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Abstract—Debugging, which involves both fault localization
and bug repair, is critical for developers to identify and remove
bugs in a program. Most existing debugging research techniques
focus on imperative programs (e.g., C and Java) and rely on test
suite to analyze correct and incorrect executions of the program
to identify and repair suspicious statements.

We propose a new debugging framework for models written in
a declarative language, where the models are not “executed”, but
rather converted into a logical formula solvable using a constraint
solver. In recent work, we developed a fault localization tool that
takes as input an Alloy model consisting of a violated assertion
and returns a ranked list of suspicious expressions contributing to
the violation. Preliminary results show that the fault localization
tool is accurate, useful, and scales to complex, real-world Alloy
models.

In this work, we propose a new repair technique and tool
that can be integrated with our fault localization tool or used
as a stand-alone tool. We aim to automatic repair bugs violating
given assertions in Alloy models. We plan to adopt guided search
and pattern-based repair techniques from imperative automatic
program repair and modify DFA learning algorithms to synthesis
repairs.

I. INTRODUCTION

Alloy [1] is a declarative language for modelling the struc-
ture and behaviour of complex hardware and software systems.
It has been used in a wide range of applications, such as
program verification [2], test case generation [3], [4], network
and security [5], [6], IoT [7] and Android security [8], [9], and
design tradeoff analysis [10]. For instance, Taco [2] verifies a
Java program by translating it to Alloy and converting pre/post
conditions to assertions.

Given a model written in the Alloy language, a developer
can write an assertion or a predicate to check if the model
violates or satisfies some property. Alloy then translates the
model and the assertion or predicate to one SAT formula and
uses an off-the-shelf SAT solver to find a solution that violates
the assertion or satisfies the predicate.

Similar to writing programs in an imperative language,
such as C or Java, users can make mistakes when writing
Alloy models, especially those that capture complex systems
with non-trivial behaviours. Moreover, the user might not be
familiar with the syntax and semantics of the Alloy language
and can make subtle mistakes, hard to detect by a novice de-
veloper. Hence, debugging techniques and tools, such as fault
localization techniques to identify buggy code in programs,
and automated repair tools to fix the error can help the users
write correct Alloy code and thus help increase the uses and
adoption of Alloy and formal methods in general.

Compared to imperative languages, there are fewer debug-
ging techniques developed for declarative languages. Indeed,
AlloyFL [11] and ARepair [12] are perhaps the only fault
localization and repair tool available for Alloy as of today.
The key idea of AlloyFL is to use “unit tests,” where a
test is a predicate that describes an Alloy instance to encode
expected behaviours and compute suspicious expressions in
an Alloy model that fails these tests. To compute these
suspicious expressions, AlloyFL uses mutation testing [13],
[14] and statistical debugging techniques [15], [16], i.e., it
mutates expressions, collects statistics on how each mutation
affects the tests, then uses this information to assign suspicious
scores to expressions. ARepair builds on top of AlloyFL and
repairs bugs based on generate-and-test technique, where it
synthesizes new patches based on AlloyFL results and check
if the patch passes all test cases.

While AlloyFL and ARepair are the pioneer in Alloy
debugging and are promising, they rely on the assumption of
the availability of AUnit tests [17], which is not common in
the Alloy setting. Indeed, instead of writing test cases, Alloy
users write assertions to describe the desired property and let
the Alloy Analyzer search for specific instances that violate
the property. Moreover, it is unclear how many test cases
are needed or how good they must be for AlloyFL and also
ARepair to be effective (e.g., in the AlloyFL evaluation [11]
the number of tests range from 30 to 120). Another concern is
the runtime for ARepair is relatively large even for small Alloy
models due to heavy Alloy calls, and several kinds of bugs
can’t be fixed due to large search space or missing synthesis
guidance. For example, ARepair fails to repair bugs which
require adding new facts.

To address this state of affairs and to improve the quality
of Alloy development, we propose a new debugging approach
that automatically finds and fixes errors in Alloy models
violating assertions instead of “unit tests”.

In recent work 1, we developed a new technique and tool
that finds faulty expressions causing an assertion violation in
an Alloy model. It utilizes Alloy to generate pairs of a coun-
terexample and satisfying instance and uses their differences
to identify suspicious expressions. We evaluated the technique
on a benchmark consisting of a suite of buggy models from
ARepair [12] and two large real-world models. Experimental
results on real-world Alloy models corroborate that the tool is

1This work is being submitted for review.



able to consistently rank buggy expressions in the top 1.7%
of the suspicious list.

