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ABSTRACT
The interactions among automation configuration rule data have
led to undesired and insecure issues in smart homes, which are
known as interactive threats. Most existing solutions use program
analysis to identify interactive threats among automation rules,
which is not suitable for closed-source platforms. Meanwhile, se-
curity policy-based solutions suffer from low detection accuracy
because the pre-defined security policies in a single platform can
hardly cover diverse interactive threat types across heterogeneous
platforms. In this paper, we propose Glint, the first graph learning-
based system for interactive threat detection in smart homes. We
design a multi-scale graph representation learning model, called IT-
GNN, for both homogeneous and heterogeneous interaction graph
pattern learning. To facilitate graph learning, we build large interac-
tion graph training datasets by multi-domain data fusion from five
different platforms. Moreover, Glint detects drifting samples with
contrastive learning and improves the generalization ability with
transfer learning across heterogeneous platforms. Our evaluation
shows that Glint achieves 95.5% accuracy in detecting interactive
threats across the five platforms. Besides, we examine a set of user-
designed blueprints in the Home Assistant platform and reveal four
new types of real-world interactive threats, called "action block",
"action ablation", "trigger intake", and "condition duplicate", which
are cross-platform interactive threats captured by Glint.

CCS CONCEPTS
• Security and privacy→ Vulnerability scanners; • Computing
methodologies → Information extraction; Learning latent
representations.
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1 INTRODUCTION
Modern homes are becoming smarter with the deployment of smart
devices, such as smart locks, smart plugs, and smart ovens. Consid-
ering many factors, such as compatible device interactions, central
voice control, and ease of operation, a user can deploy multiple
systems to enable cross-platform automation features. A recent sur-
vey [9] shows that 82.4% smart home deployments have multiple
automation rules to control one device, and 62.4% users deployed
more than one platform at home. With the support of common
application programming interfaces (APIs), apps from multiple
platforms can interact with one another. For example, IFTTT [20]
can connect to other platforms such as SmartThings [34], Amazon
Alexa [4], and Home Assistant [5].

However, there could be undesirable or insecure interactions
among a diverse set of devices, dubbed as interactive threats. Specif-
ically, many factors such as user mistakes [18, 40] and various at-
tacks [1, 51] can cause interactive threats during the operation of
smart home systems, especially when a user configures multiple
systems at the same time. For instance, in a smart home, suppose a
Home Assistant app has set up the rule "If smoke is detected, open the
window", and the following automation rule "Close the window when
the outside temperature is high" would force the window closed. As
a result, the interaction between two automation rules will expose
a potential problem "the window cannot open when smoke is de-
tected". Therefore, it is imperative to manage the interaction logic
among automation rule data to prevent property damage.

Existing approaches use code analysis to uncover the interac-
tions among different apps. However, they suffer from two major
deficiencies. First, most real-world platforms, such as IFTTT and
Alexa, are closed-source, which renders these methods based on
source code analysis or instrumentation ineffective [2, 11, 39]. Sec-
ond, there are large and complex interactions across heterogeneous
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platforms. Many security policy-based approaches [7, 14, 43] as-
sume that all automation rules run on a single platform [9]. They
only focus on limited intra-app and inter-app analysis and perform
evaluations on one platform, such as the open-source SmartThings.
These methods need to pre-define threat patterns and security poli-
cies, which can hardly cover various threat types associated with
complex rule interactions across platforms.

In this paper, for the first time, we address the critical research
question: how to manage smart home automation configuration data
to avoid interactive threats across multiple closed-source platforms
in real time, where the interactive threat patterns can hardly be enu-
merated in a heterogeneous smart home environment? To address
this research question, we aim at developing a data-driven approach
to effectively mining the interactive threat patterns. Existing data
mining-based approaches for threat detection [13, 22, 47, 54] usu-
ally take the event logs as input. Yet, they fail to fully leverage the
interaction logic of the smart apps, as the rich semantics of events
and the complex interaction logic of smart apps could hardly be
represented by time-series data.

Graph neural network (GNN) models [15, 19, 21, 45] have shown
a surge of success for many tasks such as graph or node classifica-
tion, link prediction, and matching. GNNs have been used to learn
both explicit node features and implicit structural graph features.
Naturally, the interactions among rules from different platforms
can be composed as a graph, in which a node is a rule, and an
edge represents the interactions among different rules. The node
features refer to the semantic-aware embeddings extracted by nat-
ural language processing (NLP) techniques [6]. In this paper, we
formulate the interactive threat analysis as a task of GNN-based
graph representation learning and propose Glint, Graph learning
for interactive threat analysis, to secure the heterogeneous smart
home platforms. There are three main challenges in designing Glint:

Challenge 1. There is a lack of graph data with ground truth la-
bels for learning interaction patterns in the closed-source smart home
platforms.We find that most smart home platforms provide detailed
app descriptions, which contain rules about device control. Besides,
previous studies [11, 14, 39] on the open-source platforms provide
expert knowledge about the vulnerable interactions of smart de-
vices. Thus, we can build and label large interaction graph datasets
with the learned expert knowledge. Moreover, by fusing rule texts
and event log information, we can build a real-time interaction
graph. In this way, we can model interactive threat analysis as a
supervised graph representation learning problem, which has two
merits. First, it achieves high accuracy by learning a function from
both labeled normal data and vulnerable data. Second, it achieves
high efficiency in the testing phase with a well-trained model.

Challenge 2. The interaction patterns can drift due to the drifting
sample issue. Drifting samples originate from the new types of inter-
active threats or the evolution of the existing threats, which makes
it infeasible to enumerate all possible interactive threat patterns.
Therefore, we design the ITGNN model with contrastive learning
loss to learn graph embedding, such that we can compare samples
with different labels and detect drifting samples. Compared with
static analysis and dynamic testing, our data-driven approach lever-
ages the GNN model to learn potential interactive threat patterns

from the graph datasets, avoiding the reliance on pre-defined pat-
terns. Therefore, Glint can mitigate the security policy coverage
issue.

Challenge 3. The availability of data varies across different plat-
forms, which could drastically affect the overall performance of graph
representation learning. Fortunately, despite the disparity in the
information format across different platforms, the rules configured
in different platforms are all used to control smart devices and thus
contain common semantics. Hence, we propose the cross-domain
graph transfer learning method to transfer knowledge from hetero-
geneous platforms, which further enhances the model performance
on the platforms with insufficient data.

We evaluate Glint on multiple datasets collected from 5 high-
profile platforms with over 48,000 interaction graphs. We show that
Glint can effectively detect interactive threats on single platforms
and across multiple platforms. Remarkably, it detects the interactive
threats in the SmartThings platform with 100% accuracy, and it
detects the threats in heterogeneous interaction graphs with 95.5%
accuracy and 95.6% F1 score. Based on drifting sample detection
results, Glint also uncovers four new types of interactive threats
in the user-designed blueprints in the Home Assistant platform:
"action block", "action ablation", "trigger intake", and "condition
duplicate". We make our data and code publicly available at https:
//github.com/seitlab/Glint.

In summary, we make the following contributions:
• We build the first semantic-based interaction graph datasets
with ground truth labels by analyzing the trigger-action
correlations among rules from closed-source platforms.

• We design the ITGNN model for interaction pattern learning
across heterogeneous platforms. We leverage contrastive
learning to detect drifting samples, and transfer learning to
enhance the generalization ability of GNN models.

• We implement a novel GNN-based system, Glint, and per-
form a comprehensive evaluation on the real-life testbed.
The results show that, for cross-platform interactive threat
detection, Glint outperforms the state-of-the-art methods by
12.8% in precision and 12.6% in recall rate.

The rest of the paper is organized as follows. In Section 2, we
define the interactive threat analysis problem. In Section 3, we
present Glint and the designed graphmodel. In Section 4, we provide
implementation details and evaluate the performance of Glint. We
discuss related work in Section 5, and conclude in Section 6.

2 PROBLEM DEFINITION
We first introduce interaction graphs with a running example, and
then we formally define interactive threats. The interactive threat
patterns are mined based on graph representation learning.

2.1 Interaction Graph
An interaction graph is an abstract representation of interactions
among rules across different platforms. Figure 1 shows an interac-
tion graph that contains rules from three platforms: SmartThings,
IFTTT, and Alexa. The detailed rule content of each node in Figure 1
is shown in Table 1. Automation rules contain "trigger-action" logic
information, which means the execution of the first rule will trigger
the execution of the second rule. For example, "Alexa, play movies"
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Figure 1: An interaction graph, where nodes (in circle shape)
are rules from three platforms. These rules are connected
via interacting devices and environment channels.

Table 1: Specific rule contents of nodes in the interaction
graph, where the index is the node ID in Figure 1.

Index Platform Automation Rule Description

1 SmartThings Turn off lights if playing movies.

2 SmartThings If the outdoor temperature is between 65 °F and 80 °F,
open windows after sun rise.

3 SmartThings If outdoor temperature is below 60 °F, then close windows.
4 SmartThings Turn on the air conditioner when temperature is above 85 °F.
5 IFTTT If air conditioner is on, then close windows.

