
FLACK: Counterexample-Guided Fault Localization
for Alloy Models

Guolong Zheng∗, ThanhVu Nguyen∗, Simón Gutiérrez Brida†, Germán Regis†,
Marcelo F. Frias‡, Nazareno Aguirre†, Hamid Bagheri∗

∗Univeristy of Nebraska-Lincoln
{gzheng, tnguyen}@cse.unl.edu, bagheri@unl.edu
†University of Rio Cuarto and CONICET

{sgutierrez, gregis, naguirre}@dc.exa.unrc.edu.ar
‡Dept. of Software Engineering Instituto Tecnológico de Buenos Aires

mfrias@itba.edu.ar

Abstract—Fault localization is a practical research topic that
helps developers identify code locations that might cause bugs
in a program. Most existing fault localization techniques are
designed for imperative programs (e.g., C and Java) and rely
on analyzing correct and incorrect executions of the program
to identify suspicious statements. In this work, we introduce a
fault localization approach for models written in a declarative
language, where the models are not “executed,” but rather
converted into a logical formula and solved using backend
constraint solvers. We present FLACK, a tool that takes as input
an Alloy model consisting of some violated assertion and returns a
ranked list of suspicious expressions contributing to the assertion
violation. The key idea is to analyze the differences between
counterexamples, i.e., instances of the model that do not satisfy
the assertion, and instances that do satisfy the assertion to find
suspicious expressions in the input model. The experimental
results show that FLACK is efficient (can handle complex, real-
world Alloy models with thousand lines of code within 5 seconds),
accurate (can consistently rank buggy expressions in the top 1.9%
of the suspicious list), and useful (can often narrow down the
error to the exact location within the suspicious expressions).

I. INTRODUCTION

Declarative specification languages and the corresponding
formally precise analysis engines have long been utilized
to solve various software engineering problems. The Alloy
specification language [1] relies on first-order relational logic,
and has been used in a wide range of applications, such
as program verification [2], test case generation [3], [4],
software design [5], [6], [7], network security [8], [9], [10],
security analysis of emerging platforms, such as IoT [11] and
Android [12], [13], and design tradeoff analysis [14], [15],
to name a few. Cunha and Macedo, among others, use a
recent extension of Alloy, called Electrum [16], to validate
the European Rail Traffic Management System, a system of
standards for management and inter-operation of signaling
for the European railways [17]. Kim [18] proposes a Secure
Swarm Toolkit (SST), a platform for building an authorization
service infrastructure for IoT systems, and uses Alloy to show
that SST provides necessary security guarantees.

Similar to developing programs in an imperative language,
such as C or Java, developers can make subtle mistakes
when using Alloy in modeling system specifications, espe-

cially those that capture complex systems with non-trivial
behaviors, rendering debugging thereof even more arduous.
These challenges call for debugging assistant mechanisms,
such as fault localization techniques, that support declarative
specification languages.

However, there is a dearth of fault localization techniques
developed for Alloy. AlloyFL [19] is perhaps the only fault
localization tool available for Alloy as of today. The key idea
of AlloyFL is to use “unit tests,” where a test is a predicate
that describes an Alloy instance to encode expected behaviors,
to compute suspicious expressions in an Alloy model that fails
these tests. To compute the suspicious expressions, AlloyFL
uses mutation testing [20], [21] and statistical debugging
techniques [22], [23], [24], i.e., it mutates expressions, collects
statistics on how each mutation affects the tests, then uses this
information to assign suspicion scores to expressions.

While AlloyFL pioneered fault localization in the Alloy
context and the obtained results thereof are promising, it relies
on the assumption of the availability of AUnit tests [25]—
i.e., predicates representing Alloy instances—which are not
common in the Alloy setting. Indeed, instead of writing test
cases, Alloy users write assertions to describe the desired
property and let the Alloy Analyzer search for potential
counterexamples (cex’s) that violate the property. Moreover,
it is unclear how many test cases are needed or how good
they must be for AlloyFL to be effective (e.g., in the AlloyFL
evaluation [19], the number of tests ranges from 30 to 120).

To address this state of affairs and improve the quality of
Alloy development, we present an automated approach and an
accompanying tool-suite for fault localization in Alloy models
using counterexamples, called FLACK. Given an Alloy model
and a property that is not satisfied by the model, FLACK first
queries the underlying Alloy Analyzer for a counterexample,
an instance of the model that does not satisfy the property.
Next, FLACK uses a partial max sat (PMAXSAT) solver to
find an instance that does satisfy the property and is as close
as possible to the counterexample. FLACK then determines the
relations and atoms that are different between the cex and sat
instance. Finally, FLACK analyses these differences to compute
suspicion scores for expressions in the original model.

1

Unlike AlloyFL that relies on unconventional unit tests,
FLACK uses well-established and widely-used assertions, nat-
urally compatible with the development practices in Alloy.
Also, instead of using mutation testing or statically analyzing
the effects of tests, FLACK relies on counterexamples and
satisfying instances generated by constraint solvers, which are
the main underlying technology in Alloy.

We evaluated FLACK on a benchmark consisting of a suite
of buggy models from AlloyFL [19]. The experimental results
corroborate that FLACK is able to consistently rank buggy
expressions in the top 1.9% of the suspicious list. We also
evaluated FLACK on three case studies consisting of larger
Alloy models used in the real-world settings (e.g., Alloy model
for surgical robots, Java programs and Android permissions),
and FLACK was able to identify the buggy expressions within
the top 1%. The run time of FLACK for most the models is
under 5 seconds (under 1 second for the AlloyFL benchmarks).
The experimental results corroborate that FLACK has the
potential to facilitate a non-trivial task of formal specifica-
tion development significantly and exposes opportunities for
researchers to exploit new debugging techniques for Alloy.

