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Abstract. Advances in a fuzzy decision theory that allow automatic cooperation between unmanned aerial vehicles (UAVs)
are discussed. The algorithms determine points the UAVs are to sample, flight paths, and the optimal UAVs for the task and
related changes during the mission. Human intervention is not required after the mission begins. The algorithms take into
account what is known before and during the mission about UAV reliability, fuel, and kinematics as well as the measurement
space’s meteorological states, terrain, air traffic, threats and related uncertainties. The fuzzy decision tree for path assignment
is a significant advance over an older fuzzy decision rule that was previously introduced. Simulations show the ability of the
control algorithm to allow UAVs to effectively cooperate to increase the UAV team’s likelihood of successfully measuring the
atmospheric index of refraction over a large volume. A genetic program (GP) based data mining procedure is discussed for
automatically evolving fuzzy decision trees. The GP is used to automatically create the fuzzy decision tree for real-time UAV
path assignments. The GP based procedure offers several significant advances over previously introduced GP based data mining
procedures. These advances help produce mathematically concise fuzzy decision trees that are consistent with human intuition.

1. Introduction

Autonomous cooperative teams of robots will be
used for many applications in the near future. Funda-
mental to this process will be mission planning prior
to the mission and algorithms for automatic control
and cooperation of the robots in real-time during the
mission.

In the following, algorithms based on fuzzy logic are
described that can be used to plan missions for a coor-
dinated team of flying robots. The robotic unmanned
aerial vehicles (UAVs) will be rendered autonomous.
Human intervention is not required after the mission
begins when the algorithms described below are used.

The UAVs’ goal is to cooperate to measure the atmo-
spheric index of refraction. The fuzzy mission planning
algorithm uses human expertise to determine the points
to be sampled, the points to avoid, the best flight paths
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for sampling and a small number of the best UAVs to
conduct the mission.

The planning algorithm takes into account the input
properties of each UAV under consideration including:
the UAVs risk tolerance, i.e., how much risk the UAVs
owner will allow it to experience, expert estimates of
the UAV’s sensor and non-sensor system reliabilities;
and the amount of fuel the UAV carries. The planning
algorithm also takes into account what is known about
the atmospheric volume where measurements are to be
made, i.e., the measurement space prior to the mission.
This information includes weather, e.g., rain, turbu-
lence, and icing conditions; physical obstructions such
as mountains, and high tension wires; enemy behavior;
air traffic such as civilian or military aircraft or animal
life. This information is used to form a measure of risk,
using a fuzzy risk tree. The risk tree allows a simple
mathematical formulation of the mission risk.

Also, the planning algorithm takes into account elec-
tromagnetic propagation [4,9] as well as human exper-
tise to determine points in the atmosphere to sample,
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Fig. 1. The AUP subtree.

their priority and a simple mathematical formulation of
the mission priority.

A real-time algorithm expressed as a fuzzy decision
tree is formulated for assignment of the best UAV to
each path. The algorithm that “assigns UAVs to paths”
(AUP) is referred to as the AUP fuzzy decision tree and
it is depicted in Fig. 1.

The AUP fuzzy decision tree is a simple elegant
mathematical formula determining the degree to which
each UAV belongs to the path in terms of risk-tolerance,
sensor and non-sensor reliability, UAV fuel limitations,
mission priority and mission risk.

The predecessor to the AUP fuzzy decision tree was
the AUP fuzzy decision rule [20,22,24]. Both the AUP
decision rule and AUP decision tree were initially con-
structed based on human expertise. The AUP fuzzy
decision rule had some of the properties of the tree,
but was more limited in its decision making ability and
subject to certain types of errors that the tree was de-
signed to avoid. The AUP decision tree is a significant
advance over the AUP decision rule [22,24].

The AUP fuzzy decision tree is used by both the
planning and real-time control algorithm. It can make
extremely fast assignments of UAVs to paths, while
allowing the various input concepts to remain explicit
in the formulation.

Although the AUP decision tree was originally con-
structed using human expertise, another method for
evolving it using a genetic program (GP) [7] as a data
mining (DM) function has been created. The GP is
capable of recreating the original tree, but has subse-
quently produced trees that are different but arguably
superior in their performance properties. The GP is
guided by built in fuzzy logic based on partial exper-
tise and related uncertainty. This procedure results in

fuzzy decision trees that are mathematically more con-
cise. The trees also assume a form that is more con-
sistent with human intuition making them easier to un-
derstand. By making the tree more concise and easier
to understand it is easier to introduce new rules on the
trees for the purpose of innovation. Also, concise and
intuitive results frequently facilitate validation.

Classical if-then rules have been used in the past
to guide GP evolution, notably for the purpose of re-
verse engineering hardware designs [21,25]. The use
of fuzzy rules to guide the GP is a significant advance
over using classical if-then rules. Fuzzy logic offers a
better way of dealing with the uncertainties associated
with partial knowledge.

A GP is a computer program based on the theory
of evolution that automatically evolves other computer
programs or mathematical expressions [7]. The math-
ematical expressions evolved here are fuzzy decision
trees.

The GP based procedure is a DM technique, a kind
of pattern recognition. The GP mines a database of
scenarios to produce an optimal tree. An optimal so-
lution is one that maximizes the fitness function. The
fitness function is constructed using the database of
scenarios. The GP is guided by fuzzy logic to improve
the GP’s convergence time, to reduce size of the tree
and produce elegant mathematical formulations under-
standable by human beings. Elegance and conciseness
of form, and understandability are essential to further
innovation. The fuzzy decision trees that are created by
the GP based DM procedure are unlike black box algo-
rithms like neural nets where understanding parameter
relations is generally out of the question.

Being able to automatically generate decision algo-
rithms using GP based data mining is a significant ad-
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vance. It is frequently difficult to acquire enough if-
then rules from experts to produce a full tree, whereas
experts can often provide opinions about the status of
a scenario.

Other approaches to creating optimal flight paths
with UAV assignments might use a genetic algorithm
(GA) or dynamic programming. Both approaches
might be suitable for a pre-mission planning algorithm
where there is plenty of time for computationally in-
tensive algorithms to run. They are unlikely to be suit-
able for real-time application, when dealing with slow
legacy processors. The AUP fuzzy decision tree re-
quires little CPU time and can produce effective deci-
sions even on slow legacy processors. Also, the one-
time decisions made by the GA [8,27] or dynamic pro-
gramming approaches [1,30] would be represented as
numbers, not mathematical expressions. It would be
difficult or impossible to extract explicit relationships
between input quantities like reliability, risk-tolerance,
etc., and output quantities like the ultimate assignment
of a UAV to a path.

The planning algorithm makes determinations prior
to the mission’s execution. Inevitably, during the mis-
sion, events will occur that demand changes to the pre-
viously determined flight path. The real-time control
algorithm allows the UAVs’ task to change during the
mission. These changes can include alteration in flight
path, changing sample points and the need for auto-
matic cooperative behavior between UAVs. As paths
change in real-time the AUP fuzzy decision tree is used
for reassignment.

A fuzzy decision rule referred to as the priority of
helping (PH) decision rule is also providedas part of the
control algorithm that allows the UAVs to cooperate au-
tomatically in three ways. This automatic cooperation
is based on communication; there is no fixed or cen-
tral command platform: the UAVs automatically self-
organize. The information transferred between UAVs
is a small number of fuzzy grades of membership, so
communication bandwidth requirements are very low.

The PH fuzzy decision rule allows UAVs to collabo-
rate to make atmospheric measurements. It also allows
them assist each other when malfunctions are suspected
or take over when a malfunction has occurred.