6 IFTTT If the smoke alarm is beeping, then open the window
and unlock the door.

7 IFTTT If motion is detected, turn on lights.
8 IFTTT If motion is detected, open the door.
9 Amazon Alexa Lock the door if all lights are turned off.

has "trigger-action" correlation with Rule 1 in Table 1. Different
rules can have correlations, which are connected via different de-
vices and physical channels (e.g., temperature, smoke). Moreover,
there could be an "action-trigger" correlation between two rules,
which means the first rule’s action will trigger the second rule’s ex-
ecution. For example, in Table 1, Rule 1 and Rule 9 interact via light.
The action of Rule 1 ("turn off lights") will trigger the execution
of Rule 9. As a result, the door is locked when watching movies
if these two rules are executed. The interaction graph formalizes
the interactions among devices, users, and the environment based
on the "trigger-action" rules. Both the "trigger-action" and "action-
trigger" correlations contain the causality logic among automation
configuration rule data.

Given a set of 𝑛 rules, the number of interaction graphs is
uniquely determined. For example, if a user employs ten smart
home apps, each associated with only one rule, there will be only
one interaction graph in real-time. This is because the "action-
trigger" correlations among different rules are determined. If there
are no correlations between two rules, two nodes of rules in the
interaction graph does not have an edge connection. Therefore,
the number of rules affects the complexity or size of an interaction
graph, rather than influencing the number of potential graphs in
real-time.

2.2 Interactive Threat
Interactive threats refer to vulnerable interactions among differ-
ent devices, users, and the environment, which contain threats or
anomalies [2, 11, 14] and result in undesirable behaviors or severe
security and privacy risks. Note that interactions that cause unex-
pected execution of devices are also regarded as interactive threats.
When deploying automation rules, the users may misconfigure
their devices, introducing threats in smart homes [18, 40]. During

Figure 2: Glint builds an interaction graph for a house, and
uses a well-trained GNN model to automatically discover
interactive threats and generate threat warnings.

the automation system execution, an attacker can attack a device,
such as a voice assistant to control smart devices by executing
inaudible voice commands [1, 51]. Alternatively, an attacker can
trick a user into installing malicious apps to trigger unexpected
interactive actions.

We formally define the task of managing automation data to
avoid interactive threats as a graph representation learning prob-
lem. Given an interaction graph G = {V, E,X}, the nodesV are
rules from different platforms, the edges E are correlations among
different rules such as "trigger-action" or "action-trigger". Each node
𝑣 ∈ V has a feature vector 𝑥𝑣 ∈ X, which is a word-embedding or
sentence-embedding that encodes semantic information. For exam-
ple, the word "sunset" is encoded as a 300-dimension embedding
[0.60014, . . . , 0.35422] with an NLP library spaCy [35]. We derive
the averaged word embedding of each word as the rule-level embed-
ding, which is a node feature. While node features in homogeneous
graphs come from the same feature space to better characterize
rules from homogeneous platforms, node features in heterogeneous
graphs come from distinct feature spaces. Given an interaction
graph dataset {𝐺}, the goal is to design a model 𝑓𝑤 : 𝑥 {𝐺 } → R𝑑
to learn a 𝑑-dimensional representation of the graph 𝐺 . The model
𝑓𝑤 can be different learning tasks, such as drifting sample detec-
tion and binary classification. The learned graph representation
preserves the structural and semantic information [19], which is
associated with the interactive threat patterns.

3 SYSTEM DESIGN
In this section, we introduce the offline (back-end) design and online
(front-end) usage of Glint. We focus on the four core parts of Glint:
(i) We provide details of the interaction graph dataset construction
process. (ii) We design the ITGNN model for graph representation
learning. (iii) We present the drifting interaction pattern detection
algorithm. (iv) We propose to enhance the generalization ability of
ITGNN by transferring knowledge across heterogeneous platforms.

3.1 System Overview
Glint mainly has two stages for offline model training and inter-
active threat detection in real-time. Figure 2 shows the workflow
of smart home automation data analysis. ①: In the offline stage,
Glint analyzes possible intra-platform and inter-platform interac-
tions to build interaction graphs, which compose a large interaction
graph dataset stored in a database. ②: Next, we train the designed
GNN model on the interaction graph dataset based on contrastive
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learning and classification model. ③: Using transfer learning, the
well-trained model achieves higher generalization ability. Finally,
we obtain the GNN-based interactive threat detector.

In the online stage, with the mined trigger-action logic from
rules and device status from event logs, ④: interaction graph can
be dynamically constructed in real-time. ⑤: The constructed graph
is first tested by the contrastive learning-based drifting sample
detector. Then, it is examined by an interactive threat detector
(classification model). ⑥: If there is an interactive threat, Glint will
generate a warning and request user intervention. ⑦: If a drifting
sample is detected or there exist false-alarming graph cases that
users do not regard as threats, we can update these special graph
cases and ⑧: fine-tune the model to adapt to the users’ needs.

A public GNN model is trained on graph datasets from hetero-
geneous platforms in the offline stage, which can be provided by
a security solution provider via cloud services. Every user has the
same offline component. Glint can be deployed on the smart home
hub, and users only need to care about the online stage. Glint can
help check the interactive threats in the initial setup phase of a
smart home system. Moreover, with the existing deployment setup
and event log information, the GNN model will be fine-tuned based
on user preferences during the runtime of smart home systems. A
Glint app can be installed on a phone to generate warnings and
request user intervention.

Suppose a user deploys a set of rules as shown in Table 1. For
simplicity, suppose Rules 2, 3, 7, and 8 are not executed during a
specific time. As mentioned before, a real-time interaction graph is
constructed by analyzing deployed rule descriptions and runtime
event logs. Glint detects an interactive threat and notifies the user
as shown in Figure 3a. In the interaction graph, the potential causes
(i.e., nodes and related devices) of the threat are displayed in red in
Figure 3a, so as to mitigate the information overload to users. The
potential causes can be found with the aid of existing GNN expla-
nation tools such as PGExplainer [26], SubgraphX [50], FexIoT [41]
which identify important subgraphs or nodes accounting for the
GNN prediction. Based on the daily appliance usage habits, the
provided event logs in Figure 3b and potentially vulnerable rules in
Figure 3c. If the rule interaction is undesired, the user can stop or
update the rule configurations by reconfiguring the corresponding
smart home platform apps.

3.2 Building Interaction Graph Dataset
We first build interaction graph datasets using rule descriptions in
the offline stage. Then, we construct real-time interaction graphs
with deployed rules and event logs in the online stage. We consider
exploring IoT interactions in closed-source and cross-platform en-
vironments. The design of the NLP pipeline facilitates information
access in the closed-source platforms.

3.2.1 Rule Correlation Discovery. The main challenge in building
interaction graph datasets is to discover correlations among differ-
ent rules. The large volume of noisy data with disparate formats
hampers the discovery of correlations between rules across mul-
tiple platforms. Inspired by prior works [37, 38, 43], we use NLP
techniques to extract semantic features from publicly available app
descriptions. Considering a large number of possible combinations

(a) Notification. (b) Event logs.

(c) Operation.

Figure 3: The usability demonstration of Glint.

Turn On light if the door Opens

VERB ADP NOUN SCONJ DET NOUN VERB

prt

dobj

advcl

mark

det nsubj

Figure 4: An example of dependency parsing.

of "action-trigger" pairs, we model correlation discovery as a binary
classification problem to reduce manual labeling efforts.

We design the smart home automation rule feature extraction
algorithm as shown in Algorithm 1. The input is a set of trigger
phrases and action phrases, and the output is correlation feature
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Algorithm 1: Home Automation Rule Feature Extraction
Input: IoT Automation Rule Trigger Set 𝑇𝑆 , Action Set 𝐴𝑆

Output: Rule Correlation Feature Vector 𝑉
1 foreach 𝑇 ∈ 𝑇𝑆 and 𝐴 ∈ 𝐴𝑆 do
2 [𝑛𝑜𝑢𝑛𝑠, 𝑣𝑒𝑟𝑏𝑠]𝑇 = 𝑃𝑜𝑆 (𝑇 )
3 [𝑛𝑜𝑢𝑛𝑠, 𝑣𝑒𝑟𝑏𝑠]𝐴 = 𝑃𝑜𝑆 (𝐴)
4 𝑉 1 = 𝐷𝑇𝑊𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ( [𝑛𝑜𝑢𝑛𝑠, 𝑣𝑒𝑟𝑏𝑠]𝑇 , [𝑛𝑜𝑢𝑛𝑠, 𝑣𝑒𝑟𝑏𝑠]𝐴)
5 𝑉 2 = 𝑏𝑖𝑛𝑎𝑟𝑦𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛( [𝑣𝑒𝑟𝑏𝑠]𝑇 , [𝑣𝑒𝑟𝑏𝑠]𝐴)
6 𝑉 3 = 𝑏𝑖𝑛𝑎𝑟𝑦𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛( [𝑛𝑜𝑢𝑛𝑠]𝑇 , [𝑛𝑜𝑢𝑛𝑠]𝐴)
7 𝑉 4 = 𝐸𝑇 + 𝐸𝐴 ⊲ 𝐸𝑇 and 𝐸𝐴 are averaged word

embeddings of a trigger and an action, respectively.
8 end
9 return [𝑉 1,𝑉 2,𝑉 3,𝑉 4]

vectors. We implement part-of-speech (POS) tagging and syntactic
element extraction (lines 2-3). POS tagging follows context and
word definition to recognize the main task, trigger object, and
action object. For example, in Figure 4, the dependency parser rec-
ognizes the root verb Turn as the main task. The dependency edge
connects other syntactic words to the root verb, which indicates
a grammatical relation between the trigger object and the action
object. We focus on direct objects (dobj), nominal subjects (nsubj),
compounds and modifiers, nominal and passive nominal subjects,
and clausal complements, based on which we extract the main task,
objects, and their properties in one sentence. Moreover, we discard
the named entity since a named entity may modify two different
objects, which will reduce the uniqueness of features. For example,
Wyze Cam andWyze Thermostat are two different objects, butWyze
will add bias when computing the semantic similarity.