To summarize, this paper makes the following contributions:
• Fault localization approach for declarative models: We

present a novel fault localization approach for declarative
models specified in the Alloy language. The insight
underlying our approach is that expressions in an Alloy
model that likely cause an assertion violation can be
identified by analyzing the counterexamples and closely
related satisfying instances.

• Tool implementation: We develop a fully automated tech-
nology, dubbed FLACK, that effectively realizes our fault
localization approach. We make FLACK publicly available
to the research and education community [26].

• Empirical evaluation: We evaluate FLACK in the context
of faulty Alloy specifications found in prior work and
specifications derived from real-world systems, corrobo-
rating FLACK’s ability to consistently rank buggy expres-
sions high on the suspicious list, and analyze complex,
real-world Alloy models with thousand lines of code.

The rest of the paper is organized as follows. Section II
motivates our research through an illustrative example. Sec-
tion III describes the details of our fault localization approach
for Alloy models. Section IV presents the implementation and
evaluation of the research. The paper concludes with an outline
of the related research and future work.

II. ILLUSTRATION

To motivate the research and illustrate our approach, we
provide an Alloy specification of a finite state machine (FSM),
adapted from AlloyFL benchmarks [19]. The specification
defines two type signatures, i.e., State and FSM, along with
their fields (lines 1–5). The specification contains three fact
paragraphs, expressing the constraints, detailed below: If a
start (or a stop) state exists, there is only one of them (fact
OneStartAndStop). The start state is not a subset of the
stop state; no transition terminates at the start state; and no

1 one sig FSM {
2 start: set State,
3 stop: set State
4 }
5 sig State { transition: set State }
6 fact OneStartAndStop {
7 // If a start state exists, there is only one

of them
8 all start1, start2 : FSM.start | start1 =

start2
9 // If a stop state exists, there is only one of

them
10 all stop1, stop2 : FSM.stop | stop1 = stop2
11 some FSM.stop
12 }
13 fact ValidStartAndStop {
14 // start state is not a subset of stop state
15 FSM.start !in FSM.stop
16 // No transition ends at the start state.
17 all s : State | FSM.start !in s.transition
18 // Error: should be "<=>" instead of "=>".
19 all s: State | s.transition = none => s in FSM.

stop
20 }
21 fact Reachability {
22 // All states are reachable from the start

state.
23 State = FSM.start.*transition
24 // The stop state is reachable from any state.
25 all s: State | FSM.stop in s.*transition
26 }
27 assert NoStopTransition{
28 no FSM.stop.transition
29 }
30 check NoStopTransition for 5

Fig. 1: Buggy FSM model, adapted from AlloyFL [19].

transition leaves a stop state (fact ValidStartAndStop).
Finally, every state is reachable from the start state, and the
stop state is reachable from any state (fact Reachability).

Each assertion specifies a property that is expected to
hold in all instances of the model. For example, we use the
assertion NoStopTransition to check that a stop state
behaves as a sink. The Alloy Analyzer disproves this assertion
by producing a counterexample, shown in Figure 2a, in which
the stop state labeled State3 transitions to State1.

Thus, there is a “bug” in the model causing the assertion
violation. Indeed, careful analysis of the model and the gen-
erated cex reveals that the problem is in the expression on
line 19: instead of stating that a stop state does not have any
transition to any state, the expression states that any state not
having a transition to anywhere is a stop state—a subtle logical
error that is difficult to realize1.

The goal of FLACK is to identify such buggy expressions
automatically. For this example, within a second, FLACK
identifies four suspicious expressions with the one on line 19
ranked first. Table I shows the results: expressions or nodes
with higher scores are ranked higher. Moreover, FLACK sug-
gests that the operator => is likely the issue in the expression.

1There are two potential fixes for this: (i) reverse the expression to: s in
FSM.stop => s.transition=none or (ii) replace the implication op-
erator (=>) to logical equivalence (<=>), which technically would strengthen
the intended requirement.

2

TABLE I: FLACK’s results obtained for the model in Figure 1.

Suspicious Expression Score
s.transition = none => s in FSM.stop (=>) 19 1.58
s.transition = none 19 1.25
FSM.stop in s.*transtion 25 0.5
s in FSM.stop 19 0.5

(a) Counterexample (b) (PMAX) Sat instance

Fig. 2: Instance Pair. Note the similarity between the instances.

Such a level of granularity can significantly help the developer
understand and fix the problem. The results in Section IV show
that FLACK can consistently rank the exact buggy expression
within the top 5 suspicious ones and do so under a second.

The key idea underlying our fault localization approach is to
analyze the differences between counterexamples (instances of
the model that do not satisfy the assertion) and instances that
do satisfy the assertion to find suspicious expressions in the
input model. FLACK first checks the assertion NoStopTransition
in the model using the Alloy Analyzer, which returns the cex in
Figure 2a. Next, FLACK generates a satisfying (sat) instance
that is as minimal and similar to the cex as possible. Their
differences promise effective localization of the issue.

a) Generating SAT instances: To obtain an instance
similar to the cex, FLACK transforms the input model into
a logical formula representing hard constraints and the infor-
mation from cex into a formula representing soft constraints.
Essentially, FLACK converts the instance finding problem into a
Partial-Max SAT problem [27] and then uses the Pardinus [28]
solver to find a solution that satisfies all the hard constraints
and as many soft constraints as possible. Thus, the result
is an instance of the model that is similar to the cex but
satisfies the assertion. Figure 2b shows an instance produced
by Pardinus, considering the cex shown in Figure 2a. Notice
that this instance is similar to the given cex, except for the
edge from State3 to State1, which represents the main
difference between the two instances.

b) Finding Suspicious Expressions: FLACK analyzes the
differences between cexs and the sat instances—e.g., here
the transition from State3 to State1, which only appears
in the cex but not the sat instance—to identify Alloy rela-
tions causing the issue. As shown in Table II, that demon-
strates the Alloy text representation of the cex in Figure 2a,
the transition relation involves the tuple State3 ->
State1 and the stop relation involves State3. Thus,

FLACK hypothesizes that two relations of transition and
stop may cause the difference in the two models. Note that
while we present one cex and one sat instance in this example
for the sake of simplicity, FLACK supports analyzing multiple
pairs of cex and sat instances in tandem.