The PH fuzzy decision rule is a simple elegant mathe-
matical relationship between various fuzzy concepts es-
sential to collaboration. It makes explicit relationships
that would be impossible to discern using a black box
like a neural net [6] or an optimization procedure [1,5,
8,11,12,27,28,30] that delivers only a numerical output
like a GA or dynamic programming.

The planning and control algorithms described be-
low could be used for many different cooperative atmo-
spheric measurement processes such as tracking chemi-
cal plumes [26], determining properties of atmospheric
ducts [4], rain systems, etc. The application that moti-
vated this work was a need to measure the atmospheric
index of refraction for the purpose of geo-location [20,
24].

Section 2 discusses the electromagnetic measure-
ment space, UAV risk, and the planning algorithm. Sec-
tion 2 also discusses the UAV path construction algo-
rithm that determines the minimum number of UAVs
required to complete the task, a fuzzy logic based ap-
proach for assigning paths to UAVs and which UAVs
should be assigned to the overall mission. Finally Sec-
tion 2 discusses a genetic program based data mining
procedure for evolving the fuzzy decision tree for as-
signing UAVs to paths. Section 3 describes the con-
trol algorithm that renders the UAVs autonomous. Sec-
tion 3 also describes the priority for helping algorithm,
a part of the control algorithm based on fuzzy logic that
determines which UAV should support another UAV re-
questing help. The three subclasses of help requests are
also discussed in this section. Section 4 discusses ex-
perimental results including UAV path determination,
UAV path assignment, determination of which UAVs
should fly the mission and the result of a request for help
during the mission. Section 5 provides conclusions.
Finally, Section 6 describes future research directions.

2. Planning, AUP tree and the evolution of logic

The measurement space consists of the electromag-
netic propagation environment where UAVs and the
IP make their measurements. This environment in-
cludes sample points and the desirable neighborhoods
that surround them. The sample points or the desirable
neighborhoodsare where the UAVs will make measure-
ments. The method of determining the sample points
and desirable neighborhoods is described below.

The measurement space also includes taboo points
and the undesirable neighborhoods that surround them.
The taboo points are points of turbulence and other phe-
nomena that could threaten the UAVs. The undesirable
neighborhoods surrounding them also represent various
degrees of risk. The method of specifying taboo points
and quantifying the degree of risk associated with their
undesirable neighborhoods employs fuzzy logic and is
discussed in this section.
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The planning algorithm allows the determination of
the minimum number of UAVs needed for the mission
subject to fuel constraints, risk, UAV cost, and impor-
tance of various points for sampling. Risk refers to
turbulent regions or regions undesirable for other rea-
sons, e.g., the presence of enemy observers or physi-
cal obstructions. The planning algorithm automatically
establishes the order in which to send the UAVs tak-
ing into account the UAV’s value; onboard sensor pay-
load; onboard resources such as fuel, computer CPU
and memory; etc. The priority of sample points and
their desirable neighborhoods are taken into account.
The planning algorithm also calculates the optimal path
around undesirable regions routing the UAVs to or at
least near the points to be sampled.

In the planning phase, the location of the electro-
magnetic source (EMS) is unknown. Some positions
are more likely than others for the EMS’s location.
When establishing likely positions for the EMS, human
experts are consulted. The experts provide subjective
probabilities of the EMS being located at a number
of positions. These likely EMS locations are referred
ashypothesis positions. Ray-theoretic electromagnetic
propagation [4,20] is conducted from each hypothesis
position to each interferometer element on the interfer-
ometer platform (IP). The points on the sampling grid
nearest the points of each ray’s passage are the sample
points. The priority of a sample point is related to the
subjective probability of the hypothesis position from
which the associated ray emerges. Sample points aris-
ing from the highest probability hypothesis positions
have priority one; sample points associated with lower
probability hypothesis positions, priority two; etc.

Each sample point is surroundedby what are referred
to asdesirable neighborhoods. Depending on local
weather, topography, etc., the desirable neighborhoods
are generally concentric closed balls with a degree of
desirability assigned to each ball. The degree of de-
sirability characterizes the anticipated variation in the
index of refraction. If for that region of the measure-
ment space, the spatial variation of the index of refrac-
tion is slow, the degree of desirability may assume its
maximum value of unity for a ball of radius measured
in miles. For regions of space where the index of re-
fraction’s spatial variation is greater, the degree of de-
sirability may fall off much more rapidly, approaching
the minimum value of zero after just a mile or two.

The desirable region need not have spherical geom-
etry. Rotational symmetry may be broken by a variety
of processes, e.g., an elevated duct, a radio hole, etc.

The notion of a desirable neighborhood is motivated
by the fact that a sample point may also be a taboo

point or reside within an undesirable neighborhood.
In the case the sample point coincides with or is near
a taboo point and at least part of the sample point’s
desirable neighborhood falls within the taboo point’s
undesirable neighborhood, the UAV may only sample
within a desirable neighborhood that is consistent with
its risk tolerance.

A point may be labeled taboo for a variety of rea-
sons. A taboo point and the undesirable neighborhoods
containing the point generally represent a threat to the
UAV. The threat may take the form of high winds,
turbulence, icing conditions, mountains, etc. The un-
desirable neighborhoods around the taboo point relate
to how spatially extensive the threat is. A method
of quantifying risk and incorporating it into the path
assignment algorithm is presented that offers concep-
tual improvements over an approach previously de-
veloped [20]. This section uses fuzzy logic to quan-
tify how much risk a given neighborhood poses for a
UAV. This quantitative risk is then incorporated into the
UAV’s cost for traveling through the neighborhood as
described in this section. Once the cost is established
an optimization algorithm is used to determine the best
path for the UAV to reach its goal.

When determining the optimal path for the UAVs
to follow both the planning algorithm and the control
algorithm running on each UAV take into account taboo
points and the undesirable neighborhood around each
taboo point. The path planning algorithm and control
algorithm will not allow a UAV to pass through a taboo
point. Depending on the UAV’s risk tolerance a UAV
may pass through various neighborhoods of the taboo
point, subsequently experiencing various degrees of
risk. Both the concepts of risk and risk tolerance are
based on human expertise and employ rules each of
which carry a degree of uncertainty. This uncertainty
is born of linguistic imprecision [24,29], the inability
of human experts to specify a crisp assignment for risk.
Owing to this uncertainty it is very effective to specify
risk and risk tolerance in terms of fuzzy logic.

2.1. Risk fuzzy decision tree

Risk is represented as a fuzzy decision tree [3,15–
19]. The risk subtree defined below and displayed in
Fig. 2 is a subtree of the larger risk tree that was actually
used. The risk tree is used to define taboo points and
the undesirable neighborhoods surrounding the taboo
points.

The root concepts on the risk tree use the membership
function defined in Eqs (1)–(3),
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Fig. 2. The fuzzy risk tree and its 25 fuzzy root concepts.
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=




1, if r = 0
3/4, if 0 < r � 1 · ∆l
1/2, if 1 · ∆l < r �

√
2·∆l

1/4, if
√

2·∆l < r �
√

3·∆l

0, if r >
√

3·∆l

r = ‖�x− �qtaboo‖ , (2)

�qtaboo = position of taboo point. (3)

where the “taboo point,”�qtaboo is the point at which the
risk phenomenonhas been observed. The root concepts
used on the risk subtree are given in Eq. (4), and the
subscriptγ is an element of the root concept set,RC,
i.e.,

γ ∈ RC = {Mountains, High Tension Wires,

Buildings, Trees, Smoke Plumes,

Suspended Sand, Birds/Insects,

Other UAVs, Air Polution, Civilian,

Own Military, Allied Military,

Neutral Military, Cold, Heat,

Icing, Rain, Fog, Sleet, Snow, Hail,

Air Pocket, Wind, Wind Shear,

Hostile Action/Observation}. (4)

The norm in Eq. (2) is typically taken as an Euclidean
distance. The quantity∆l for most applications is
generally assigned a value of one mile or more. In
extreme cases it can be much larger than a mile.