Based on the linguistic elements, we compute the numerical
context features. We calculate the verb similarity and object sim-
ilarity in the trigger-action pairs (line 4 in Algorithm 1). We ap-
ply dynamic time warping [30] to compute similarity because the
number of verbs or objects in trigger and action sentences varies.
Then, we compute the binary semantic features (lines 5-6). We ana-
lyze whether the verb or object words in trigger-action pairs have
synonym or hypernym relations and whether the object words in
trigger-action pairs have meronym (i.e., a constituent part of object)
or holonym (i.e., a part of meronym name) relations. These rela-
tions can better reflect the generic semantic relationships between
triggers and actions. Finally, we compute the trigger-action pair
embedding (line 7) by summing the averaged word embeddings
in corresponding triggers and actions. These are unique features
of "trigger-action" rule pairs, which allow classifiers to learn the
internal characteristics of interactions. We compose the above se-
mantic features into feature vectors to train a model that detects
correlations among "action-trigger" correlation pairs. In this way,
we can build correlation pairs among different rules, which are for-
mulated as a binary classification problem. If the given action can
lead to the invocation of the trigger, it is labeled "true". Otherwise,
it is labeled "false".

3.2.2 Offline and Online Graph Construction. In the offline stage,
there are two phases to building interaction graphs. The input

dataset is a set of crawled rule sentences, which provide rich "trigger-
action" interaction logic. First, based on the rule correlation discov-
ery model, we predict the remaining unlabeled rule pairs. In this
way, we obtain "action-trigger" correlations between two rules. In
the second phase, based on the correlation results, we randomly
select and concatenate the "trigger-action" and "action-trigger" rule
interactions to form interaction graphs, which makes generated
graphs less prone to bias. We use the DGL [42] library to build and
store the graphs, which are accessible with DGL APIs.

In the online stage, we consider the scenarios when one house
is equipped with single or multiple platforms. With our designed
offline rule correlation discovery classifier, we can first build a com-
plete interaction graph from all rules deployed in a user’s smart
home, as shown in Table 1. However, it cannot reflect the actual
interactions among smart devices in real time because such graphs
lack the triggers’ chronological ordering information. Fortunately,
event logs contain three basic elements: time, object, and the cur-
rent status of the object, which can reflect real-time device status
as shown in Figure 3b. The event time helps determine the event
sequences. Users can set up the device name and location when they
deploy and configure devices. Thus, we obtain semantic information
such as device types, locations, and device states to differentiate
among different devices. Then, we match the device type and cur-
rent status with the graph constructed from the deployed rules. In
this way, we can remove the unrealistic "trigger-action" pairs such
as the second rule (action) happening before the first rule (trigger).
Thus, we can determine the unique real-time interaction graph.

The temporal dimension is not only integrated into the NLP
embeddings but is also used for pruning graphs. First, we encode
the temporal semantics (e.g., "sunset, at midnight") into embeddings,
such that the ML models could learn the temporal features. Second,
in the online stage, we use the triggers’ chronological ordering
information in event logs. For example, we can set a time interval
(e.g., 3 hours) and use the timestamp to remove any unrealistic pairs.
In this way, although two rules (nodes) could potentially interact,
there is no edge between them in a real-time interaction graph
because of the disjoined occurrence time. The temporal information
allows the model to better learn "action-trigger" correlations, so as
to reduce false alarms. Besides, with temporal information, we can
remove unrealistic correlations and reduce the interaction graph
edges, making it convenient for users to inspect device interactions.

3.3 Graph Representation Learning
In this section, we model the interactive threat analysis as a graph
learning problem to automatically learn interaction patterns. Con-
sidering the different types of information linked to nodes, a single
type of feature representation cannot represent the whole graph
due to the differences in types and dimensionality. Existing GNN
models [15, 19, 21, 45] either target homogeneous graphs or het-
erogeneous graphs with different designs. Besides, the interaction
patterns could exist at different scales in a heterogeneous inter-
action graph, e.g., at the different subgraph levels. In this work,
we design ITGNN, a unified model for Interactive Threat analy-
sis based on GNN, which learns interactive threat patterns from
different scales of an interaction graph.
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Figure 5: The proposed ITGNN model for interaction graph representation learning.

3.3.1 Graph Representation Model Design. We design the interac-
tion graph representation learning process as shown in Figure 5,
and the ITGNN model is detailed in Algorithm 2. Other input pa-
rameters in Algorithm 2 include node type set A; the number of
node𝑉𝐴; node weight matrix𝑊𝐴; node feature vector 𝑥𝑣 ∈ 𝑋 ; meta-
path set P; the number of layers 𝐿; the number of scales 𝐷 ; weight
matrix for linear transformation of each metapath-specific node
vectors 𝑀𝐴 and 𝑏𝐴; activation function 𝜎 ; aggregation function
Φ. ITGNN takes as input a graph 𝐺 (𝑉 , 𝐸, 𝑋 ) and corresponding
parameters, and outputs a 𝑑-dimensional graph representation 𝑧𝑔 .
ITGNN considers interaction features from both neighborhoods of
a vertex and multiscale structures of a graph.

First, we project all nodes’ features in heterogeneous graphs to
the same feature space and then aggregate intra-metapath and inter-
metapath information, called metapath-based node transformation.
A metapath describes a composite relation between a series of node
types, and the metapath instance is a sequence of nodes in a graph
following the metapath schema [15]. Unlike homogeneous graph
classification, we need to consider how to aggregate various types
of nodes into the readout function. Inspired by MAGNNmodel [15],
we first project heterogeneous node features to the same embedding
space (line 3). For a node 𝑣 of type 𝐴, we have the projected node
embedding as ℎ𝑣 . Then, for each target node, we average the node
features of metapath instances into a single vector (lines 5-7). In
line 6, 𝑁𝑝

𝑣 is metapath-based neighborhoods of node 𝑣 , 𝑝 (𝑣,𝑢1) is a
metapath instance, and 𝑣 is the mapping target.

Second, we use the attention mechanism to aggregate the inter-
metapath information (lines 9-11), where 𝑠𝑝𝑖 is the summarized
metapath of 𝑝𝑖 ∈ 𝑝𝐴 , 𝑞𝐴 is the attention vector for node type𝐴 and
𝛽𝑝𝑖 is the relative importance of each metapath 𝑝𝑖 for the targeting
node 𝑣 . The interactive threats are usually caused by a subset of
graph metapath instances. Different instances will contribute to
the final graph embedding to different extents. Then, we transform
the node embedding features while retaining the graph structure
to form homogeneous-type graphs (line 13).

Third, we extract comprehensive features from multiple scales of
a graph by incorporating the vertex infomax pooling (VIPool) mod-
ule [24] into ITGNN, which is called a multi-scale graph generator
and fusion. We input the homogeneous-type graph and apply the
VIPool [24] to generate multi-scale graphs (lines 15-21), from which

Algorithm 2: ITGNN Graph Representation Learning
Input: interaction graph 𝐺 and other input parameters
Output: graph representation 𝑧𝑔

1 if 𝑉𝑇 > 1 then
2 for 𝐴 ∈ A do
3 ℎ𝑣 =𝑊𝐴 · 𝑋𝐴

𝑣

4 for 𝑃 ∈ PA do
5 for 𝑣 ∈ 𝑉𝐴 do
6 ℎ

𝑝
𝑣 = 1

|𝑁 𝑝
𝑣 |

∑
𝑣∈𝑁 𝑝

𝑣
( 1
|𝑣 |

∑
|𝑣 | ℎ𝑣),∀𝑣 ∈ 𝑝 (𝑣,𝑢1)

7 end
8 end
9 𝑠𝑝𝑖 =

1
|𝑉𝐴 |

∑
𝑣∈𝑉𝐴 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (𝑀𝐴 · ℎ𝑝𝑖𝑣 + 𝑏𝐴)

10 𝛽𝑝𝑖 = Softmax (𝑞𝐴 · 𝑠𝑝𝑖 )
11 ℎ

𝑝𝐴
𝑣 =

∑
𝑝∈𝑝𝐴 𝛽𝑝 · ℎ𝑝𝑣

12 end
13 𝐺𝑚 = 𝐺 (𝑉 , 𝐸, {ℎ𝑝𝐴𝑣 })
14 end
15 for 𝑙 = 1 . . . 𝐿 do
16 for 𝑑 = 1 . . . 𝐷 do
17 ℎ𝑑𝑣 = 𝑉 𝐼𝑃𝑜𝑜𝑙 (𝐺𝑚)
18 ℎ𝑣 = ℎ𝑣 | |ℎ𝑑𝑣
19 end
20 ℎ

(𝐿𝑖 )
𝑣 = 𝜎 (ℎ (𝐿𝑖−1 )𝑣 ,Φ(ℎ (𝐿𝑖−1 )𝑢 ;𝑢 ∈ 𝑁𝑣))

21 end
22 return 𝑧𝑔 = 𝑟𝑒𝑎𝑑𝑜𝑢𝑡 (ℎ𝑣 ; 𝑣 ∈ 𝑉 )

we extract the comprehensive features. The multi-scale graphs are
propagated via the TAG [12] convolution layer, which does not need
to approximate graph convolution. By vertex pooling, we select
and keep vertices that contain high mutual information with neigh-
borhoods, which can well express local subgraphs. We concatenate
different scales of features as ℎ𝑣 = ℎ0𝑣 | | · · · | |ℎ𝑑−1𝑣 | |ℎ𝑑𝑣 (line 18). ℎ𝑑𝑣
is the 𝑑𝑡ℎ scale of the graph features, | | represents concatenation.
Fully connected layers are connected to fuse multi-scale features.