TABLE II: Text Representation of the cex in Figure 2a

Relation Tuples
FSM FSM0
start FSM0->State0
stop FSM0->State3
State State0, State1, State2, State3

transition State0->State1, State0->State3, State1->State2,
State2->State3, State3->State1

Next, FLACK slices the input model to contain only
expressions affecting both relations transition and
FSM.stop. This results in two expressions: all s:
State | FSM.stop in s.*transition (line 25) and
all s: State | s.transition = none => s in
FSM.stop (line 19).

At this point, FLACK could stop and return these two
expressions, one of which is the buggy expression on line 19.
Indeed, this level of “statement” granularity is often used in
fault localization techniques, like Tarantula [29] or Ochiai [22].
However, FLACK aims to achieve a finer-grained granularity
level by also considering the boolean and relational subex-
pressions, detailed below.

c) Ranking Boolean Nodes: The expressions on
lines 25 and 19 have four boolean nodes: (a) FSM.stop
in s.*transition, (b) s.transition = none,
(c) s in FSM.stop, and (d) s.transition =
none => s in FSM.stop. FLACK instantiates each
of these with State1 and State3, the values that
differentiate the cex and sat instance. For example,
(a) becomes FSM.stop in S1.*transition and
FSM.stop in S3.*transition. Next, FLACK
evaluates these instantiations using the cex and sat instance
and assigns a higher suspicious score to those with
inconsistent evaluation results. For example, the instantiations
FSM.stop in S1.*transition and FSM.stop in
S3.*transition of node (a) evaluate to true in both cex
and sat instance, so we give (a) the score 0 (i.e., no changes).
We assign score 1 to (b) because State3.transition
= none evaluates to false in the cex but true in the
sat instance (thus 1 change) and State1.transition =
none evaluates to false in both (no change).

Overall, FLACK obtains the scores 0, 1, 0, 1 for nodes (a),
(b), (c), (d), respectively. Thus, FLACK determines that nodes
(b) s.transition = none and (d) s.transition =
none => s in FSM.stop are the two most suspicious
boolean subexpressions within the expression on line 19.

d) Ranking Relational Nodes: While subexpression (d)
indeed contains the error, it receives the same score as subex-

3

pression (a). To achieve more accurate results2, FLACK further
analyzes the involving relations. FLACK instantiates these
relations with State1 and State3, assesses them in the
context of the cex and sat instances, and assigns scores based
on the evaluations. For example, node (d) s.transition
= none => s in FSM.stop contains 3 relations: (1)
s.transition, (2) s, and (3) FSM.stop. Instantiating
these relations with State3 and evaluating them using the
cex is as follows: (1) becomes {State1}, (2) {State3}, and
(3) {State3}. Thus, for the cex, (d) involves both State1
and State3, and FLACK gives it a score of 1. Next, it
evaluates the instantiations using the sat instance as follows:
(1) becomes {}, (2) {State3}, and (3) {State3}. (d) does
not involve State1 and thus has a score 0. FLACK assigns (d)
the average score of 0.5 (for the instantiations of State3).
Performing a similar computation for the instantiation of
State1, we obtain a score of 2/3 for (d) as the evaluation for
the cex and sat instances involves both State1 and State3
(differentiated values) and State2 (regular value). Thus, (d)
has a score of 0.58 as an average of 0.5 and 2/3.

Overall, FLACK obtains the scores 0.5, 0.25, 0.5, 0.58 for
(a), (b), (c), and (d), respectively. Note that the node (d) is
now ranked higher than (a) as desired.

e) Suspicious Scores: FLACK computes the final suspi-
cious score of a node as the sum of the boolean and rela-
tional scores of that node, as shown above. For example, the
node (d) s.transition = none => s in FSM.stop
in the expression on line 19 has the highest suspicious score
of 1.58. Table I shows suspicious scores of the expressions in
the ranked list returned by FLACK.

In addition, FLACK analyzes (non-atomic) nodes contain-
ing (boolean) connectors and reports connectors that connect
subnodes with different scores. For example, FLACK suggests
that the operator => is likely responsible for the error in (d)
because the two subexpressions s.transition = none
and s in FSM.stop have different scores as shown in Ta-
ble I. Indeed, in this example, the assertion violation is entirely
due to this operator (a potential fix would be strengthening the
model to <=> or switching the two subexpressions as Alloy
does not have the operator <=).

III. APPROACH

Figure 3 gives an overview of FLACK, which takes as input
an Alloy model with some violated assertion and returns
a ranked list of suspicious expressions contributing to the
assertion violation. The insight guiding our research is that
the differences between counterexamples that do not satisfy
the assertion and closely related satisfying instances can drive
localization of suspicious expressions in the input model. To
achieve this, FLACK uses the Alloy analyzer to find counterex-
amples showing the violation of the assertion. It then uses a
PMAX-SAT solver to find satisfying instances that are as close
as possible to the cex’s. Next, FLACK analyzes the differences

2While this example has only two expressions with similar scores, we obtain
many expressions with similar scores in more complex and real-world models.
Thus, this step is crucial to distinguish the buggy expressions from the rest.

Fig. 3: Overview of FLACK.

between the cex’s and satisfying instances to find expressions
in the model that likely cause the errors. Finally, FLACK
computes and returns a ranked list of suspicious expressions.