The fuzzy membership function for the composite
concept “risk” is defined as

µrisk (�qtaboo, �x) = max
α∈RC

µα (�qtaboo, �x) . (5)
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2.2. Optimal paths and AUP fuzzy decision tree

The best path algorithm is actually an optimization
algorithm that attempts to minimize a cost function
to determine the optimal trajectory for each UAV to
follow, given a priori knowledge. The cost function for
the optimization algorithm takes into account various
factors associated with the UAV’s properties, mission
and measurement space. Two significant quantities that
contribute to the cost are the effective distance between
the initial and final proposed positions of the UAV and
the risk associated with travel.

For purposes of determining the optimal path, the
UAV is assumed to follow a rectilinear path consisting
of connected lines segments, where the beginning and
ending points of each line segment reside on the UAV’s
sampling lattice. Let A and B be two grid points on
the UAV’s sampling grid with corresponding position
vectors,�rA and�rB , respectively. Denote the Euclidean
distance between A and B asd (�rA, �rB). Letv (�rA, �rB)
be the speed at which the UAV travels in going from
�rA to�rB. If both�rA and�rB are sample points then the
UAV travels at sampling velocity, otherwise it travels
at non-sampling velocity. The path cost is given by

path cos t (�rA, �rB) =

d(�rA,�rB)+β·
ntaboo∑

i=1

µrisk(�ti,�rB)

v(�rA,�rB)

. (6)

where ntaboo is the number of taboo points, i.e.,
columns in the taboo point matrix

Taboo≡ [
�t1,�t2, . . . ,�tntaboo

]
(7)

and�ti, i = 1, 2, . . . , ntaboo are the taboo points de-
termined to exists in the measurement space when
path cos t (�rA, �rB) is calculated. The number of points
in the measurement space is finite sontaboo is finite.
The quantity,β, is an expert assigned parameter. Note
that pathcos t (�rA, �rB) is an effective time. When risk

is not present, i.e.,β ·
ntaboo∑
i=1

µrisk

(
�ti, �rB

)
is zero, then

path cos t (�rA, �rB) is the actual travel time. When risk
is present then the travel time is increased. The param-
eterβ helps to penalize risky paths, thus decreasing the
probability they are selected.

If the candidate path for the mission consists of the
following points on the UAV lattice given by the path
matrix in Eq. (8),

Pathi =
[
�r1, �r2, . . . , �rn

]
, (8)

then the total path cost is defined to be

total cost(Pathi) ≡
n−1∑
j=1

pathcost(�rj , �rj+1). (9)

Determining the optimal path for theith UAV con-
sists of minimizing the total path cost given by Eq. (9)
such that there is enough fuel left to complete the path.

An A-star algorithm [13] is used to determine the
point that will ultimately minimize the cost function.
A-star is a heuristic algorithm. It was selected because
it is relatively fast and can be polynomial in time [13].
Empirically it is significantly faster than the Dijkstra
algorithm [13]. It is very effective for cases where a
significant percentage of the atmospheric volume does
not change over the course of a mission.

The A-star algorithm as implemented in the planning
and control algorithms is an easily replaceable mod-
ule. It may well be replaced by a more sophisticated
algorithm in the future [5,11,12,28].

The planning algorithm determines the path each
UAV will pursue, which points will be sampled, the
minimum number of UAVs required for sampling the
points and makes assignments of UAVs for measure-
ments at particular points. UAVs are assigned as a
function of their abilities to sample high priority points
first. The planning algorithm determines flight paths by
assigning as many high priority points to a path as pos-
sible taking into account relative distances including
sampling and non-sampling velocity, risk from taboo
points, and UAV fuel limitations. Once flight paths
are determined, the planning algorithm assigns the best
UAV to each path using the fuzzy logic decision tree
for path assignment described in this section.

The planning algorithm must assign UAVs to the
flight paths determined by the optimization procedure
described below in this section. This is referred to as
the UAV path assignment problem (UPAP). The plan-
ning algorithm makes this assignment using the follow-
ing fuzzy logic based procedure. To describe the de-
cision tree it is necessary to develop some preliminary
concepts and notation.

Each UAV will fly from lattice point to lattice point,
i.e., grid point to grid point, let one such route be given
by the matrix of points,

Path=
[
�P1, �P2, . . . , �Pnpath ,

�P1

]
(10)

where the ordering of points gives the direction of
the route, i.e., starting at�P1 and ending at�P1. Let
the taboo points be those given in Eq. (7). Let the
degree of undesirability of the neighborhood associ-
ated with taboo points,�ti, i = 1, 2, . . . , ntaboo be
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denotedµrisk

(
�ti, �Pj

)
for the route points�Pj , j =

1, 2, . . . , npath. The definition of the mission risk (MR)
is

missionrisk(Taboo,Pathk) ≡
ntaboo∑
i=1

npath∑
j=1

µrisk

(
�ti, �Pj

)
(11)

The degree to which thekth path belongs to the
related fuzzy conceptMR is given by

µMR (Taboo,Pathk) ≡
missionrisk(Taboo,Pathk)

max
j

{
missionrisk

(
Taboo,Pathj

)} (12)

The “max” operation in Eq. (12) is taken over the
set of all possible UAVs that can be assigned to the
mission.

A fuzzy concept related to “mission risk” is “low
risk.” The fuzzy membership function for “low risk”
denoted asµLR is defined as

µLR (Taboo,Pathk) ≡
min (1, α + 1 − µMR) (13)

whereα ∈ (0, 1) is an expert defined parameter. The
function ofα is to make sure that “low risk” does not
dominate calculations developed below.

Within the path specified by Eq. (10), let there be
the following sample points to be measured,�Sj , j =
1, 2, . . . , nsp. Let the functionprio assign priorities
to the sample points, i.e, prio( �Sj) is the priority of the
jth sample point. The values that prio( �Sj) can take
are positive integers with one representing the highest
priority, two the next highest priority, etc. The mission
priority (MP) for thekthPathk is defined to be

missionprio(Pathk) ≡
nsp∑
i=1

1

prio
(
�Si

) . (14)

The degree to which thekth path belongs to the
related fuzzy conceptMP is given by

µMP (Pathk) ≡ missionprio(Pathk)
max
j

{missionprio(Pathj)} .(15)

The fuzzy degree of reliability experts assign to the
sensors of UAV(i) is denoted asµsr (UAV (i)). This is
a real number between zero and one with one implying
the sensors are very reliable and zero that they are
totally unreliable. Likewise,µnsr (UAV (i)) is the
fuzzy degree of reliability of other non-sensor systems

onboard the UAV(i). This fuzzy concept relates to any
non-sensor system, e.g., propulsion, computers, hard
disk, deicing systems, etc. The value of UAV(i) in
units of $1000.00 is denoted asV (UAV (i)). The
amount of fuel that UAV(i) has at timet is denoted
fuel (UAV (i) , t). All the UAVs participating in a
mission are assumed to leave base at time,t = to.