The proposed ITGNN graph representation learning can be used
for different tasks. If the interaction graph is heterogeneous, it
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Algorithm 3: Drifting Interaction Pattern Detection

Input: Training interaction graphs 𝑔 ( 𝑗 )
𝑖

, 𝑖 = {0, 1} is binary
classes, 𝑗 = {1, · · · , 𝑛𝑖 }, 𝑛𝑖 is the sample number in
class 𝑖 , testing data 𝑥 (𝑚) ,𝑚 = {1, · · · , 𝑀},𝑀 is the
total number of testing samples, ITGNN-C model 𝑓

Output: Drifting degree for each testing sample 𝐴(𝑘 )

1 for 𝑖 ∈ {0, 1} do
2 for 𝑗 = 1 to 𝑛𝑖 do
3 𝑧

( 𝑗 )
𝑖

= 𝑓 (𝑔 ( 𝑗 )
𝑖

) ⊲ The latent representation of 𝑔 ( 𝑗 )
𝑖

4 end
5 for 𝑗 = 1 to 𝑛𝑖 do
6 𝑑

( 𝑗 )
𝑖

= | |𝑧 ( 𝑗 )
𝑖

− 1
𝑛𝑖

∑𝑛𝑖
𝑗=1 𝑧

( 𝑗 )
𝑖

| |2
7 end
8 𝑀𝐴𝐷𝑖 =𝑚𝑒𝑑𝑖𝑎𝑛( |𝑑 ( 𝑗 )

𝑖
−𝑚𝑒𝑑𝑖𝑎𝑛(𝑑 ( 𝑗 )

𝑖
) |)

9 end
10 for𝑚 = 1 to𝑀 do
11 for 𝑖 ∈ {0, 1} do
12 𝑑

(𝑚)
𝑖

= | |𝑓 (𝑥 (𝑚) ) − 1
𝑛𝑖

∑𝑛𝑖
𝑗=1 𝑧

( 𝑗 )
𝑖

| |2

13 𝐴
(𝑚)
𝑖

=
|𝑑𝑚

𝑖
−𝑚𝑒𝑑𝑖𝑎𝑛 (𝑑 ( 𝑗 )

𝑖
) |

𝑀𝐴𝐷𝑖

14 end
15 return𝑚𝑖𝑛(𝐴(𝑘 )

𝑖
), 𝑖 = 1, · · · , 𝑁

16 end

will first map node features from different feature spaces into the
same space. Then, we can map the homogeneous-type graph into
graph embedding. Next, we feed the generated graph embedding
to the drifting sample detection module and classification module
to identify the presence of an interactive threat. The concept drift
is an important problem when modeling heterogeneous data from
different IoT platforms. Since the classification models are mostly
based on the i.i.d. assumption, the drifting samples should be filtered
out. The detection and filtering of drifting samples could help reduce
the false positives and false negatives of the classification model.

3.3.2 Drifting Interaction Pattern Detection. Given that the inter-
active threat labeling is based on a set of known interactive threat
patterns, it is conceivable that the learned model could have false
negatives. This is because the testing interaction graph distribution
may drift away from that of the training dataset due to the new
smart device automation rules and the presence of various attacks.
As a result, there will be a shift in the decision boundary [16] of
the supervised or semi-supervised machine learning models, which
will degrade the model performance.

Therefore, we need to detect the interaction graph samples that
drift from existing classes. Here, we design ITGNN architecture
with contrastive learning loss, called ITGNN-C, to learn a distance
function to discover drifting samples. Taking advantage of our
labeled graph dataset, contrastive learning can achieve better per-
formance compared to unsupervised methods [48]. The basic idea
of contrastive learning is to enlarge the distance among samples
with different labels and reduce the distance among samples with
the same label. Given a set of samples 𝑥𝑖 and the corresponding
label 𝑦𝑖 , the contrastive loss takes a pair of samples (𝑥𝑖 , 𝑥 𝑗 ) as input

and tries to learn a function 𝑓\ . The formula is written as follows:

Lc (x𝑖 , x𝑗 , \ ) = T [𝑦𝑖 = 𝑦 𝑗 ] ∥ 𝑓\ (x𝑖 ) − 𝑓\ (x𝑗 )∥22
+T [𝑦𝑖 ≠ 𝑦 𝑗 ]max(0, 𝜖 − ∥ 𝑓\ (x𝑖 ) − 𝑓\ (x𝑗 )∥2)2,

(1)

where T [𝑦𝑖 = 𝑦 𝑗 ] means the value is 1 if two graph samples have
the same label, otherwise is 0. T [𝑦𝑖 ≠ 𝑦 𝑗 ] means the value is 1 if
two graph samples have different labels, otherwise is 0. 𝜖 is the
upper bound distance to avoid the exceptional contribution of some
dissimilar pairs. The ITGNN-C model augmented with contrastive
loss can map samples from each class to a compact region in the
latent space. After training the ITGNN-C model with labeled data,
we can apply it to discover drifting samples. Given a list of testing
samples 𝑥𝑡 , with respect to the current classes in the training data,
inspired by CADE [48], we evaluate if 𝑥𝑡 is a drifting sample as
shown in Algorithm 3.

We have binary classes "normal" and "threat", denoted as 0 and 1,
respectively. We first generate the latent representations of training
graph samples and compute the mean values of the representations
as the centroid of each class (lines 2-4). We calculate the median
of the absolute deviation𝑀𝐴𝐷𝑖 within each class 𝑖 (lines 5-9). For
testing, we generate representations of the testing samples and
compute each test’s drifting degree (lines 10-16). We recognize a
potential drifting sample by comparing 𝐴𝑘 with a threshold 𝑇𝑀𝐴𝐷 ,
which is set as 3 empirically [23]. Users or security analysts can
further investigate the drifting samples and conduct retraining.

3.3.3 Vulnerable Interaction Classification. Besides designing con-
trastive learning, which learns to compare two samples, we design
the supervised classifier loss function 𝐿 for classifying graphs as
normal or vulnerable:

𝐿 = −
𝑁∑︁
𝑛−1

1∑𝑁
𝑛=1𝑤𝑦𝑛

𝑤𝑦𝑛𝑥𝑛,𝑦𝑛 − 𝛽𝐿𝑝𝑜𝑜𝑙 ,

𝐿𝑝𝑜𝑜𝑙 =
1
𝑛

∑︁
𝑖

(𝑡𝑖 ∗ log(𝑜𝑖 ) + (1 − 𝑡𝑖 ) ∗ log(1 − 𝑜𝑖 )),
(2)

where 𝑤𝑦𝑛 is the weight of class labels to impose a high penalty
when misclassifying the minority class. 𝐿𝑝𝑜𝑜𝑙 is graph pooling
loss[24], 𝛽 is a hyperparameter to balance the classification loss
and pooling loss, 𝑥𝑛,𝑦𝑛 is the element of input embedding to the
loss function, 𝑜𝑖 is the logit output from each VIPool layer, and 𝑡𝑖
is the binary label. In order to minimize false positives and false
negatives, it is necessary to remove potential drifting samples and
subsequently employ a classification model for detecting interactive
threats. This approach can yield higher accuracy compared to solely
relying on contrastive learning, as demonstrated in Table 5.

3.3.4 Cross-Domain Graph Transfer Learning. Another challenge
is that the semantic knowledge from different platforms varies.
Some platforms contain less semantic knowledge, making it hard
to train a robust GNN model. For example, the interaction rules
of apps from the SmartThings platform are limited, with only 135
apps suitable for analysis. However, a key insight is that the apps’
descriptions are mainly about the functions of device controls on
the smart home platforms, which share common information. For
example, the app on the SmartThings platform "Turn on the air
conditioner when the temperature is above 85 °F" and the skill on the
Alexa platform "Alexa, turn on the air conditioner" trigger a similar
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action. Interaction knowledge can be transferred across different
smart home platforms as these platforms all target the same trigger-
action paradigm. Therefore, we design a transfer learning module
to transfer knowledge of interaction information across platforms.