In this paper, we propose to extend our fault localization
technique and a new algorithm to automatically repair bugs
violating assertions in Alloy. We plan to explore the idea of
template-based repair [18], in which commonly used repair
patterns are summarized or learned from previous repair
patches and are applied to repair new bugs. Template-based
repair is a well-studied area in automated program repair [18]–
[20] and has shown effective repairing performance. However,
it hasn’t been explored in declarative languages like Alloy
due to language difference and lack of repair patterns. Based
on our preliminary results (e.g., able to repair bugs that
couldn’t be repaired by random search), we believe adopting
template-based repair to Alloy would lead to a promising
repair performance.

II. FAULT LOCALIZATION

In recent work (in submission), we developed a fault lo-
calization tool for Alloy. It takes as input an Alloy model
consisting of some violated assertion and returns a ranked
list of suspicious expressions contributing to the assertion
violation.

a) Fault Localization: The key idea is to analyze the
differences between counterexamples (instances of the model
that do not satisfy the assertion) and satisfying instances
(instances that do satisfy the assertion) to find suspicious
expressions in the input model.

To achieve this, the tool uses the Alloy analyzer to find
counterexamples showing the violation of the assertion. Then,
it uses a PMAX-SAT solver to find satisfying instances that are
as close as possible to the counterexamples. Next, it analyzes
the differences between the counterexamples and satisfying
instances to find expressions in the model likely causing
the errors. Finally, it computes and returns a ranked list of
suspicious expressions.

We use the Alloy model in Figure 1 to show how the tool
works. This model specifies a simple type of binary search
tree (BST), adapted from ARepair benchmarks [12], with the
following constraints, expressed as fact paragraphs in Alloy.
All nodes are reachable from the root (fact Reachable);
each node is acyclic, has no more than one parent and its
left and right child are exclusive (fact Acyclic). Finally, the
predicate Sorted states the sorted property of BST.

The tool first checks the assertion sorted tree in the model
using the Alloy Analyzer, which returns the counterexample
in Figure 2a, where the element of N1 is larger than the node
N3 in its right subtree. Next, it uses a PMAXSAT solver to
generate a satisfying (sat) instance, shown in Figure 2b, that
is as minimal and similar to the counterexample as possible.
Then it identifies the differences between counterexample and
sat, the element of N3 changing from 2 to 5, and utilizes
this information to locates suspicious expressions. For this
example, it finds four suspicious expressions with the one line
25 ranked first.

1 one sig BinaryTree { root: lone Node }
2 sig Node {
3 left, right: lone Node,
4 elem: Int
5 }
6 fact Reachable {
7 Node = BinaryTree.root.*(left + right)
8 }
9 fact Acyclic {

10 all n : Node {
11 // There are no directed cycles
12 n !in n.ˆ(left + right)
13 // A node cannot have more than one parent.
14 lone n.˜(left + right)
15 // A node cannot have another node as both

its left child and right child.
16 no n.(left) & n.(right)
17 }
18 }
19 pred Sorted() {
20 all n: Node {
21 // All elements in the n’s left subtree are

smaller than the n’s elem.
22 all nl: n.left.*(left + right) | nl.elem <

n.elem
23 // All elements in the n’s right subtree

are bigger than the n’s elem.
24 // Fix: "all nr: n.right.*(left + right) |

nr.elem > n.elem".
25 some n.right => n.right.elem>n.elem
26 }
27 }
28 assert sorted_tree{
29 Sorted => { all sub, root : Node |
30 sub in root.right.*(left + right) implies

sub.elem > root.elem}
31 }}
32 check sorted_tree

Fig. 1: Buggy Binary Search Tree model

b) Results: We implemented the tool, the fault local-
ization technique, in Java and Alloy 4.2, and evaluated its
performance on 56 bugs collected from 38 Alloy models col-
lected from ARepair [12] and 8 real-world Alloy specifications
modelling surgical robot and Java program verifications. The
experimental results show that the fault localization technique
is efficient (can handle complex, real-world Alloy models with
thousand lines of code within 5 seconds), and accurate (can
consistently rank buggy expressions in the top 1.7% of the
suspicious list), and useful (can often narrow down the error
to the exact location within the suspicious expressions).

c) Integration with Repair: Our previous work on Al-
loy fault localization shows promising results. However, we
predict two main challenges to integrate with our proposed
repair technique. One challenge is to reduce false-positive
fault localization results. The empirical results in TBar [18]
shows that fault localization noise has a significant impact on
the performance due to fix patterns are sensitive to the false-
positive locations recommended as buggy positions. For 13
out of 56 models, it produces false-positive results, ranking
unrelated expressions on top 3. We plan to reduce the false-
positive rate by further analyzing the difference to capture the
root cause.