Let UAV(i)’s fuzzy grade of membership in the
fuzzy concept “risk tolerance” be denoted asµ risk−tol

(UAV (i)). The quantity,µrisk−tol (UAV (i)), is a
number between zero and one and will be simply re-
ferred to as UAV(i)’s risk tolerance. If the risk toler-
ance is near zero then the UAV should not be sent on
very risky missions. If the UAV’s risk tolerance is near
one then it can be sent on very risky missions. It seems
natural to compare “risk tolerance” to “Value.” So the
comparison can be carried out on the same footing, a
fuzzy concept of value should be defined.

The fuzzy grade of membership of each UAV that
can be assigned to the mission in the fuzzy concept
“Value” is defined as

µV (UAV (i)) ≡ εV · Value(UAV (i))
max
j

{Value(UAV (j))} (16)

The quantityεV is an expert assigned value. It is
a number between zero and one that insures that the
most valuable UAV can still be assigned to a path. The
motivation for defining this parameter will be clearer
after the AUP subtree is defined below, since it can be
observed that ifεV is zero, then for the most valuable
UAV in the team,µAUP will take the value zero. This
would prevent it from being assigned a path which is
undesirable.

The advantage of the concept of “risk tolerance” is
that it gives the user an extra concept to exploit. If the
UAV is not of great relative value, but it still might be
needed for a crucial mission after the current one, it
might be useful to give it a low risk tolerance so that it
is not lost on the current mission. This may allow it to
be used on a subsequent mission.

Another fuzzy concept and related fuzzy member-
ship function that will be defined is “fast.” A UAV
is said to be fast if it permitted to pursue a particular
path and the time it would take to complete the path
is small. It is not allowed to travel the path unless the
UAV’s fuel level, reliability, risk-tolerance and mission
priority exceed certain tolerances.

Let theT (UAV (i) ,Path) be the amount of time it
will take UAV(i) to fly and make measurements along
Path. The fuzzy membership function for the concept
“fast” is defined as follows:
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µfast (UAV (i) , Path) ≡ Λrrtmp· (17)

min


1, α + 1 − T (UAV (i) ,Path)

max
j

{T (UAV (j) ,Path)}




and

Λrrtmp ≡ χ [fuel(UAV (i) , to) + εfuel

−T (UAV (i) ,Path)] ·
χ [min (µsr, µnsr) − ε1,rel· (18)

min(1 − µrisk−tol,

max(1 − µMP , ε2,MP )) − ε3,rel]

whereε1,rel, ε2,MP , ε3,rel, εfuel ∈ (0, 1] are expert as-
signed parameters. The Heaviside step functions de-
noted asχ in Eq. (18) takes the value one when its
argument is greater than or equal to zero and is zero
otherwise.

The factor in Eq. (18) determines whether the UAV
will be permitted to travel the path at all. If its amount of
fuel, sensor and non-sensor reliabilities, risk-tolerance
and mission priorities do not exceed certain expert de-
fined tolerances it will not be permitted to travel and as
such it will certainly not be “fast.”

The termε1,rel ·min(1 − µrisk−tol,max(1 − µMP ,
ε2,MP )) in the Heaviside step function’s argument in
Eq. (18) can result inΛrrtmpgoing to zero ifµrisk−tol

or µMP are small enough.
The parameterα is selected so thatµfast in Eq. (17)

does not go to zero for the UAV that takes the longest
time to navigate Path. By preventingµfast from going
to zero in this case, the slowest UAV can be selected if
it can complete the path and its grades of membership
in the other fuzzy concepts found in Eq. (17) are high
enough.

If “Risk tolerance” and “mission priority” take low
values then depending on the value ofε1,rel, the mem-
bership function for the fuzzy concept “fast” may take
the value zero. The parameterε2,MP limits the effect
of “mission priority.” Even if the mission priority is
very high, risk tolerance plays an important role. If the
UAV has high risk tolerance and the path, high mis-
sion priority the UAV must have a minimum reliability
given byε3,rel. Finally, the motivation for the concept
“fast” is that a fast UAV experiences a lower relative
risk since it is in the field less time and may be exposed
to risk for a shorter duration.

A fuzzy concept that combines “Value” and “mission
risk” is “VMR” and its membership function denoted
asµVMR is defined as

µVMR ≡ min [min (µrisk−tol, 1 − µV ) ,

AND2 (µfast, µLR)] (19)

The use ofAND2 in Eq. (19) allows distinctions
to be made between various values ofµ fast andµLR.
If AND2 were replaced by amin in Eq. (19) then if
µfast is low enough thenmin (µfast, µLR) would take
the valueµfast independent of the value ofµLR this
would not allow fine distinctions to be made.

The logical connectiveAND2 is defined as

AND2 (µA, µB) ≡ µA · µB (20)

The fuzzy concept “RMP” combines the fuzzy con-
cepts sensor reliability (sr) non-sensor-reliability (nsr)
and “MP.” The fuzzy membership function for “RMP,”
denoted asµRMP is defined as

µRMP ≡ min (µsr, µnsr, µMP ) . (21)

Table 1 provides an example of the application of
Eq. (21) for a three UAV scenario.

Both the membership functions for “VMR” and
“RMP” can be represented as fuzzy decision trees.

Finally, the fuzzy membership function for the fuzzy
concept “assignment of UAV(i) to the path” (AUP) is
defined as

µAUP ≡ AND2[µRMP ,

AND2 (µRMP , µVMR)]

= µ2
RMP · µVMR (22)

The fuzzy membership function for AUP is a deci-
sion tree that combines both “VMR” and “RMP” as
subtrees. The use ofAND2 in Eq. (22) in two places
rendersµAUP more sensitive to the values ofµRMP

andµVMR than it would be if the membership func-
tion for AUP took the valuemin (µRMP , µVMR). If
µAUP were to take the valuemin (µRMP , µVMR) then
a small value ofµRMP such thatµRMP < µVMR

would causeµAUP to take the value ofµRMP inde-
pendent of the value ofµVMR. The use ofAND2 in-
stead ofmin allows finer distinctions to be made. The
second degree dependence ofµRMP in Eq. (22) results
in a small value ofµAUP if µRMP is small, butµAUP
is still dependent onµVMR. This is consistent with
expertise. If the sensor or non-sensor reliabilities or
mission priority are small,µAUP should be small. Low
reliability or priority results in a faster decline inµAUP
than high mission risk, high UAV value, low UAV risk
tolerance or the fact that a reliable and risk-tolerant
UAV is slow.

It should be observed that the decisions made by AUP
are taken over a pool of candidates. So it is reasonable
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Table 1
Three UAV example for the composite concept RMP

Three UAV Numerical Example for Use of RMP

Fuzzy Membership Function UAV 1 UAV 2 UAV 3

Sensor reliability,µsr 0.8 0.7 0.8
Non-sensor reliability,µnsr 0.9 0.4 0.8
Risk Tolerance,µrisk−tol 0.3 0.4 0.5
Mission Priority,µMP 0.6 1 0.4
µRMP ≡ min (µsr , µnsr , µMP ) 0.6 0.4 0.4

those UAVs in the pool that have greater sensor and
non-sensor system reliabilities and greater relative mis-
sion priority, should have a higher fuzzy grade of mem-
bership for assignment to the path under consideration.
AUP’s second degree dependence on RMP may allow
RMP to be too dominant in the calculations. In the
genetic program based approach described below ver-
sions of RMP were evolved where the power of RMP
was between 1.5 and 1.7. These different versions of
RMP are still under study.