A. The Alloy Analyzer

An Alloy specification or model consists of three compo-
nents: (i) Type signatures (sig) define essential data types
and their fields capture relationships among such data types,
(ii) facts, predicates (pred), and assertions (assert) are
formulae defining constraints over data types, and (iii) run
and check are commands to invoke the Alloy Analyzer.
The check command is used to find counterexamples violat-
ing some asserted property, and run finds satisfying model
instances (sat instances). For a model M and a property
p, a cex is an instance of M that satisfies M ∧ ¬p, and
a sat instance is one that satisfies M ∧ p. The specifi-
cation in Figure 1 defines two signatures (FSM, State),
three fields (start, stop, transition), three facts
(OneStartStop, ValidStart, ValidStop) and one
assertion (NoStopTransition).

Analysis of specifications written in Alloy is entirely auto-
mated, yet bounded up to user-specified scopes on the size of
type signatures. More precisely, to check that p is satisfied by
all instances of M (i.e., p is valid) up to a certain scope, the
Alloy developer encodes p as an assertion and uses the check
command to validate the assertion, i.e., showing that no cex
exists within the specified scope (a cex is an instance I such
that I � M∧¬p). To check that p is satisfied by some instances
of M , the Alloy developer encodes p as a predicate and uses
the run command to analyze the predicate, i.e., searching for
a sat instance I such that I � M ∧ p. In our running example,
the check command examines the NoStopTransition
assertion and returns a cex in Figure 2a.

Internally, Alloy converts these tasks of searching for in-
stances into boolean formulae and uses a SAT solver to check
the satisfiability of the formulae. Each value of each relation
is translated to a distinct variable in the boolean formula. For
example, given a scope of 5 in the FSM model in Figure 1, the
relation State contains 5 values and is translated to 5 distinct
variables in the boolean formula, and the transition is
translated to 25 values representing 25 values of combinations
of ‖State‖ × ‖State‖. An instance is an assignment for all
variables that makes the formula True. For example, cex in
Figure 2a is an assignment where all variables corresponding
to values in Table I are assigned True and others are False.
Finally, Alloy translates the result from the SAT solver, e.g.,

4

Algorithm 1: FLACK fault localization process
input : Alloy model M , property p not satisfied by M
output : Ranked list of suspicious expressions in M

1 AlloySolver← AlloyAnalyzer(M,p)
2 pairs← ∅
3 while |pairs| < max instance pairs do
4 c← AlloySolver.gencex()
5 AlloySolver.blockcex(c)
6 s← PMaxSolver(M, c)
7 if s = nil then
8 U ← AlloySolver.get_unsatcore()
9 return unsat_analyzer(M,U, c)

10 pairs← pairs ∪ (c, s)
11 end
12 diffs← comparator(pairs)
13 return diffs_analyzer(diffs)

an assignment that makes the boolean formula True, back to
an instance of M .

B. The FLACK Algorithm

Algorithm 1 shows the algorithm of FLACK, which takes as
input an Alloy model M and a property p that is not satisfied
by M (as an assertion violation) and returns a ranked list
of expressions that likely contribute to the assertion violation.
FLACK first uses the Alloy Analyzer and the Pardinus PMAX-
SAT solver to generate pairs of cex and closely similar sat
instances. FLACK then analyzes the differences between the
cex and sat instances to locate the error. If FLACK cannot
generate any sat instance, FLACK inspects the unsat core
returned by the Alloy Analyzer to locate the error.

1) Generating Instances: To understand why M does not
satisfy p, FLACK obtains differences between cexs and relevant
sat instances. These differences can lead to the cause of the
error. One option is to use the Alloy Analyzer to generate a
sat instance directly (e.g., by checking a predicate consisting
of p). However, such an instance generated by Alloy is often
predominantly different from the cex, and thus does not help
identify the main difference. For example, the cex, shown in
Figure 2a, that violates the assertion NoStopTransition
is quite different from the two Alloy-generated satisfying
instances, shown in Figure 4.

To generate a sat instance closely similar to the cex,
we reduce the problem to a PMAX-SAT (partial maximum
satisfiability) problem.

Definition III.1 (Finding a Similar Sat Instance from a Cex).
Given a set of hard clauses, collectively specified by model
M and property p, and a set of soft clauses, specified by
a counterexample cex, find a solution that satisfies all hard
clauses and satisfies as many soft clauses as possible.

More specifically, the hard clauses are generated by con-
straints in the Alloy model, and the soft clauses are the
assignment represented by cex where all presenting variables
are True and other variables are False. Because the relations
and scope of the Alloy model stay the same, the variables in
the transformed boolean formula would also remain the same,
and just the values assigned to them would differ between

Fig. 4: Model instances generated by the Alloy Analyzer.

various model instances. Thus, this encoding can apply to
general instances regardless of their structures.

FLACK then uses an existing PMAX-SAT solver (Pardinus)
to find an instance that has the property p and is as similar to
the cex as possible3. For example, the instance in Figure 2b
generated by Pardinus is similar to the cex in Figure 2a, but
has an extra edge from State3 to State1. The idea is that
such (minimal) differences can help FLACK identify the error.

2) Comparator: FLACK compares the generated cex’s and
sat instances to obtain their differences, which involve atoms,
tuples, and relations. First, it obtains tuples and their atoms that
are different between the cex and sat instance, e.g., in Figure 2,
the tuple State3->State1, which has the atoms State1
and State3, is in the cex but not in the satisfying instance.
Next, it obtains relations with different tuples between the
cex and sat instance, e.g., the transition relation involves
the tuple State3->State1 in the cex but not in the sat
instance. Third, it obtains relations that can be inferred from
the tuples and atoms derived in the previous steps, e.g., the
relation FSM.stop involves tuples having the State3 atom.

In summary, for the pair of cex and sat instance in Figure 2,
FLACK obtains the suspicious relations transitions and
stop and the atoms State1, State3. FLACK applies
these comparison steps for all pairs of instances and cex’s
and uses the common results.

3) Diff Analyzer: After obtaining the differences consisting
of relations and atoms between cex’s and sat instances, FLACK
analyzes them to obtain a ranked list of expressions based on
their suspicious levels. FLACK assigns higher suspicious scores
to expressions whose evaluations depend on these differences
(and lower scores to those not depending on these differences).