(a) Counterexample (b) (PMAX) Sat instance

Fig. 2: Instance Pair.

Another challenge is that besides the faulty location, we also
need to capture features of a bug to select the proper repair
template. For example, to repair some under constraint bugs,
we need to add a completely new constraint, which requires
the fault localization tool identifies that no existing expression
contributes to the error. We plan to summarize popular Alloy
bugs and categorize them into different groups by features
selected from the difference between counterexample and
satisfying instance and the shape of the buggy expression.

III. PROPOSED WORK: TEMPLATE-BASED REPAIR

A. Related Work

Automatic program repair is a well-studied area. Many
repair techniques follow the generate-and-validate procedure.
They first generate a fix candidate by searching or synthesising
and then validate the candidate by a set of test cases. Some
work [21]–[24] randomly search for a fix. For example,
GenProg [22] uses genetic algorithm to repair bugs, and [23]
applies random search. Learn-based techniques [20], [25]–
[27] learn repair from existing commits or bug reports. For
example, Prophet [25] learns repair from human patches, [26]
mines bug fix patterns from the projects commits and Deep-
Fix [27] trains a neural network to predict erroneous program
locations along with the required correct statements. Synthesis-
based technique [28]–[31] captures program semantics and
utilizes program synthesis to generate fix. For example, An-
gelix [32] optimizes symbolic execution to extract constraints
to synthesis a fix and SPR [19] synthesis a repair by combining
staged program repair and condition synthesis.

Among these techniques, repair patterns are widely
used [18]–[20], [33]. PAR [20] manually summarizes concrete
fix patterns from human-written patches. Based on static
analysis violations, Avatar [33] uses fix patterns to repair bugs.
TBar [18] thoroughly investigates popular pattern-based repair
and shows they are effective for program repair.

Automatic repair for Alloy, on the other hand, has not been
well studied. The only existing work is ARepair [12]. ARepair

generates patch by creating holes and synthesizing expressions
to fill the holes, then validates the repair by test suites. One
main limitation is that the holes are created from and restricted
to the original faulty expression, thus fail to fix bugs that
require new expressions. To repair more complicated bugs, we
propose a new repair technique based on pattern-based repair.

B. Illustrative Example
We use the Alloy model in Figure 1 to illustrate how our

repair technique works. We use the assertion sorted_tree
to check if the tree is a binary search tree. However, the Alloy
analyzer disapproves this assertion by providing a counterex-
ample, as shown in Figure 2a, in which the elem of node (N3)
in right subtree is smaller than the root node (N1).

This indicates a bug in the model. The expression on line
25 is underconstrained: it only specifies the elem of the right
child is smaller but not all nodes in the right subtree.

To automatically repair this bug, we first locate the
bug to the expression in line 25: all n: Node | some
n.right=>n.right.elem>n.elem. Then we select a
template to fix this problem. The templates are selected by the
type of difference and by the format of buggy expression(we
assume the overall structure of the buggy expression is similar
to the correct one). For this example, we choose the following
template:
all a: X | all b: a.Y | a Op b

where X and Y represent expressions and Op represents
operators. Our goal is then to fill in with correct expressions
and operators.

By comparing the counterexample in 2a and sat in 2b,
we find the difference is the elem of N3 changes from 2
in counterexample to 5 in sat. By further analyzing coun-
terexample and sat, we infer that N3.elem becomes larger
than N1.elem while other relations remain the same between
counterexample and sat. Then we can describe the difference
as N1.elem < N3.elem.

We then want to abstract this concrete expression to more
general Alloy expression. We first reduce the number of
concrete values by replacing N3 with N1.right.left
replace N1. Then we abstract N1 to its type Node and get
Node.elem < Node.right.left.elem.

We then ask Alloy to generate more pairs of counterex-
amples and sat instances. For example, we would get the
following difference abstracts:

• Node.elem < Node.right.left.right.elem
• Node.elem < Node.right.left.left.elem
• Node.elem < Node.right.right.left.elem
• Node.elem < Node.right.right.left.left.elem

We then adopt the idea of infering regular expression
from string (DFA learning) to infer Alloy expressions. For
this example, we infer Node.right.*(left+right).
Thus, we fill X with Node and Y with a.right.*(left
+ right) and Op with <, and generate a patch by
replacing expression in line 25 with all a:Node | all
b:a.right.*(left+right) | a.elem < b.elem.
We fix the bug by generating no counterexample when
checking the assertion.



