV path assignment algorithm are discussed.  The control 
algorithm also uses these fuzzy logic algorithms, but also allows three types of automatic cooperation between UAVs.  
The fuzzy logic algorithm for automatic cooperation is examined in detail.  Methods of incorporating environmental risk 
measures as well as expert measures of UAV reliability are discussed as they relate to both the planning and control 
algorithms.  Experimental results are examined.   
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