Transfer learning has demonstrated its superiority in enhanc-
ing model performance and reducing the training time with less
training data in computer vision [17, 49]. Deep learning models
typically show excellent transferability properties. For example, the
first layer features tend not to be specific to a particular task [49].
Similarly, the first few layers of embedding features of GNN contain
some common information. The node features are both semantic-
based embeddings. In addition, they share some properties that
are transferable among smart home platforms. For example, the
knowledge in the IFTTT interaction graph can be transferred to the
SmartThings interaction graph. In turn, the learned features of the
SmartThings graph model can be used to train a better IFTTT graph
model. We can transfer embedding features from other pre-trained
models to train a more robust model.

Formally, suppose 𝐷𝑆 is source domain and 𝐷𝑇 is target domain,
where 𝐷 = {𝑋, 𝑃 (𝑋 )} and 𝑋𝑆 ≠ 𝑋𝑇 . A domain feature space 𝑋 is
defined as a set of graph node features in a certain platform in the
context of Glint. 𝑋𝑆 is the feature space of the source domain, and
𝑋𝑇 is the feature space of the target domain. The goal of transfer
learning is to learn 𝑃 (𝑌𝑇 |𝑋𝑇 ) by gaining information from 𝐷𝑆 and
source task 𝑇𝑆 . First, Glint trains a source domain model𝑀𝑇𝑆 . We
take source domain graph node features as input to train𝑀𝑇𝑆 . Then,
Glint transfers part of the layers of𝑀𝑇𝑆 to the target domain task
model. Finally, Glint uses a small number of data in 𝐷𝑇 to fine-tune
parameters in the transferred layers and train parameters in new
layers. The number of transferred layers depends on the specific
graph model to yield better performance.

Glint uses a two-pronged approach for transfer learning. First,
Glint transfers semantic knowledge from one platform to another,
such as from the SmartThings interaction graph to the IFTTT inter-
action graph. There are common features in semantic knowledge
from different platforms. Thus, Glint can transfer semantic knowl-
edge in the form of feature embeddings. Second, Glint transfers
interaction graph knowledge from homogeneous to heterogeneous
interaction graph. Different platforms provide certain similar func-
tions even though the usage is different. For example, an Alexa
voice command or a SmartThings app can directly control the light
status. The embeddings of GNN layers can transfer such interac-
tion knowledge. Because the first several layers’ features learned
by GNNs are generic to be applied in many tasks [31], Glint can
freeze the first several layers close to the input layer to preserve
the transferred knowledge.

4 IMPLEMENTATION AND EVALUATION
We first evaluate the rule correlation discovery models for graph
dataset construction. Then, we present and label the constructed
interaction graphs. Next, for interactive threat analysis, we evaluate
the performance of our designed ITGNN model on homogeneous
and heterogeneous graph datasets. Then, we explore the possible
interactive threats in user-designed automation rules. Finally, we
evaluate Glint with a real-world testbed.

Table 2: The number of rules from 5 platforms.
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Figure 6: The performance of five classification models.

4.1 Rule Correlation Discovery Evaluation
We use Scrapy [33] to crawl publicly available rule descriptions
from 5 smart home platforms, as shown in Table 2. We randomly
choose and manually label 5,600 pairs that have action-trigger
correlations and another 8,000 pairs that have no action-trigger
correlations. Part of the labeled data is directly from [43], and we
manually label the interaction pairs in newly crawled data. We
use the labeled dataset to train classifiers to recognize whether a
sentence pair has an action-trigger correlation. Then, we use the
well-trained classifiers to label whether a sentence pair has action-
trigger correlations for unlabeled rule pairs. Besides, we manually
check the classification results to ensure the correctness of action-
trigger correlations. In this way, we can efficiently filter out the
impossible and unrealistic correlations among different rules.

We compare five different classification models: C-Support Vec-
tor (SVC), Multi-layer Perceptron (MLP), Random Forest (RForest),
K-nearest Neighbors (KNN), and Gradient Boosting (GBoost). We
use Scikit-learn [28] library to implement the experiments. The
input of a model is the features of action-trigger pairs. The output
is true or false. True means there is a correlation between "action"
to "trigger". To deal with the issue of class imbalance, we adjust
class weights inversely proportional to class frequencies in the
training data. For instance, we use a weight balance in the MLP
loss function to give a high cost for the misclassification of "true"
flows. We apply the grid search method to find the most effective
hyperparameters and use 10-fold cross-validation to test the gener-
alization of models. We compute the accuracy, recall, precision, and
F1 to evaluate the models. The recall 𝑅 represents the percentage
of positive samples in the test set which are predicted correctly. A
high recall means a low false-negative rate. The precision 𝑃 shows
the percentage of positive predictions which are truly positive. The
high precision means a low false-positive rate. The F1 score is the
harmonic average of precision and recall: 𝐹1 = 2·𝑃 ·𝑅

𝑃+𝑅 .

Can ML aid in rule correlation discovery? As shown in Fig-
ure 6, all five models achieve excellent correlation classification
performance, demonstrating the utility of our extracted features.
MLP and Random Forest achieve 98.2% and 98.4% accuracy, respec-
tively. Both SVC and KNN achieve the highest average precision
rates of 100%. The high precision ensures that the true connection
predictions have a high possibility of being truly positive. MLP
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Table 3: The number of interaction graph datasets

Type Platforms Label Num. of
Total Graph

Num. of
Unsafe Graph

Homo. IFTTT labeled 6,000 1,473
unlabeled 10,000 *

SmartThings labeled 165 36

Hetero. 5 platforms labeled 12,758 3,828
unlabeled 19,440 *

and Random Forest models achieve 99.8% and 98.2% recall, respec-
tively. Besides, Random Forest achieves the highest 98% F1 scores. A
higher F1 score for a classification model means better performance.
With deep and large hidden layers, MLP can better characterize the
hidden features in the dataset. The Random Forest model is based
on bagged trees, but it uses a random subspace method to prevent
overfitting. Therefore, we chose MLP, RandomForest, and KNN to
collaboratively predict the remaining 20,000 unlabeled pairs based
on the highest precision, recall, and F1 value, so we can uncover the
interaction correlations between actions and triggers. If the predic-
tions of the three models differ, we manually review the prediction
results to determine the final correlation labeling result.

4.2 Interaction Graph Construction
Due to the large volume of rule combinations, we randomly select
and chain different rules that formulate "trigger-action" correlations
to build interaction graphs, of which the number of nodes is from 2
to 50. In an interaction graph, we build an edge between two rules
that have a "trigger-action" correlation, and each rule is a node.

For the IFTTT interaction graph dataset construction, we use
rules from both the dataset (315,393 applets) from [43] and our
newly crawled 1,535 applets to construct interaction graphs among
different applets. Considering descriptions could be lengthy and
contain multiple sentences, we extract word phrases for text de-
scriptions of IFTTT applets. Similarly, we build the SmartThings
graph dataset by analyzing the apps’ descriptions provided by the
developers. For IFTTT and SmartThings homogeneous interaction
graph datasets, we use the en_core_web_lg model in spaCy [35] to
get the averaged word embeddings of each phrase in every rule.
The dimension of embedding is 300, which is used as node features.
As shown in Table 3, on the IFTTT platform, we build and manually
check 6,000 interaction graphs to label whether graphs contain in-
teractive threats or not. Finally, we label 1,473 graphs that contain
interactive threats. Besides, we build 10,000 unlabeled IFTTT inter-
action graphs for discovering interactive threats in the smart home
platform. On the SmartThings platform, we cross-check our 165
SmartThings inter-app interaction graphs with existing graphs [10]
to ensure accuracy. We label 36 unsafe graphs out of 165 graphs.

We build a heterogeneous interaction graph dataset on IFTTT,
SmartThings, Alexa, Google Assistant, and Home Assistant plat-
forms by building interaction correlations across platforms. Specifi-
cally, we use IFTTT, SmartThings, and Alexa to build 12,758 het-
erogeneous interaction graphs with labels. We have heterogeneous
graphs, among which 3,828 graphs are labeled as vulnerable graphs.
For voice assistant rules, we use the Universal Sentence Encoder [8]
to obtain sentence embeddings of rules, which are more suitable for
identifying sentence features. The dimension of each embedding is

512, which is used as the node feature. Besides, we generate 19,440
unlabeled graphs based on the above five platforms. The Google
Assistant and blueprints (rules) from Home Assistant are used in
unlabeled graphs. These blueprints are created and discussed from
December 2020 to January 2022.

We use DGL [42] to build the graph datasets. The stored labeled
graph dataset file for IFTTT is 21.8G, the one for SmartThings is
0.018G, and the heterogeneous graph amounts to 81.6G. The large
dataset file is partly due to the storage of all vertex information
with DGL. We apply the DGL with Pytorch to build and train the
GNN model. We run experiments on TensorEX Ubuntu 20.04 Deep
Learning Stack with 256GB DDR4 memory, Intel(R) Xeon(R) Gold
5218R 2.10GHz CPUs and RTX A6000 GPUs.

In the labeling phase, two students who study IoT security
volunteer to label interaction graphs. They first learn the security
policies and IoT interactive threats identified in the literature [2,
7, 10, 11, 14, 39, 43]. For example, IoTSafe [11] specifies safety and
security policies such as "All electrical appliances should be turned
off when smoke is detected". Then, two volunteers follow the six
types of threats [43] as criteria for labeling, where the specific rule
settings are in Table 4:

(1)Condition bypass.Users may configure different granularity
of settings with the same aim on different platforms. As a result,
some conditions in fine-grained settings may be bypassed due to
existing coarse-grained settings. For example, the users may have
SmartThings setting 1 and have a concise setting 2 with Alexa. Such
settings will allow condition bypass, which will bring threats.