The fuzzy concept AUP is depicted as a tree in Fig. 1.
Leaves of the tree, i.e., those vertices of degree one are
labeled by the names of the fuzzy concepts described
above. Vertices are labeled by the specific logical con-
nective used, i.e.,min or AND2. A circle on an edge
indicates the fuzzy logic modifiernot. The fuzzy mod-
ifier not is defined as the complement of the fuzzy set,
i.e., letµA be the fuzzy membership function for the
fuzzy conceptA then membership function fornot A
is given by1 − µA. A three UAV example is provided
in Table 1 to illustrate the use of the RMP subtree of
Fig. 1.

Given the fuzzy grade of membership it is necessary
to defuzzify, i.e., make definite UAV-path assignments.
Simply assigning the UAV with the highest fuzzy grade
of membership for a particular path to that path can give
less than desirable results. The approach to defuzzifi-
cation taken is as follows: if the number of UAVs is
denoted asnUAV and likewise, the number of paths is
denoted bynpath, wherenUAV � npath then consider
the set of all possible permutations of thenpath UAVs
selected from a total ofnUAV UAVs. For each assign-
ment ofnpath UAVs to the paths, add up the values of
µAUP for that assignment over the paths. This sum is
referred to as the assignment benefit (AB). The assign-
ment with the highest AB is the one selected. Finally,
a similar procedure is followed ifnUAV < npath.

The decision tree for AUP given in Eq. (22) was con-
structed using expertise provided by human experts.
It is a significant improvement over a previously de-
veloped fuzzy decision rule for path assignment also
constructed from expertise [24]. An alternate method

of obtaining Eq. (22) is to evolve it using a genetic
program (GP). A GP is a computer program based on
the theory of evolution that evolves mathematical ex-
pressions or computer programs that can be considered
optimal in a sense. The GP has been used as a data
mining function to create the decision tree in Eq. (22).
The GP data mined a scenario database where each
scenario had been labeled by an expert. Expert rules
were also incorporated to guide the evolutionary pro-
cess and improve convergence time. The decision tree
in Eq. (22) has been evolved many times. The GP finds
the same AUP decision tree, over and over again inde-
pendent of the seed of the random number generator
used to simulate a random evolutionary process. The
GP based procedure is described in greater detail in the
next subsection and an earlier version in [19].

2.3. GP creation of the AUP tree

The AUP tree given in the previous subsection arose
from rules provides by human experts. In this subsec-
tion a method of evolving the AUP tree using data min-
ing is discussed. This procedure has been successful
in evolving the exactly same tree found in Fig. 1. The
fact that two significantly different methods of obtain-
ing the AUP algorithm give the same results provides a
significant level of confidence in the AUP tree. Finally,
the fact that the data mining approach is an optimiza-
tion procedure, i.e., it gives results that are optimal in a
sense should further strengthen confidence in the AUP
tree.

Data mining is the efficient extraction of valuable
non-obvious information embedded in a large quantity
of data [2]. Data mining consists of three steps: the
constructionof a database that represents truth; the call-
ing of the data mining function to extract the valuable
information, e.g., a clustering algorithm, neural net,
genetic algorithm, genetic program, etc; and finally de-
termining the value of the information extracted in the
second step, this generally involves visualization.

In a previous paper, a genetic algorithm (GA) was
used as a data mining function to determine parameters
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for fuzzy membership functions [14]. Here, a different
data mining function, a genetic program [7] is used. A
genetic program is a problem independent method for
automatically evolving computer programs or mathe-
matical expressions.

The GP data mines fuzzy decision tree structure, i.e.,
how vertices and edges are connected and labeled in
a fuzzy decision tree. The GP mines the information
from a database consisting of scenarios.

The GP evolves a population of decision trees. Each
tree is a candidate solution for the AUP tree. To create
these candidate solutions the GP requires two input
sets. These are the terminal set and function set.

At the end of each generation the GP ultimately rates
or determines the fitness of each candidate solution pro-
duced during that generation. Its method of rating the
candidate solutions is to calculate their fitness using a
fitness function. When using a GP as a data mining
function the GP requires a third type of input. This
third input set is a scenario database where each sce-
nario has been labeled by an expert with a real number
between zero and one. This label corresponds to the
decision that the optimal decision tree should make.
So it is natural when calculating the fitness for a given
candidate solution for the AUP tree to compare its fi-
nal composite concept fuzzy membership value to the
value labeling that scenario. So the scenario database
is used to construct the final fitness function for ulti-
mately determining the optimal AUP decision tree as
determined by the GP.

The terminal set, function set, and fitness functions
necessary for the GP to be used as a data mining func-
tion to automatically create the AUP tree are described
below. The terminal set used to evolve the AUP tree
consisted of the root concepts from the AUP tree and
their complements. The terminal set, T, is given by

T = {risk-tol, value, fast, low-risk, sr, nsr,

MP, not-risk-tol, not-valuable, not-fast,

not-low-risk, not-sr, not-nsr, not-MP}. (23)

Let the corresponding fuzzy membership functions
be denoted as

{µrisk−tol, µvalue, µfast, µlow−risk, µsr,
µnsr, µMP , µnot−risk−tol,
µnot−valuable, µnot−fast,
µnot−low−risk, µnot−sr, µnot−nsr,µnot−MP } .

(24)

When mathematical expressions are constructed by
a GP that reproduce the entries in a database within
some tolerance, the process is referred to as symbolic

regression [10]. It is found in symbolic regression
that candidate solutions are frequently not in algebraic
simplest form and this is the major source of their excess
length. When candidate solutions are too long this is
referred to as bloat [10].

By including in the terminal set a terminal and its
complement, e.g., “risk-tol,” and “not-risk-tol”; “val-
ue” and “not-valuable”; etc., it is found that bloat is
less and convergence of the GP is accelerated. This is
a recent innovation which was not used when another
resource manager, i.e., the electronic attack resource
manager (EARM) was evolved using GP based data
mining (DM) [17]. Additional bloat control procedures
are described below and in [23] which provides much
less detail than found here.

The mathematical form of the complement whether
it appears in the terminal set or is prefixed with a “NOT”
logical modifier from the function set is one minus the
membership function. To make this more explicit

µNOT (A) = µnot−A = 1 − µA, (25)

whereNOT (A) refers to the application of the logi-
cal modifierNOT from the function set to the fuzzy
conceptA from the terminal set. The notation,not-A
refers to the terminal which is the complement of the
terminalA.

The function set, denoted as F, consists of

F = {AND1, OR1, AND2, OR2, NOT } (26)

where the elements of Eq. (26) are defined in Eqs (20),
(27)–(30). Let A and B represent fuzzy membership
functions then elements of the function set are defined
as

AND1 (A,B) = min (A,B) ; (27)

OR1 (A,B) = max (A,B) ; (28)

OR2 (A,B) = A + B −A ·B; (29)

and

NOT (A) = 1 −A. (30)

The database to be data mined is a scenario database
kindred to the scenario database used for evolving the
EARM [17]. In this instance scenarios are character-
ized by values of the fuzzy membership functions for
the elements of the terminal set plus a number from
zero to one indicating the experts’ opinion about the
value of the fuzzy membership function for AUP for
that scenario.

GPs require a fitness function [7]. As its name im-
plies the fitness function measures the merit or fitness
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of each candidate solution represented as a chromo-
some. The fitness used for data mining is referred to as
the input-output fitness.

The input-output fitness for mining the scenario
database takes the form

fIO(i, ndb) ≡
1

1 + 2 ·
ndb∑
j=1

|µgp (i, ej) − µexpert (ej)|
. (31)

whereej is the jth element of the database;ndb is
the number of elements in the database;µgp(ej) is the
output of the fuzzy decision tree created by the GP for
theith element of the population for database element
ej ; andµexpert(ej) is an expert’s estimate as to what the
fuzzy decision tree should yield as output for database
elementej .