Algorithm 2 shows the Diff Analyzer algorithm, which
takes as input a model M , the differences diffs obtained in
Sect III-B2, and pairs of cex and sat instances obtained in
Sect III-B1, and outputs a ranked list of suspicious expressions
in M . It first identifies expressions in M that involve relations
in diffs. These expressions are likely related to the difference
between cex and sat instance. For example, consider the
model in Figure 1. FLACK identifies two expressions:

3Based on our experiment, the first solution returned by the PMAX-SAT
solver is similar enough for FLACK to locate bugs.

5

Algorithm 2: Diff Analyzer
input : Alloy model M , differences diffs, pairs of cex’s and sat

instances pairs
output : Ranked list of suspicious expressions in M

1 exprs← get_susp_exprs(M, diffs)
2 results← {}
3 foreach expr ∈ exprs do
4 computescore(expr, results)
5 end
6 return sort(results)

7 Function computescore(expr, results):
8 score = 0
9 if isleaf (expr) then

10 isexpr← instantiate(expr, diff)
11 foreach (c, s) ∈ pairs do
12 cvals← eval(c, isexpr)
13 svals← eval(s, isexpr)
14 instscore← 0
15 if diff ⊂ cvals then
16 instscore← instscore +

|diff|
|cvals|

17 if diff ⊂ svals then
18 instscore← instscore +

|diff|
|svals|

19 score← score + instscore
2

)
20 end
21 score← score

|pairs|
22 else
23 if isbool(expr) then
24 isexpr← instantiate(expr, diff)
25 foreach (c, s) ∈ pairs do
26 if eval(c, isexpr) 6= eval(s, isexpr) then
27 score← score + 1
28 end
29 foreach child ∈ getchildren(expr) do
30 score← score + computescore(child, results)
31 end
32 end
33 results← results ∪ (expr, score)
34 return score

all s: State | FSM.stop in s.*transition
on line 25 and all s: State | s.transition =
none => s in FSM.stop on line 19, as they involve
the relations transition and stop in diffs.

FLACK then recursively computes the suspicious score for
each collected expression e, represented as an AST tree. If e
is a leaf (e.g., a relational expression), FLACK instantiates e
with atoms from diffs. FLACK then evaluates the instantiated
expression for each pair of cex and sat instance. If the
evaluated result for an instantiated expression contains all
atoms involved in diffs, FLACK computes the score as “size
of diffs / size of evaluated results;” otherwise, the score is 0.
For a pair, the score is then the average score of cex and sat
instance. At last, the score of e is the average among all pairs.
Essentially, a higher suspicious score is assigned to a relational
subexpression whose evaluation involves many atoms in diffs.

If e is not a leaf node, e’s score is the sum of boolean
and relational scores. If e is a boolean expression (i.e., an
expression that returns true or false), we instantiate e
with atoms from diffs and evaluate it on each cex and sat
instance pair. If it evaluates to different results between the cex
and sat instance (e.g., one is true and the other is false),
FLACK increases e’s score by 1. Thus, a higher boolean score

is assigned to the expressions whose evaluation does not match
between pairs of the cex and sat instances. Then e’s relational
score is calculated as the sum of e’s children. The final score
assigned to each expression is the sum of the e’s boolean
scores and the relational scores of e’s children. In the end,
FLACK returns all expression ranked by their suspicious scores.

To make the idea concrete, consider the expression
s.transition = none in Figure 1. For the cex and sat
instance pair in Figure 2, diffs contain two atoms State1
and State3. FLACK first instantiates the expression under
analysis with the atoms mentioned above into two concrete
expressions: (1) State1.transition = none and (2)
State3.transition = none. The concrete expression
(1) evaluates to false in both cex and sat instance, while the
concrete expression (2) evaluates to true in cex and false
in the sat instance. Thus, the boolean score for the expression
under analysis is 1 as the aggregation of the values obtained
for the concrete expressions (1) and (2).

FLACK then computes the relational score for the expression
under analysis as the sum of the relational scores for its
children: s.transition and none, both of which are
leaves. To compute the score for s.transtion, it is instanti-
ated to State1.transition and State3.transtion.
State1.transition evaluates to State2 in both
cex and sat instance. Thus, it gets a score of 0. For
State3.transition, in cex, it evaluates to State1
and gets a score of 1 as the size of different values
{State3, State1} divided by the size of the instanti-
ated values {State3} and the evaluated values {State1}.
In sat instance, it evaluates to an empty set and gets a
score of 0. Overall, s.transition gets a relational score
of 0.25 as the average of all its instantiated expressions:
State1.transition (0) and State3.transition
(0.5). Finally, the overall score of 1.25 is assigned to the
expression s.transition = none as the aggregation of
its boolean and relational scores.

4) UNSAT Core Analyzer: It is possible that we can only
generate cex’s, but no sat instances, indicating that some
constraints in the model have conflicts with the property we
want to check. To identify these constraints, FLACK inspects
the unsat core returned by the Alloy Analyzer. The unsat core
explains why a set of constraints cannot be satisfied by giving
a minimal subset of conflicting constraints. Those conflicting
constraints can help FLACK identify suspicious expressions.

Algorithm 3 outlines the process underlying our UNSAT
core analyzer, which takes as input a model M , an unsat core
U , and a cex c showing M does not satisfy a property p, and
outputs a list of expressions in M conflicting with p. Recall
that these values, M , U , and c, are earlier inferred by FLACK
as outlined in Algorithm 1.