(2) Condition block.With different smart home settings, the
condition may be blocked because some commands may cancel the
execution condition of another command. For instance, suppose we
have settings 3, 4, and 5; when motion is detected at the door after
7 p.m., no notification is sent because the home state is disarmed.

(3) Action revert. The same device may be correlated to mul-
tiple environmental factors, and the action could be reverted if
some environmental factors change. For example, with settings 6
and 7, the air conditioner is turned on and then turned off. Such
interactions may cause action to revert.

(4) Action conflict. Some actions may conflict with each other
in multiple smart home platforms. For instance, with settings 8 and
9, the action is conflicted if smoke is detected after 10 p.m.

(5) Action loop. The interactions among devices and the envi-
ronment could trigger each other, which will introduce a loop in
the interaction graph. For example, with settings 10 and 11, when
the home state is away, the actions will loop forever.

(6) Goal conflict. There are cases when a user makes miscon-
figurations, such that the actions’ goals conflict with each other.
Suppose the user turns on the heater to keep a room warm while in
the bathroom; however, given the settings 12 and 13, the window
opens, resulting in the temperature drop of the room.

We develop the Python scripts to show the graph and rule con-
tents, so the first volunteer can quickly check the graph edges and
derive the conclusion. If a type of defined threat is found, then
the volunteer stops checking and labels the graph as vulnerable.
Otherwise, it is labeled as normal. Especially we cross-check our
165 SmartThings inter-app interaction graphs with the existing
inter-app interaction chain graph of SmartThings [10] to ensure
accuracy, from which we label 36 unsafe graphs out of 165 graphs.
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Table 4: Rule examples from different platforms.

Platform Setting Content

SmartThings Setting 1 If outside temperature is above 70◦F and
time is 11 a.m., then open windows.

Alexa Setting 2 If outside temperature is above 70◦F,
then open windows.

IFTTT Setting 3 If motion is detected at the door and home
is in armed state, then send a notification.

IFTTT Setting 4 When light is on, disarm home state.
SmartThings Setting 5 Turn on the light at 7 p.m.

Alexa Setting 6 Turn on the air conditioner when
temperature is above 100◦F.

IFTTT Setting 7 When humidity is below 30%, turn on
humidifier and turn off air conditioner.

SmartThings Setting 8 If smoke is detected, unlock the door.
Alexa Setting 9 Lock the door at 10 p.m. every day

IFTTT Setting 10 Turn off the living-room light
when bedroom light is on.

IFTTT Setting 11 If the living-room light is turned off and the
homestate is away, then turn on bedroom light.

Alexa Setting 12 Turn on a heater
SmartThings Setting 13 Open windows if indoor temperature is above 80◦F.
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Figure 7: The ablation study of ITGNN model.

The other volunteer double-checks the labeling result to avoid
mislabeling. If they have disagreements on the labels, they will have
a further discussion based on the security policies identified in the
literature. For large and complex interaction graphs, such as a graph
with 50 nodes, it takes about 6 minutes to examine the possible
interactive threats in a graph. For simple graphs with two nodes,
we just need to check whether they violate the security policies,
which takes about 20 seconds. On average, it takes about 1 minute
to label each graph at the beginning. After the two volunteers get
familiar with the labeling process, it takes about 40 seconds to label
and double-check each graph. In total, it takes about 8 weeks to
label the entire graph dataset.

4.3 Ablation Study of ITGNN
In this section, we implement an ablation study focusing on the IT-
GNN model. We evaluate the hyper-parameters and components of
ITGNN on the heterogeneous dataset as shown in Figure 7. Specifi-
cally, we consider: (i) The number of scales, which is in the multi-
scale graph generator. We can see that ITGNN achieves the best
performance when the number of scales is 3 in Figure 7. When
the number of scales is small (e.g., 1, original scale), ITGNN under-
estimates local information in graphs while global information is
underestimated when the scale number is large (e.g., 5). (ii) Pooling
ratio, which is graph pooling in VIPool. When the value is 1, the
model keeps all vertices and yields VIPool ineffective. When the

Table 5: Results of homogeneous graph classification

Dataset Model Accuracy Precision Recall F1

IFTTT

GCN[21] 89.5 100 89.5 94.5
GXN[24] 78.7 79.0 76.4 76.3
GIN[46] 95 94.7 94 94.4
IFG[36] 69.8 75.5 70.2 67.4
SVC[29] 84.1 84.1 84 83.9
KNN[3] 89.5 90.9 89.5 89.6
ITGNN-C 95.4 95.3 94.9 95
ITGNN-S 95.7 95.9 95.7 95.8

SmartThings

GCN[21] 90.9 82.6 90.9 86.6
GXN[24] 88.2 89.9 88.2 87.2
GIN[46] 89.7 85.9 89.5 87.7
IFG[36] 86.1 89.3 87.5 85.9
SVC[29] 84.4 87.3 84.8 81.3
KNN[3] 84.8 83.8 84.8 83.2
ITGNN-C 76.5 69 70.6 69.5
ITGNN-S 88.2 89.9 88.2 87.2

value is 0.6, ITGNN can select vertices that can better express neigh-
borhoods’ information, which helps achieve the best performance.

(iii) The number of propagation layers in the multi-scale graph
generator. We test the influence of the number of layers in the prop-
agation process. As shown in Figure 7, when the number of layers
becomes large (e.g., 6), the model achieves worse performance com-
pared with the number of layers being 2. The GNN model suffers
from over-smoothing and becomes less expressive when the layer
number increases. (iv) We also remove some modules in metapath-
based node transformation. As we can see from Figure 7, when
we remove both intra-meta path and inter-meta path aggregation
modules, the model can only achieve an accuracy of 81.5%. This is
because, for heterogeneous graphs, the model ignores the various
types of node information in different metapath instances. As a
result, the model cannot effectively learn the graph structure infor-
mation in heterogeneous graphs. In contrast, the complete design
of ITGNN achieves the best accuracy of 95.1%.

4.4 Homogeneous Graph Evaluation
With the interaction graph datasets, we can train the GNN-based
interactive threats detection model. We run experiments in 5 trials.
For each trial, we split the dataset into the training set and testing set
by 8:2. However, there are only 1,473 vulnerable interaction graphs
out of 6,000 interaction graphs, as shown in Table 3. The imbalanced
classes will degrade the performance of the model. Thus, for the
training set, we first increase the number of vulnerable graphs by
random oversampling until the number of vulnerable graphs is
doubled. Second, we assign unequal costs to the misclassification
class. The class weight is inversely proportional to the number
of class examples. We use the weighted F1 score to measure the
performance of graph models. We calculate the F1 value for each
label and then compute the average weights by the number of
occurrences of each class. Thus, the F1 value may be beyond the
range of precision and recall.

We compare our proposed model ITGNN with four state-of-the-
art graph models and two classification models, including: (i) graph
convolutional network (GCN) [21], which is a convolutional net-
work operating on graphs; (ii) graph cross-network (GXN) [24]
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model, which extracts graph features by learning from multiple
scales of a graph; (iii) GIN [46] model, a graph isomorphism net-
work, which is used to distinguish certain graph structures; (iv)
InfoGraph (IFG) [36], which uses graph-level representation learn-
ing via mutual information maximization. (v) Two classical ML
methods: SVM and KNN. We compute the average of the node
embeddings as the graph sample feature. (vi) ITGNN-C uses the
contrastive learning loss in Eq. (1) and ITGNN-S uses the clas-
sification loss in Eq. (2) to differentiate between vulnerable and
normal interaction graphs. We train the eight models and fine-tune
hyperparameters on interaction graph datasets.

Why not use traditional ML models? As shown in Table 5,
on the IFTTT dataset, the two traditional classifiers, SVC and KNN,
achieve 84.1% and 89.5% accuracy, respectively. Nevertheless, the
graph models can achieve better performance. For example, com-
pared to KNN, GIN improves accuracy by 5.5% to 95%, and ITGNN-S
improves accuracy by 6.2% to 95.7%. Traditional ML models cannot
mine the graph structure information, which is essential for threat
analysis, while GNN is designed to learn graph information, and it
can better mine the interactive threat patterns.

Why not use the contrastive loss for classification? Com-
pared with models trained on the IFTTT dataset, models trained
on the SmartThings dataset have worse performance. For instance,
ITGNN-C on the SmartThings dataset only achieves 76.5% accuracy
because contrastive learning needs a large number of data to learn
to compare two samples. However, the size of the SmartThings
dataset (165 graphs) is much smaller than that of the IFTTT dataset.

4.5 Heterogeneous Graph Evaluation
We evaluate the performance of our proposed ITGNN model on the
heterogeneous graph dataset. We compare ITGNN with three state-
of-the-art heterogeneous graph learning methods. (i) HGSL [52]
performs heterogeneous graph structure learning for classification.
The MAGNN [15] is designed for heterogeneous node classification
and link prediction. Due to the different downstream tasks in the
original models, we construct two heterogeneous graph models.
(ii) MAGCN model is an adapted GCN [21] model with a MAGNN
graph converter. (iii) MAGXN model is then adapted GXN [24]
model with a MAGNN graph converter.