C. Proposed Repair Algorithm

We propose to adopt the idea of template-based automatic
program repair [18], where the repair tool select patches from
repair patterns. These patterns are either pre-defined or learned
from previous repair patches. For example, one common bug
is null pointer deference, and a corresponding repair pattern
is checking the pointer is not null before dereferencing the
pointer.

We predict three main challenges: (1) The patterns used in
imperative language are not suitable for Alloy. For example,
there is no ”null pointer deference bug” in Alloy. We need
new bug taxonomy and repair patterns for Alloy. (2) The
complexity of applying patterns. Some repair patterns may
lead to overfitting such that the Alloy model is too over-
constrained to generate any counterexample. (3) Instantiating
repair patterns become challenging due to the complexity of
relations between Alloy variable. Unlike imperative language,
the variables in a program are declared by certain types, the
variables in Alloy are bind to some Alloy expressions which
increases the difficulty of instantiating the pattern.

To address these challenges, we will explore the following
solutions.

Generate patterns: We plan to summarize some general
repair patterns from benchmarks. The challenge is how to
make these patterns general enough to cover as many bugs.
To leverage this problem, we only define a general sketch as
a pattern and try to learn the rest part from buggy expression.

Select patterns based on bug types: The difference be-
tween the counterexample and sat is insufficient to select a
proper repair pattern, e.g. whether the bug can be fixed by
mutating existing expression or adding new expression. To
solve this problem, we will collect syntactic and semantic
information from the context of the buggy expression, then
select proper patterns by this information and the difference.

Apply repair patterns: The main difficulty of applying
a template is instantiation, in which we need to infer the
bind expression for each variable. We plan to adopt the
idea of inferring regular expression for strings, DFA learning
algorithm, to infer bind expressions for variables. Another
concern is the search space becomes large if there are too
many unknowns in templates. We plan to apply partial repair
gradually instead of search for a full repair at once. To evaluate
the quality of a partial fix, e.g. whether the partial repair is
moving towards a correct answer, we plan to use a model
counting solver to calculate the number of counterexamples
of an assertion and use this number as a guide for the repair,
the smaller the better.

Evaluate patch: We already adopt a benchmark from
ARepair [12] that contains 38 Alloy models. This benchmark
consists of examples that comes with Alloy and homework col-
lected from student assignments. All models in this benchmark
are relatively small, but the bugs are diverse and challenging
to fix. To further evaluate our work, we plan to collect more
examples from online open projects and real-world Alloy
models.

D. Preliminary Results for Repair

We are currently exploring new automatic repair ideas
and are implementing the pattern-based repair technique. We
have summarized several repair patterns and implemented
a prototype. We tested the prototype on some small but
interesting examples. For example, for a room access Alloy
model, where the error is an under constrained bug and
ARepair fails to repair this model, as a completely new fact no
Employee.owns is needed to repair the bug. Our prototype
is able to generate the correct patch by determining that the
relation owns never starts with Employee and using the
template no X.Y.

IV. EXPECTED CONTRIBUTIONS

In summary, our proposed contributions are:
Summary of Common Alloy Bugs and Repair Patterns:

We will summarize common Alloy bugs and their corre-
sponding repair patterns. We believe this is the first work
categorizing Alloy bugs. This bug taxonomy can be further
explored in research on Alloy debugging.

Automatic Repair Technique for Alloy: We will develop
a novel automatic repair technique for Alloy. The repair
technique tries to repair Alloy bugs violating assertions and
doesn’t need test suites.

Collection of Alloy Benchmarks: We plan to collect
practical Alloy models from online open source repositories.
In our previous work, we have collected two real-world Alloy
models: surgery robot models written by humans and Java
verification models generated by the machine. Our benchmark
will contain diverse Alloy models and can be used by other
researchers for repairing Alloy models.

V. CONCLUSION

Alloy is a powerful tool and has been used in a wide
range of applications, such as program verification, test case
generation, network and security, IoT and Android security,
and design tradeoff analysis. To better assist Alloy developers,
we are working on a debugging technique automatically iden-
tifying and repairing bugs for Alloy models with assertions.

In recent work, we developed a new fault localization
approach for declarative models written in Alloy. The approach
is based on the insight that expressions in an Alloy model
that likely cause an assertion violation can be obtained by
analyzing the counterexamples, unsat cores, and satisfying
instances from the Alloy Analyzer.

In this paper, we propose a new program repair technique
for Alloy that relies on assertions to fix bugs. We plan to adopt
template-based repair to Alloy. The preliminary results show
that this method is able to fix new bugs that previous work
couldn’t fix.
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