FLACK starts by producing a sliced model M ′, in which all
expressions in the unsat core are omitted from the original
model M . Removing these conflicting expressions would
allow us to obtain sat instances from the new model M ′

to compare with the cex. FLACK now generates a minimal
sat instance from M ′ and compares it with the input cex to

6

Algorithm 3: UNSAT Analyzer
input : Alloy model M , unsat core U , counterexample c
output : a set of expressions in M

1 M ′ ← slice(M,U)
2 s← PMaxSolver(M ′, c)
3 diffs← comparator({(c, s)})
4 exprs← collect_exprs(U)
5 conflicts← ∅
6 foreach expr ∈ exprs do
7 foreach diff ∈ diffs do
8 if eval(expr, diff,M ′) = false then
9 conflicts← conflicts ∪ expr

10 end
11 end
12 return conflicts

obtain the differences between the cex and the sat instance
as shown in Section III-B2. Then, FLACK attempts to identify
which of the removed expressions really conflict with p by
evaluating them on obtained differences. The idea is that if
an expression evaluates to true, then adding that expression
back to the model would still allow the sat instance to be
generated, i.e., that expression is not conflicting with p. Thus,
expressions that evaluate to false are ones conflicting with
p and are returned as suspicious expressions. Note that we
assign similar scores to these resulting expressions because
they all contribute to the unsatisfiability of the original model
and the intended property.

For example, if we change line 17 in the model shown
in Figure 1 to all s: State | s.transition !in
FSM.start, Alloy would find counterexamples such as the
one in Figure 2a, but fail to generate any sat instances. This
is because the modified line forces all states to have some
transitions, which conflicts with the constraint requiring no
transition for stop states.

From the unsat core, FLACK identifies four expressions in
the model: (a) all start1, start2 : FSM.start
| start1 = start2, (b) some FSM.stop, (c)
FSM.start !in FSM.stop and (d) all s: State |
s.transition !in FSM.start. After removing these
four expressions from the model, FLACK can now generate
the same sat instance in Figure 2b. As before, the main
difference between the cex and sat instance involves two
values: State1 and State3. Then, FLACK evaluates each
expression using these values. Expressions (a), (b), and (c)
are evaluated to true for both values, while expression (d)
evaluates to false for State3. Thus, FLACK correctly
identifies (d) as the suspicious expression.

IV. EVALUATION

FLACK is implemented in Java 8 and uses Alloy 4.2. We
extend the backend KodKod solver [30] in Alloy to use
the Pardinus solver [28] to obtain sat instances similar to
counterexamples. We also modify the AST expression rep-
resentation in Alloy to collect and assign suspicious scores to
boolean and relational subexpressions.

Our evaluation addresses the following research questions:
• RQ1: Can FLACK effectively find suspicious expressions?

• RQ2: How does FLACK scale to large, complex models?
• RQ3: How does FLACK compare to AlloyFL?
All experiments described below were performed on a

Macbook with 2.2 GHZ i7 CPU and 16 GB of RAM.

A. RQ1: Effectiveness

To investigate the effectiveness of FLACK, we use the bench-
mark models from AlloyFL [19]. Table III shows 152 buggy
models collected from 12 Alloy models in AlloyFL. These
are real faults collected from Alloy release 4.1, Amalgam [31],
and Alloy homework solutions from graduate students. Briefly,
these models are addr (address book) and farmer (farmer
cross-river puzzle) from Alloy; bempl (bad employer), grade
(grade book) and other (access-control specifications) are from
Amalgam [31]; and arr (array), bst (balanced search tree),
ctree (colored tree), cd (class diagram), dll (doubly linked list),
fsm (finite state machine), and ssl (sorted singly linked list) are
homework from AlloyFL.

For models with assertions (e.g., from Amalgam [31]), we
use those assertions for the experiments. For models that do
not have assertions (e.g., homework assignments), we manu-
ally create assertions and expected predicates by examining
the correct versions or suggested fixes (provided by [19]).
Moreover, from the correct models or suggested fixes, we
know which expressions contain errors and therefore use them
as ground truths to compare against FLACK’s results. FLACK
deals with models containing multiple violated assertions by
analyzing them separately and returning a ranked list for each
assertion. For illustration purposes, we simulate this by simply
splitting models with separate violations into separate models
(e.g., bst2 contains two assertion violations and thus are
split into two models bst2, bst2_1). Finally, FLACK is
highly automatic and has just one user-configurable option:
the number of pairs of cex and satisfying instances (which by
default is set to 5 based on our experiences).

a) Results: Table III shows FLACK’s results. For each
model, we list the name, lines of code, the number of nodes
that FLACK determined irrelevant and sliced out, and the
number of total AST expression nodes. The last two columns
show FLACK’s resulting ranking of the correct node and its
total run time in second. The 28 italicized models contain
predicate violations, while the other 124 models contain asser-
tion violations. FLACK automatically determines the violation
type and switches to the appropriate technique (e.g., using
comparator for assertion errors and the unsat analyzer for
predicate violations (Section III). Finally, the models are listed
in sorted order based on their ranking results.

In summary, FLACK was able to rank the buggy expressions
in the top 1 (e.g., the buggy expression is ranked first) for 91
(60%), top 2 to 5 for 35 (23%), top 6 to 10 for 10 (34%), above
top 10 for 6 (4%) out of 152 models. For 10 models, FLACK
was not able to identify the cause of the errors (e.g., the buggy
expression are not in the ranking list), many of which are
beyond the reach of FLACK (e.g., the assertion error is not due
to any existing expressions in the model, but rather because
the model is “missing” some constraints). Finally, regardless

7

TABLE III: Results of FLACK on 152 Alloy models. Results are sorted based on ranking accuracy. Times are in seconds.