Why not use existing GNN models? With the evaluations on
both homogeneous and heterogeneous graph datasets, we show
the benefits of ITGNN as a unified framework for both homoge-
neous and heterogeneous graph representation learning. Besides,
ITGNN is designed for both drifting sample detection and interac-
tive threat classification problems. On the IFTTT dataset, as shown
in Table 5, ITGNN achieves the best accuracy, recall, and F1 score.
Specifically, ITGNN-S achieves 95.7% recall and F1 score on the
IFTTT dataset. Achieving a better recall is necessary because it
reduces false negatives and will avoid safety and security problems
by better predicting possible interactive threats. Even though GIN
performs better on the SmartThings dataset, it achieves lower pre-
cision than ITGNN-S. Other complex GNN architectures entangle
the whole interaction graph information, which are not suitable
for our interactive threat detection task.

On the heterogeneous graph dataset, as shown in Figure 8, our
proposed ITGNN model can achieve the best average accuracy
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Figure 8: The results of heterogeneous graph classification.

(95.5%), precision (95.9%), recall (95.6%), and F1 score (95.6%). The
HGSL achieves 92.9% accuracy, the MAGCN achieves 90.2% accu-
racy, while MAGXN achieves 81.7% accuracy for threat detection.
The MAGXN has a more complex architecture with more parame-
ters, resulting in a slow training process. By contrast, the MAGCN
achieves acceptable performance even though it has a simpler struc-
ture, which confirms the "No free lunch" theorem [44] for machine
learning. Overall, the proposed ITGNN outperforms both the ho-
mogeneous and heterogeneous models. ITGNN is highly effective
since it can not only preserve heterogeneous node feature informa-
tion but also leverages the multi-scale graph structure features to
generate graph representations.

4.6 Transfer Learning Evaluation
From previous results in Table 5, we find that the simple GCN ar-
chitecture can be easily trained, while other models such as GXN
and ITGNN have relatively complex architecture, which can be
overfitting on an insufficient dataset (e.g., SmartThings). This indi-
cates that one model may best perform for some datasets, but not
in all cases. To apply Glint in a more diverse type of heterogeneous
smart home platforms, we need to enhance the adaptability of GNN
models. Transfer learning applies the learned knowledge from one
domain to a different but related domain, improving modeling per-
formance with less training data and time.

As shown in Table 6, we not only evaluate the transfer learn-
ing between homogeneous (IFTTT)-homogeneous (SmartThings)
datasets but we also evaluate homogeneous (IFTTT)-heterogeneous
datasets. We take IFTTT and SmartThings platforms as examples
of homogeneous graph learning because these two are prevalent
platforms in IoT interaction studies. Besides, the IFTTT dataset con-
tains a large number of graphs, while SmartThings contains a small
number of graphs, which are representative datasets for transfer
learning problems. The size of the SmartThings dataset is much
smaller than the IFTTT dataset. Therefore, given the IFTTT dataset
as the source domain and the SmartThings dataset as the target do-
main, we only fine-tune the fully connected layer for classification
and freeze the other layers of a model trained on the IFTTT dataset.
Then, we let the SmartThings dataset be the source domain and
the IFTTT dataset be the target domain; now, we can freeze the
earlier two layers of the model trained on the SmartThings dataset.
The earlier layers capture the basic feature of interaction graphs.
Finally, we can train the rest of the layers using the IFTTT dataset.

Can transfer learning improve model performance? The
performance of all models improves with transfer learning tech-
niques as shown in Table 6. For example, the accuracy of the GIN
model on the SmartThings dataset improves by 6%. One interest-
ing phenomenon is that if a model performs well in the source
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Table 6: Detailed performance of transfer learning.

Model Target Domain Source Domain No trans. Trans. Improved

GIN SmartThings IFTTT 89.7% 92.3% 2.6%
GIN IFTTT SmartThings 95.0% 95.2% 0.2%
GCN SmartThings IFTTT 90.9% 94.1% 3.2%
GCN IFTTT SmartThings 89.5% 93.9% 4.4%
ITGNN SmartThings IFTTT 88.2% 100% 11.8%
ITGNN IFTTT SmartThings 95.7% 96.4% 0.7%
ITGNN IFTTT Heterogeneous 95.7% 96.1% 0.4%
ITGNN Heterogeneous IFTTT 95.1% 95.5% 0.4%

domain, it will also work well in the target domain. For instance,
the ITGNN model achieves 88.2% accuracy on the target domain
(SmartThings). With knowledge of the source domain (IFTTT),
the model can achieve 100% accuracy. Moreover, even though the
source domain (SmartThings) knowledge is limited, it can still pro-
vide helpful knowledge across platforms. For example, the accuracy
on the IFTTT platform grows from 95.7% to 96.4%. Moreover, we
check if the transfer learning techniques could bring negative ef-
fects. As shown in Table 6, the applied transfer learning techniques
consistently enhance the model by achieving better accuracy in the
target domain. Therefore, models trained on datasets from multiple
smart home platforms do not incur negative transfer problems.

4.7 Drifting Interaction Pattern Evaluation
We implement the Algorithm 3, and we use principal component
analysis (PCA) to project the graph embeddings from the original
256-dimensional into a 2-dimensional space. We use the K-means
method to cluster the projected embeddings as shown in Figure 9,
where the centroid of each class is the white cross.

We test the samples in the unlabeled dataset to detect the poten-
tial drifting samples (the samples in the red circle in Figure 9). The
drifting samples are examined manually to summarize the potential
interaction patterns and can be used for retraining. Among 10,000
unlabeled IFTTT graphs, we found 63 potential drifting samples.
For 19,440 unlabeled heterogeneous graphs, we found 104 poten-
tial drifting samples. For example, the open and close of a lawn
sprinkler valve is a rare example, and only exists in the unlabeled
dataset, so it is regarded as a potential drifting sample. The ratios
of vulnerable interaction graphs on the randomly generated unla-
beled IFTTT dataset and heterogeneous dataset are 8.3% and 16.7%,
respectively. To recognize whether there are new threat cases, we
manually examine all drifting samples and randomly check 50%
predicted vulnerable interaction graphs. Primarily, in drifting sam-
ples, we discover four new types of interactive threats related to
user-designed blueprints (rules) [5] across multiple platforms. The
reported new interactive threat types are more complex and eas-
ily overlooked, while the previously discovered threat types from
existing work are all rooted in a single platform.
•Action block: Automation is blocked by non-automation settings.
Users create automation blocker rules that block some automation
from running. For example, users can set rule 1, "If the light is set in
manual mode, then keep the light brightness to 100%.". Thus, rule 2,
"dimming lights when turning on the TV" will become ineffective.
Rules 1 and 2 are encoded into two nodes in an interaction graph,
and they target the same device, "light", which will be labeled as a
vulnerable interaction because of the block of the action.

Figure 9: K-means clustering on graph embeddings learned
with contrastive loss (PCA-reduced data).

• Action ablation: Automation action can be reverted over time.
A device can have multiple attributes that are triggered by different
factors. For example, a blueprint turns on the air conditioner (AC)
when the temperature is above 95◦F. Another blueprint has the rule
that turns on the humidifier and turns off the AC when humidity is
below 30%. The status of the AC between the two rules is conflicted
and will be reverted when the humidity becomes low.
• Trigger intake: Automation is caused by unexpected triggers. A
user applies a rule to send the camera a snapshot notification when
motion is detected at the door. There is another rule that starts
the vacuum cleaner at 9 pm, which could accidentally trigger the
motion sensor. As a result, the user may frequently receive false
snapshot notifications. Without a deep analysis, the user can hardly
notice this is caused by the event that the vacuum cleaner triggers
the motion sensor, especially in a bad light condition.
• Condition duplicate: A fake automation condition is generated
by rules from other platforms. For instance, a rule that reports the
room is occupied when any of the conditions are met: motion sensor
detects motion, the door is shut, or media is playing on devices in
the room. A rule from IFTTT can play music in the room from 3
pm to 4 pm. Due to the trigger from the played music, the room is
reported to be occupied. Another rule that starts the heating when
the room is occupied and when the temperature is below 60◦F is
subsequently triggered. Because of the applet from IFTTT, the rule
condition is accidentally satisfied in the platform of Blueprint.

Note that action block involves user intervention, and action
ablation happens over a long time. They are neither action revert
nor action conflict defined in iRuler [43]. Besides, existing work
such as HAWatcher [14] cannot handle these user interventions
and long-term correlations. Similarly, trigger intake and condition
duplicates are not pre-defined in iRuler or mined in HAWatcher.
As a result, the existing work cannot detect these new types of
interactive threats.

4.8 Evaluation on a Real-life Testbed
We construct real-time interaction graphs with event logs collected
from a real-world home testbed, as shown in Figure 10. A volunteer
deploys the SmartThings and Alexa systems in his house following
the setup in HAWatcher [14] with off-the-shelf devices and apps.
The volunteer uses the desired automation and spends a week
collecting 1,813 event logs related to home automation.