The AUP tree is evolved in three steps. The first step
involves evolving the VMR subtree; the second step,
the RMP subtree and the final step, the full AUP tree.
In the second and third steps, i.e., evolving the RMP
subtree and full AUP tree from the RMP and VMR
subtrees, only the input-output (IO) fitness in Eq. (31)
is calculated, i.e., the rule-fitness described below is
not used.

When evolving the VMR subtree a rule-fitness is
calculated for each candidate solution. Only when the
candidate’s rule fitness is sufficiently high is its input-
output fitness calculated. The use of the rule-fitness
helps guide the GP toward a solution that will be con-
sistent with expert rules. Also the use of the rule fitness
reduces the number of times the IO fitness is calculated
reducing the run time of the GP. After some prelimi-
nary definitions of crisp and fuzzy relations, a set of
crisp and fuzzy rules that were used to help accelerate
the GP’s creation of the VMR subtree are given. The
rules are combined to formulate the rule fitness.

Let T be a fuzzy decision tree that represents a ver-
sion of the VMR subtree, that is to be evolved by a ge-
netic program. LetA andB be fuzzy concepts. Then
let γshare (T,A,B) = 1 if A andB share a logical
connective denoted asC and γshare (T,A,B) = 0,
otherwise.

Furthermore, define the fuzzy relation

µcom (T,A,B,C) = (32)



0.4 if C = AND1 orAND2
0.1 if C = OR1 orOR2
0, otherwise

.

The following is a subset of the rules used to accel-
erate the GP’s convergence and to help produce a result
consistent with human expertise.

R1. “not-valuable” and “risk-tol” must share a log-
ical connective, denoted asC1, i.e., it is desired that
γshare (T,not-valuable,risk-tol) = 1.

R2. “not-valuable” and “risk-tol” strongly influence
each other, so they should be connected by AND1 or
AND2. So it is desired that

µcom(T,not-valuable,risk-tol,C1) = 0.4.

R3. “fast” and “low-risk” have an affinity for each
other. They should share a logical connective, denoted
asC2, i.e., it is desired thatγshare (T,fast,low-risk) = 1.

R4. The fuzzy root concepts “fast” and “low-risk”
strongly influence each other, so they should be con-
nected by AND1 or AND2. So it is desired that
µcom (T,fast,low-risk,C2) = 0.4.

R5. There is an affinity between the fuzzy root con-
ceptsC1 (not-valuable,risk-tol) andC2 (fast,low-risk),
they are connected by a logical connective denoted as
C3, i.e., it is desired that,

γshare (T,C1 (not-valuable,risk-tol) ,
C2 (fast,low-risk)) = 1 . (33)

When the EARM was evolved by GP based data min-
ing [17] bloat was controlled using adhoc procedures
based on tree depth and parsimony pressure. Most of
the bloat in evolving mathematical expressions with a
GP arises from the expressions not being in algebraic
simplest form [10]. With that observation in mind,
computer algebra routines have been introduced that
allow the GP to simplify expressions. The following
is a partial list of algebraic simplification techniques
used during the evolution of the EARM and the AUP
tree. The simplification routines used when evolving
AUP are more sophisticated than those applied to the
creation of EARM [17].

One routine simplifies expressions of the form
NOT(NOT(A)) = A. This can be more complicated than
it initially appears, since the NOT logical modifiers can
be separated on the fuzzy decision tree.

Another simplification procedure consists of elimi-
nating redundant terminals connected by an AND1 log-
ical connective. An example of this isAND1(A,A) = A.
Like the case with the logical modifier NOT there can
be a separation between the AND1s and the terminals
that add complexity to the simplification operation.

The third algebraic simplification example is like the
second. It involves simplifying terminals connected by
OR1s. Like AND1, separation between terminals and
OR1 can increase the complexity of the operation.
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Other types of algebraic simplification use DeMor-
gan’s theorems in combination with the above proce-
dures. This can significantly reduce the length of an
expression.

Another algebraic procedure that reduces the length
of expressions includes replacement of forms like
AND2(A,A) by the square of “A,” i.e.,A2. Still an-
other length reducing simplification includes replacing
NOT(A) with not-A, its complement from the terminal
set listed in Eq. (23).

There is always a question of how much algebraic
simplification should be conducted from generation to
generation as such the simplification algorithm allows
levels of simplification. If a low level of simplification
is selected then some parts of an expression remain that
might be eliminated during full simplification. This has
two advantages: it leaves chromosome subcomponents
that may prove useful during mutation or crossover and
it takes less CPU time.

Algebraic simplification produces candidate solu-
tions in simpler form making it easier for human ob-
servers to understand what is being evolved. Having
candidate solutions that are easier to understand can
be an important feature for improving the evolution of
GPs.

3. Control algorithm

Each UAV has a real-time algorithm onboard it
that allows recalculation of paths during flight due to
changes in environmental conditions or mission prior-
ities. These changes typically become apparent after
the planning algorithm has run during the pre-flight
stage. As in the case of the planning algorithm the con-
trol algorithm uses an A-star algorithm [13] to do the
best path calculation, employs fuzzy logic and solves a
constrained optimization problem. A-star’s and fuzzy
logic’s CPU time requirements have been quite satis-
factory for this application.

The control algorithms’ recalculation of flight paths
can be triggered by a number of events such as weather
broadcasts that indicate new taboo regions or changes
of priority of sample points. For those changes that
do not require UAVs supporting each other, the control
algorithm does not differ from the planning algorithm.
The control algorithm is faster by virtue that it only need
process those parts of the measurement space where
there have been changes relative to sample or taboo
points. The A-star algorithm is particularly effective

in an environment where change is confined to small
regions.

A UAV may requests help if it discovers a potential
elevated system like a radio hole, malfunctions or sus-
pected malfunctions. All of these conditions can result
in help messages being transmitted between the UAVs.
These help messages can result in interactions between
the UAVs based on transmission of the results of prior-
ity calculations for rendering support to the requesting
UAVs.

Currently in the control stage, when a UAV discov-
ers an interesting physical phenomenon, is malfunc-
tioning, or suspects due to internal readings that it is
malfunctioning, it sends out a request for help. Each
UAV receiving this message calculates its priorities for
providing assistance to the UAV in need. This priority
calculation gives rise to a number between zero and
one, inclusive, which is subsequently transmitted to the
original UAV desiring support. The requesting UAV
sends out an omni-directional message with the ID of
the UAV with highest priority for contributing support.
The high priority UAV then flies into the necessary
neighborhood of the requesting UAV to provide help.

There are three classes of help request. The first
occurs when a UAV, the requester, determines it may
have discovered an interesting physical phenomenon.
This phenomenon may be an elevated duct, radio hole,
rain system or some other type of system with phys-
ical extent. The requester desires to determine if the
phenomenon has significant extent. It will request that
a helping UAV or UAVs sample likely distant points
within this phenomenon.

The second class of help request relates to a UAV that
according to internal diagnostics may be experiencing
a sensor malfunction. This UAV will requests that
another UAV or UAVs measure some of the points that
the requesting UAV measured. This will help determine
if the UAV is actually malfunctioning. If the requesting
UAV is determined to be malfunctioning, then it will
fly back to base, if it is capable. The determination
of whether it is actually malfunctioning requires some
consideration. Since the second UAV will probably
be measuring a distant point at a time different than
the original requesting UAV made its measurements,
potential variation in the index of refraction over time
must be taken into account.