model loc total sliced rank time model loc total sliced rank time model loc total sliced rank time

top 1 (91) 41 120 95 1 0.2 ssl10 43 155 110 1 0.1 dll20 2 36 88 47 2 0.0
addr 21 74 10 1 0.6 ssl12 40 157 114 1 0.1 fsm6 29 98 17 2 0.0
arr3 24 48 9 1 0.1 ssl14 44 158 149 1 0.5 fsm9 2 29 90 18 2 0.1
arr4 24 64 61 1 0.2 ssl14 1 44 158 149 1 0.5 ssl11 42 177 127 2 0.1
arr5 24 62 59 1 0.2 ssl14 2 43 153 120 1 0.0 bst8 59 134 57 3 0.3
arr6 25 56 30 1 0.3 ssl14 3 44 153 108 1 0.1 bst8 1 59 134 57 3 0.2
arr7 25 63 50 1 0.1 ssl17 41 152 119 1 0.0 bst22 1 49 199 124 3 0.1
bst2 56 134 56 1 0.4 ssl17 1 42 152 106 1 0.1 dll1 1 38 86 57 3 0.1

bst2 1 56 134 95 1 0.3 ssl18 1 40 160 118 1 0.1 dll18 2 36 107 71 3 0.6
bst3 2 55 141 68 1 0.2 ssl18 2 49 160 85 1 0.3 fsm4 31 141 39 3 0.0

cd1 27 44 33 1 0.0 ssl19 40 169 141 1 0.1 fsm5 2 29 69 17 3 0.0
cd1 1 27 44 31 1 0.0 arr1 24 45 31 1 0.1 ssl2 1 44 156 72 3 0.1

cd2 27 35 25 1 0.0 arr2 25 60 47 1 0.2 ssl13 43 174 123 3 0.1
cd3 26 43 32 1 0.0 arr10 24 59 45 1 0.0 ssl18 40 162 131 3 0.0

cd3 1 26 46 31 1 0.0 bst1 51 171 155 1 0.2 arr8 25 80 15 4 0.5
dll1 37 77 63 1 0.1 bst4 1 52 163 147 1 0.1 bst2 2 47 147 92 4 0.1
dll2 42 77 63 1 0.1 bst5 52 184 168 1 0.1 bst3 57 137 97 4 0.1
dll3 37 80 59 1 0.0 bst7 52 159 143 1 0.1 fsm2 29 70 14 4 0.0

dll3 1 37 75 49 1 0.1 bst8 2 54 156 140 1 0.1 fsm8 29 71 14 4 0.1
dll4 37 81 67 1 0.1 bst9 55 185 169 1 0.1 arr11 24 83 41 5 0.1

dll5 1 39 102 80 1 0.1 bst10 47 157 140 1 0.6 bst10 3 55 162 75 5 0.3
dll6 36 113 94 1 0.1 bst10 2 52 172 156 1 0.1 fsm9 1 29 91 18 5 0.1

dll7 1 36 73 59 1 0.1 bst11 1 60 214 198 1 0.1 ssl15 41 161 106 5 0.1
dll8 36 96 76 1 0.1 bst13 53 200 184 1 0.1 top 6-10 (10) 51 155 73 7.6 0.2
dll9 38 100 91 1 0.1 bst14 59 202 186 1 0.1 bst3 1 57 137 58 6 0.2
dll11 36 87 68 1 0.1 bst15 53 197 181 1 0.1 bst20 1 55 152 61 6 0.2
dll12 36 77 63 1 0.1 bst17 1 52 201 185 1 0.1 fsm7 29 64 14 6 0.1
dll13 36 60 51 1 0.0 bst18 1 56 204 188 1 0.1 ssl19 1 50 175 106 7 0.6

dll14 1 37 85 71 1 0.1 bst20 52 169 153 1 0.1 bst6 51 140 61 8 0.2
dll15 40 126 107 1 0.1 bst21 52 182 166 1 0.2 bst12 1 56 164 68 8 0.2
dll16 36 82 68 1 0.1 bst22 50 213 158 1 0.6 bst19 2 55 154 86 8 0.2

dll17 1 36 77 63 1 0.1 dll7 38 90 79 1 0.1 ssl19 2 44 174 81 8 0.3
dll18 36 102 84 1 0.0 dll10 40 91 85 1 0.2 bst17 2 55 177 79 9 0.2

dll18 1 36 101 67 1 0.1 dll14 39 102 91 1 0.1 bst22 2 54 209 118 10 0.1
dll20 36 90 64 1 0.0 dll17 37 89 83 1 0.1 >10 (6) 51 172 80 12.7 0.3

farmer 99 124 30 1 1.6 fsm1 31 90 71 1 0.0 bst4 2 51 154 61 11 0.3
fsm1 1 30 90 19 1 0.0 fsm3 60 67 56 1 0.7 bst16 64 181 79 12 0.3
fsm7 1 29 59 14 1 0.0 fsm9 30 91 79 1 0.5 bst17 48 186 113 12 0.2
fsm9 4 30 91 78 1 0.1 fsm9 3 32 91 78 1 0.1 ssl12 1 44 161 78 12 0.4
grade 33 22 7 1 0.0 top 2-5 (35) 40 120 66 2.9 0.2 ssl9 44 153 72 13 0.1
ssl1 40 168 126 1 0.1 arr7 1 24 46 9 2 0.9 bst22 3 57 199 74 16 0.5
ssl2 40 150 122 1 0.1 arr9 27 83 43 2 0.2 fail (10) 42 104 71 - 0.1
ssl3 45 188 135 1 0.0 bst2 3 52 133 68 2 0.1 bst4 46 145 95 - 0.1

ssl3 1 44 184 121 1 0.2 bst12 47 146 94 2 0.2 bst11 54 196 135 - 0.2
ssl4 40 146 118 1 0.1 bst18 51 187 115 2 1.4 bempl 51 14 7 - 0.0
ssl5 42 188 160 1 0.6 bst19 47 158 112 2 0.1 ctree 30 49 5 - 0.0
ssl6 42 157 148 1 0.7 bst19 1 52 175 112 2 0.1 dll3 2 36 75 67 - 0.0

ssl6 1 42 157 148 1 0.5 dll2 1 42 82 57 2 0.0 other 34 26 19 - 0.0
ssl6 2 41 152 119 1 0.1 dll17 2 36 82 57 2 0.0 ssl16 39 137 119 - 0.0
ssl6 3 42 152 107 1 0.1 dll18 3 36 103 78 2 0.0 ssl16 1 39 133 115 - 0.0
ssl7 41 136 95 1 0.1 dll19 36 83 63 2 0.1 ssl16 2 47 136 74 - 0.3

ssl7 1 40 135 110 1 0.1 dll20 1 36 88 68 2 0.1 ssl16 3 43 133 71 - 0.2
ssl8 43 166 119 1 0.1

of whether FLACK succeeds or fails, the tool produces the
results almost instantaneously (under a second).