4.8.1 Efficacy Comparison. Following the setup inHAWatcher [14],
we simulate five types of attacks by modifying event logs or manu-
ally interfering with the home automation: (i) Targeted compromise:
fake commands, stealthy commands. (ii) Interaction abuse: fake
events, event losses. (iii) Misconfiguration: command failure. For
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Abbr. Device Name Attributes

L Light Bulb switch
M Motion Sensor motion
C Contact Sensor contact
T Temperature Sensor Temperature
PS Presence Sensor presence
Camera Camera snapshot
Button Smart Button button

Figure 10: The layout of smart home devices.

example, we simulate "fake commands" by manually turning off
lights during normal operation, and "stealthy commands" by manu-
ally starting a robot vacuum to trigger motion sensors. We build
600 graphs as the test set. Out of 300 graphs, 150 graphs contain
binary-correlation threats (BCT). Among another 300 graphs, 150
graphs contain complex-correlation threats (CCT). BCT means in-
teractive threats are caused by two nodes, while CCT is caused by
more than two nodes.

We choose three white-box anomaly detection methods for com-
parison: (i)HAWatcher [14], which extracts binary correlations and
verifies themwith run-time event logs. The input is the device states
extracted from event logs. The inconsistencies are reported as anom-
alies. We reuse the refined correlations reported in the paper [14]
to check the actual states of devices. (ii) One-class Support Vector
Machine (OCSVM) [32], which is a unsupervised anomaly detec-
tion method. (iii) IsolationForest [25], which is also widely used for
anomaly detection. We capture all devices’ states as a frame when a
new event happens. Four consecutive frames compose a data vector,
which is the input of OCSVM and IsolationForest. The output is
-1 for threats and 1 for normal cases. We use Scikit-learn [28] to
implement OCSVM and IsolationForest. Note that for many other
systems, it is unfair to directly compare the performance of exist-
ing methods and ours when considering the big gap between the
analysis of open-source and closed-source platforms.

As shown in Figure 11, OCSVM and IsolationForest achieve
worse performance compared to Glint. For instance, for complex
graphs, the OCSVM can only achieve 66.9% precision and 63.3% re-
call. This is because they only use time-series event log data, without
the consideration of rich information in neighbor nodes and graph
structure. The HAWatcher can achieve 97.8% precision and 94.1%
recall taking 21 days of training for binary-correlation threat detec-
tion [14]. By contrast, Glint takes no more than 1 hour to train the
model and apply transfer learning to improve model performance,
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Figure 11: Comparison with different detection methods.

which achieves 100% precision and recall for binary-correlation
threat detection. For complex-correlation graphs, HAWatcher can-
not check interactive threats caused by goal conflict, action revert,
and condition bypass because the three types of threats are not
covered. For such cases, we set HAWatcher to generate results by
the Bernoulli distribution with the probability of a single success of
0.5. Finally, HAWatcher achieves 83.2% precision and 82.7% recall.
By contrast, Glint achieves 96% precision and 95.3% recall, which
outperforms HAWatcher in heterogeneous platform scenarios by
12.8% precision and 12.6% recall rate.

4.8.2 Efficiency Comparison. Given that time efficiency is affected
by many factors, such as code implementation, third-party libraries,
and hardware setup, we qualitatively compare the efficiency of
different systems. HAWatcher [14] needs to traverse all defined
correlations. Suppose the number of correlations is 𝑛, then the time
complexity is 𝑛2 for their extracted binary correlations. The time
complexity will be 𝑛𝑁 when the length of the interaction chain
is 𝑁 . Thus, such search-based methods are retarded by the path
explosion when dealing with large and complex graphs. iRuler [43]
applies satisfiability modulo theories (SMT) solver to check inter-
active vulnerabilities. However, the existence of heterogeneous
platforms indicates that there will be more complex rules for smart
home management. With the fact that the SMT problem is typically
NP-hard, such symbolic execution has poor scalability when deal-
ing with large and complex interaction graphs. It is thus unlikely
that a symbolic execution engine can exhaustively explore all the
possible states within a reasonable amount of time. By contrast, our
proposed Glint is a learning-based system, which achieves a high
efficiency for real-time interactive threat prediction. For each graph,
the prediction time is related to the graph size, and the average
prediction for a heterogeneous graph takes about 0.61s. The ITGNN
model trained on heterogeneous graphs is only 6.13 MB.

4.8.3 Strengths and Limitations. While the above evaluation re-
sults are encouraging, we consider this work as a first step toward
data-driven IoT interaction analysis. We discuss the strengths and
limitations of Glint with examples.

Time factor. The IoT device influence can occur in the long term.
For example, turning on/off the heater will change the temperature
over a relatively long period. The existing system, HAWatcher, only
considers interactions that arise within a short time frame, which
cannot mine long-term correlations. By contrast, Glint discovers in-
teractions based on automation rule semantics and real-time event
logs. We encode the time-related semantics into node embeddings.
One strength of Glint is that by annotating such long-term correla-
tions in graph datasets, the GNN models can effectively learn such
patterns manifested over a long time interval. For example, settings
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12 and 13 in Table 4 compose a vulnerable interaction graph, which
is reported by Glint, but the HAWatcher generates a false negative.

User factor. The automatic interactions could be disturbed by
user-activity deviations. An example is shown in the drifting in-
teraction pattern "Action block" in Section 4.7. Existing systems
such as iRuler [43] use pre-defined vulnerability patterns, which
cannot report such interactive threats. In comparison, Glint can
detect abnormal patterns with concept drift detection. According
to users’ feedback, Glint can fine-tune the model and adapt to user
preferences. How regularly we should update the interaction graphs
to accommodate changes in user actions and IoT devices poses an
important future research problem.

NLP techniques.We acknowledge that the current NLP tech-
niques applied in this work may overestimate or underestimate
physical channel properties, especially when involving different
locations. The physical properties of two devices at different lo-
cations can vary. For instance, the temperature of the oven in the
kitchen can hardly influence the temperature in the living room.
As a result, one limitation of Glint is its lack of complete under-
standing of the physical channel properties, which may lead to
wrong predictions about the correlation between the two rules. For
example, "Set temperature of the oven to 350◦F for preheating at
7:00 pm" should have no correlation to "Open the window if the
indoor temperature is above 80◦F". The construction of an interac-
tion graph will affect the GNN prediction result. We may request
users’ feedback on the correctness of the built graphs, so we can
fine-tune the graph builder model. Besides, more advanced NLP
techniques such as large language models [27, 53] can be applied
to enhance the accuracy of IoT rule correlation recognition in the
future.

5 RELATEDWORK
Many studies have focused on interactions among apps in smart
homes. Most systems rely on the source code of apps [2, 7, 11,
39]. For example, IoTGuard [7] applies code instrumentation to
collect runtime information and checks against pre-defined security
policies. However, most platforms such as IFTTT and Alexa are
closed-source, which makes these methods inapplicable. Instead,
Glint fuses NLP-based multi-domain information without relying
on code analysis.

Other systems [7, 11] use dynamic testing to discover interactive
threats. For instance, IoTSafe [11] combines static analysis and dy-
namic testing to predict risky conditions. However, the deployment
of devices in real-life costs a lot. They need to carefully control
their test cases to avoid causing unexpected safety issues. Moreover,
it is well-known that dynamic testing suffers from code coverage
issues. Many factors, including the time and seasonal impacts, are
not considered. HAWatcher [14] extracts normal correlation pat-
terns from smart apps and event logs, but their method fails to
deal with long-term correlations and user activity deviations. Glint
mines interaction correlations based on NLP techniques by fusing
rule semantics and real-time event logs. Glint extracts interactive
threat patterns with GNN models, which can avoid the overhead of
dynamic testing.

Furthermore, many systems [7, 14, 43] need to pre-define the
security policies or threat patterns. For example, the rule parser

in iRuler [43] only considers interactions within a single platform.
iRuler needs expert knowledge to accurately pre-define complex
threat space for the rule-based model checker. However, it is un-
known how to pre-define diverse types of interactive threats across
heterogeneous closed-source platforms. Therefore, the rule-based
methods can only detect well-known interactive threats, which
causes high false negatives. Moreover, iRuler needs to consider
every combination of device states. Meanwhile, the definition of
rules, device status, and the search depth setting can influence both
the accuracy and efficiency of the analysis. For instance, a larger
search depth may lead to a more time-consuming analysis.

6 CONCLUSION
To detect interactive threats across heterogeneous closed-source
platforms, we propose the graph learning-based system Glint to
learn interaction patterns. We design the unified ITGNN model for
multi-scale graph representation learning. To cope with the inter-
action pattern coverage issue, we propose the drifting interaction
pattern detection algorithm. In addition, we leverage transfer learn-
ing to adapt to different data volumes in heterogeneous platforms.
To train ITGNN, we build the first interaction graph dataset on five
high-profile platforms. Our evaluation shows that the proposed
model can achieve high accuracy in detecting interactive threats
across heterogeneous platforms. We identify four new types of
interactive threats in the user-defined Home Assistant platform. In
the future, we will continue exploring the explainability of GNN
models to better understand the root causes of interactive threats.
In conclusion, our proposed system, Glint, is capable of effectively
detecting interactive threats in IoT apps, potentially inspiring novel
solutions for IoT data management.
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