When a UAV sends out an omni-directional request
for help, those UAVs receiving the message will calcu-
late their fuzzy priority for helping, denoted as “PH.”
The UAV that will ultimately help the requester is the
one with the highest fuzzy priority for helping. The
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fuzzy priority for helping takes into account a variety
of properties of the potential helper. The set of UAVs
that receive the request for help from UAV(i) at time
t is denoted as help(i, t). If UAV(i) request help at
time t and UAV(j) receives the message then UAV(j)
will take into account the amount of time, denoted,
help time(UAV (j)), it will take it to fly from the
point where it received the request to the point where
it would provide support. It also takes into account the
amount of fuel UAV(j) has left at the time of the re-
quest, denoted fuel(UAV (j) , t); UAV(j)’s fuzzy con-
cept of price denoted as“price” , and UAV(j)’s fuzzy
concept of “mission priority” at time, t. Let the set of
relevant UAV properties be denoted asUAV prop and
be defined as

UAV prop =

{help time,fuel,missionprio,price} (34)

The fuzzy priority for helping denoted asµPH takes
the form

µPH (UAV (i) , UAV (j)) =
∑

δ∈UAV prop

wδ · µδ (UAV (j)) (35)

The quantitieswδ andµδ for δ ∈ UAV prop are
expert defined weights and fuzzy membership func-
tions, respectively. The fuzzy membership functions
are defined in Eqs (36)–(39) and given below,

µhelp time (UAV (i) , UAV (j)) = (36)

 help time(UAV (j))

max
k∈help(i,t)

{help time(UAV (k))} + 1



−1

µfuel (UAV (i) , UAV (j)) = (37)

fuel(UAV (j))
max

k∈help(i,t)
{fuel(UAV (k))}

µmission prio (UAV (i) , UAV (j)) = (38)

 missionprio(UAV (j))

max
k∈help(i,t)

{missionprio(UAV (k))} + 1



−1

µprice (UAV (i) , UAV (j)) = (39)

 Value(UAV (j))

max
k∈help(i,t)

{Value(UAV (k))} + 1



−1

It is assumed that all evaluations are processed at
time,t, so time dependence is suppressed in Eqs (35)–
(39) for notational convenience. A more sophisticated
version of the control logic that takes path risk, changes
in risk, UAV reliability, UAV risk-tolerance and missed
sample points into account will be the subject of a future
publication.

4. Computational experiments

The planning and control algorithms described in the
previous sections have been the subject of a large num-
ber of experiments. This section provides a description
of a small subset of these experiments. They serve to
illustrate how the algorithms were tested.

UAV experiments using only one UAV demonstrate
how the planning and control algorithm will determine
the route the UAV flies so that it is successful in making
measurements at sample points in space, while the UAV
avoids taboo points, that is points in space that could
damage or destroy the UAV. Experiments using two
UAVs illustrate how the control algorithm allows the
UAVs to automatically support each other to increase
the probability their joint mission is successful.

Figures 2–6 use the same labeling conventions. Sam-
ple points are labeled by concentric circular regions
colored in different shades of gray. The lighter the
shade of gray used to color a point, the lower the point’s
grade of membership in the fuzzy concept “desirable
neighborhood.” The legend provides numerical values
for the fuzzy grade of membership in the fuzzy concept
“desirable neighborhoods”. If the fuzzy degree of de-
sirability is high then the index of refraction is consid-
ered to be close to the index of refraction of the sam-
ple point at the center of the desirable neighborhood.
This allows the UAV to make significant measurements
while avoiding undesirable neighborhoods.

Each sample point is labeled with an ordered pair.
The first member of the ordered pair provides the in-
dex of the sample point. The second member of the
ordered pair provides the point’s priority. For example,
if there arensp sample points and theqth sample point
is of priority p, then that point will be labeled with the
ordered pair (q, p).

Points surrounded by star-shaped neighborhoods
varying from dark grey to white in color are taboo
points. As with the sample points, neighborhoods with
darker shades of gray have a higher grade of member-
ship in the fuzzy concept “undesirable neighborhood.”
The legend provides numerical values for the fuzzy
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PLANNING PHASEPLANNING PHASE

Fig. 3. One UAV trajectory as determined by planning algorithm.

CONTROL PHASECONTROL PHASECONTROL PHASECONTROL PHASE

Fig. 4. One UAV trajectory as determined by real-time control algorithm.

grade of membership in the fuzzy concept “undesirable
neighborhood.” UAVs with high risk tolerance may fly
through darker grey regions than those with low risk
tolerance. When comparing planning and associated
control pictures, if a point ceases to be taboo, the neigh-
borhood where it resides is marked by a very dim gray

star as well as being labeled by a dialog box as being an
“old taboo point.” New taboo points and their associ-
ated undesirable neighborhoodsare labeled with dialog
boxes indicating that they are “new.”

Each UAV has three states of motion, it can be at rest,
traveling at sampling speed or non-sampling speed.
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PLANNING PHASEPLANNING PHASE

Fig. 5. Trajectory of two UAVs as determined by planning algorithm.

CONTROL PHASECONTROL PHASE

Fig. 6. During flight, updates about changes cause the real-time control algorithms on the two UAVs to change their trajectories.

Within the simulation the UAV properties other than
speed are its risk-tolerance, cost, fuel, sensor reliability
and non-sensor reliability. The values associated with
each property can vary over the pool of UAVs in use.

UAVs start their mission at the UAV base which is

labeled with a diamond-shaped marker. They fly in the
direction of the arrows labeling the various curves in
Figs 2–5.

In Figs 2–6,flight paths that can be represented in two
dimensions have been selected for easy comprehension.
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In the general case the flight paths are three dimensional
spatial curves, which can be difficult to visualize.

Figure 3 provides the sample points, taboo points and
sample path for one UAV as determined by the planning
algorithm. It is important to notice that the UAV’s path
passes directly through each sample point, i.e., through
the center of the concentric circular regions represent-
ing the fuzzy degree of desirability of neighborhoods.
Fortuitously, the taboo points and their neighborhoods
are so positioned that they do not interfere with the
UAV’s measurement process or its return to base.

Figure 4 depicts the actual path the UAV flies as
determined by the UAV’s real-time control algorithm.
The path determined by the control algorithm differs
from the one created by the planning algorithm due to
real-time changes in taboo points. After leaving the
UAV base new weather data was acquired informing the
UAVs that the exact position of the third sample point,
i.e., the one labeled (3,1) actually resides within an
undesirable neighborhood. Due to the high priority of
the sample point and the UAV’s risk-tolerance, the UAV
flies into the taboo points’ undesirable neighborhood
as indicated in Fig. 4.

In both the planning and control algorithms the UAV
measures sample points of two different priorities, with
the direction of the flight path selected so that the higher
priority points are measured first. By measuring high
priority points first, the likelihood of an important mea-
surement not being made is diminished, if the UAV can
not complete its mission due to a malfunction, change
in weather, etc.

Also, due to movement of old taboo points or the
emergence of new taboo points which are marked
“New,” the path determined for the UAV using the con-
trol algorithm is significantly different than the one cre-
ated by the planning algorithm. The path change rep-
resents the control algorithm’s ability to reduce UAV
risk.

Figure 5 depicts the sampling path determined by
the planning algorithm for an experiment involving two
UAVs. The first, UAV(1) follows the dashed curve;
the second, UAV(2), the solid curve. The UAVs were
assigned to the different paths by the fuzzy path assign-
ment decision tree described in Section 2. UAV(1) is
assigned to sample all the highest priority points, i.e.,
the priority one points. UAV(2) samples the lower pri-
ority points, i.e.; those with priority two. Due to the
greedy nature of the point-path assignment algorithm,
the highest priority points are assigned for sampling
first.

Figure 6 depicts the actual flight path the UAVs take
during real-time. Initially, UAV(1) is successful in

measuring sample points one and two as assigned it by
the planning algorithm. Just beyond sample point two,
UAV(1) experiences a malfunction. UAV(1)’s real-time
control algorithm subsequently sends out a help request
informing the only other UAV in the field, UAV(2) of
the malfunction. UAV(2)’s control algorithm deter-
mines a new path for UAV(2) to fly so that the priority
one points, labeled (3,1) and (4,1), that UAV(1) was
not able to sample are subsequently measured. Af-
ter UAV(2) measures sample point five, its new flight
path allows it to measure sample points three and four.
UAV(2)’s control algorithm determined it was very im-
portant that these priority one points be measured. Un-
fortunately, due to the extra fuel expended in reassign-
ing sample points three and four to UAV(2), UAV(2)
did not have enough fuel to measure sample points
seven and eight which were of priority two. UAV(2)’s
real-time control algorithm determined the best possi-
ble solution in the face of changing circumstances and
limited resources.

It is important to note that the control algorithms
running on UAV(1) and UAV(2) direct both UAVs to
alter their return paths to the base due to the emer-
gence of new taboo points making the planning algo-
rithm determined flight paths too dangerous. The con-
trol algorithm uses each UAV’s fuzzy risk-tolerance to
determine how near each UAV may approach a taboo
point.

Figure 7 provides an example of the AUP decision
tree’s assignment of three UAVs to three paths. The
highest priority locations are assigned to UAV(1) as it
has the greatest fuel capacity, i.e., 90 minutes. UAV(1)
however does not have enough fuel to handle the high
priority points located at positions six and seven and
therefore UAV(2) is assigned these points along with
the second degree high priority locations.

Table 2 provides numerical details of the tasks de-
picted in Fig. 7. The column labels have the following
interpretation: “Location,” the UAV coordinates on the
map; “Fly mode,” whether the UAV sampled from its
previous location to its current position. If the UAV
sampled then a “S” was entered. “NS” was entered
if sampling did not occur. “Fuel Time” refers to how
much fuel remained by the time the UAV reached the
associated location.

5. Conclusions and summary

Fuzzy logic algorithms for planning and control of a
coordinated team of robots making atmospheric mea-
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Table 2
Details of three UAV mission depicted in Fig. 7

Three UAV Mission

UAV 1 MISSION UAV 2 MISSION UAV 3 MISSION
Locations Fly Fuel Time Locations Fly Fuel Time Locations Fly Fuel Time

Mode Remain Mode Remain Mode Remain
(minutes) (minutes) (minutes)

Base 90.0 Base 85.0 Base 85.0
(1,1) NS 76.5088 (6,1) NS 67.9691 (11,3) NS 64.2839
(2,1) S 61.5088 (7,2) S 55.2412 (12,3) S 51.0412
(3,1) S 54.2662 (8,2) S 47.9986 (13,3) S 39.5559
(4,1) S 42.7809 (9,2) S 39.5133 (14,3) S 31.0706
(5,1) S 28.2956 (10,2) S 22.028 Base NS 6.2574
Base NS 6.7113 Base NS 11.7854
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Fig. 7. Three UAV mission described in Table 2, an example of the AUP decision tree’s assignment.

surement have been developed. The algorithms exhib-
ited excellent performance under extensive testing in
digital simulation.

The fuzzy logic algorithms provide explicit, con-
cise, elegant mathematical relationships between input
root concepts like risk-tolerance,sensor reliability, non-
sensor system reliability, mission-risk, mission-priority
and output composite fuzzy concepts like “assign UAV
to path.” Such mathematical relationships are valuable

for subsequent innovation. Only having an implicit
knowledge of the relationship between concepts as fre-
quently occurs if only an optimization approach is used
is less desirable. Such implicit relationships can make
innovation considerably more difficult.

The fuzzy logic based algorithms require little CPU
time and can function in real-time even on many slow
legacy processors. They also require very little memory
storage.
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The fuzzy logic algorithms allow a group of flying
robots to collaborate without a central or fixed com-
mander. Decisions are made based on communica-
tion. The team of robots automatically self-organize.
This is valuable since the loss of anyone robot will not
destabilize the team. Late arriving robots may join the
group and contribute to the team’s well-being without
difficulty.

Self-organization arises by the UAV’s transmitting
only small amounts of information. The UAVs only
transmit processed information, fuzzy grades of mem-
bership, resulting in very low bandwidth requirements.
Since the bandwidth requirements are low, no expen-
sive data compression is required. This means physical
power and time are saved. This is a valuable feature for
future inexpensive, disposable, low powered systems.

A method of creating fuzzy decision logic using an
algorithm related to the theory of evolution, a genetic
program (GP) is discussed. This algorithm’s evolution
is guided by expert provided scenarios in a data base
and expert rules in the form of fuzzy logic. Ultimately,
the GP evolves a fuzzy decision tree that is optimal,
with respect to the expertise provided for the desired
task. The GP has been successful in reproducing known
results as well as creating new distinct algorithms.

The GP’s output, the fuzzy decision logic is concise,
elegant and understandable by humans. This is largely
due to the use of partial expertise embedded in the GP
in the form of fuzzy rules and innovative bloat con-
trol mechanisms like computer algebra. All the bloat
control mechanisms contribute to shorter solutions, but
the use of fuzzy rules within the GP to guide evolution
produces results closer to human intuition.

In the case where the decision logic is the same as
that found by interviewing experts, it is easy to argue
the GP’s results are understandable by humans,after all,
the GP has reproduced results handed down by human
experts. In the case where the results are different from
those obtained from expertise, they can be related to
the expert results and the differences understood.

6. Future directions

The various techniques for controlling GP based
bloat, i.e., generating more concise results must be ex-
amined to determine their assets and liabilities. Also,
various techniques for accelerating the convergence of
the GP will be explored.

Additional fuzzy logic algorithms will be added to
give the UAVs greater flexibility. This will require

consulting with experts to obtain rules. In the absence
of a good set of rules it should be possible to construct a
scenario data base for mining by the GP. A partial set of
rules about the anticipated shape of fuzzy decision trees
can be used to help accelerate the GP’s convergenceand
produce simpler, more concise results understandable
by human beings as in the AUP decision tree case.

From the practical perspective of modeling physical
systems, the fidelity of the underlying UAV models, the
electromagnetic propagation model,and environmental
models will be increased.

Increases in fidelity of the UAV model will include
specifics of the UAV engine model, e.g., how does
its efficiency change with altitude. The ray-theoretic
electromagnetic propagation model will be partially re-
placed with a ray-wave-theoretic hybrid [9]. This will
allow greater fidelity in modeling rough surface scat-
tering from terrain and also various types of ducting
phenomena. By using a hybrid model increases in CPU
time and memory requirements can be kept in check
as the fidelity of the modeling of underlying physics
increases.

Changes in modeling fidelity will also result in al-
terations of the cost function related to flight path de-
termination. It will probably also prove useful, eventu-
ally to explore more sophisticated algorithms for path
determination [5,11,12,28] that will replace A-star. An
algorithm of greater sophistication may be useful for
rapidly changing environments or when there are more
obstructions or threats within the environment.
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