b) Analysis: FLACK was able to locate and rank the
buggy expressions in 142/152 models. Many of these bugs
are common errors in which the developer did not consider
certain corner cases. For example, stu5 contains the buggy
expression all n : This.header.*link | n.elem
<= n.link.elem that does not allow any node without link
(the fix is changing to all n : This.header.*link |
some n.link => n.elem <= n.link.elem). FLACK
successfully recognizes the difference that the last node of the

list contains a link to itself in the cex but not in the sat instance,
and ranks this expression second; more importantly, it ranks
first the subexpression n.elem <= n.link.elem, where
the fix is actually needed. FLACK also performed especially
well on 28 models with violated predicates by analyzing the
unsat cores and correctly ranked the buggy expressions first.

For six models bst4_2, bst16, bst17, bst22_3,
stu9, and stu12_1, FLACK was not able to place the buggy
expression within the top 10 (but still within the top 16). For
these models, FLACK obtains differences that are not directly
related to the error, but consistently appear in both the cex and

8

TABLE IV: FLACK’s results on large complex models

model loc total sliced rank time(s)

surgical robots 200 293 278 2 2.3

android permissions 297 1138 673 2 5.2

sll-contains 5250 5562 5510 3 3.0
count-nodes 3791 5064 2861 18 188.7
remove-nth 5063 6336 3306 12 1265.0

stat instances and therefore confuse FLACK.
FLACK was not able to identify the correct buggy ex-

pressions in 10 models, e.g., the resulting ranking list does
not contain the buggy expressions. Most of these bugs are
beyond the scope of FLACK (and fault localization techniques
in general). More specifically, the 9 models bst4, bst11,
bempl, ctree, dll3_2, ssl16, ssl16_1, ssl16_2,
and ssl16_3 have assertion violations due to missing con-
straints in predicates and thus do not contain buggy expres-
sions to be localized. For other, FLACK did not find the
”ground truth” buggy expression (the buggy expression does
not contain the different relation) but ranked first another
expression that could also be modified to fix the error.

B. RQ2: Real-world Case Studies

The AlloyFL benchmark contains a wide variety of Alloy
models and bugs, but they are relatively small (≈50 LoC). To
investigate the scalability of FLACK, we consider additional
case studies on larger and more complex Alloy models.

a) Surgical Robots: The study in [32] uses Alloy to
model highly-configurable surgical robots to verify a critical
arm movement safety property: the position of the robot arm is
in the same position that the surgeon articulates in the control
workspace during the surgery procedure and the surgeon is
notified if the arm is pushed outside of its physical range.
This property is formulated as an assertion and checked on
15 Alloy models representing 15 types of robot arms using
different combinations of hardware and software features. The
study found that 5 models violate the property.

Table IV, which has the same format as Table III, lists
the results. We use all 5 buggy models (each has about 200
LoC) but list them under one row because they are largely
similar and share many common facts and predicates but with
different configurable values (one model has a fact that has
an AngleLmit set to 3 while another has value 6). The buggy
expression is also similar and appears in the same fact. For
each model, FLACK ranked the correct buggy expressions
in the second place in less than 3 seconds. FLACK returned
two suspicious expressions (1) HapticsDisabled
in UsedGeomagicTouch.force and (2) some
notification : GeomagicTouch.force |
notification = HapticsEnabled. Modifying either
expression would fix the issue, e.g., changing Disable to
Enabled in (1) or Enabled to Disabled in (2).

b) Android Permissions: The COVERT project [33] uses
compositional analysis to model the permissions of Android

OS and apps to find inter-app communication vulnerabilities.
The generated Alloy model used in this work does not contain
bugs violating assertions, thus we used the MuAlloy mutation
tool [34] to introduce 5 (random) bugs to various predicates
in the model: 3 binary operator mutations, 1 unary operator
mutation, and 1 variable declaration mutation.

Table IV shows the result. FLACK was able to locate 4 buggy
expressions (the unary modification ranked 2nd, the binary
operations ranked 3rd, 9th, and 11th), but could not identify the
other mutated expression (the variable declaration mutation).
However, after manual analysis, we realize that this mutated
expression does not contribute to the assertion violation (i.e.,
FLACK is correct in not identifying it as a fault).

c) TACO: The TACO (Translation of Annotated COde)
project [2] uses Alloy to verify Java programs with specifica-
tions. TACO automatically converts a Java program annotated
with invariants to an Alloy model with an assertion. If the Java
program contains a bug that violates the annotated invariant,
then checking the assertion in the Alloy model would provide
a counterexample. We use three different Alloy models with
violated assertions representing three real Java programs from
TACO [2]: sll-contains checks if a particular element
exists in a linked list; count-nodes counts the number of a
list’s nodes; and remove-nth removes the nth element of a
list. These (machine-generated) models are much larger than
typical Alloy models (≈5000 to 6000 LoC each).

Table IV shows the results. For ssl-contains, FLACK
ranked the buggy expression third within 3 seconds. This
expression helps us locate an error in the original Java
program that skips the list header. The faulty expressions of
remove-nth and count-nodes are ranked 12th and 18th,
respectively (which are still quite reasonable given the large,
> 5000, number of possible locations). Note that these buggy
expressions consist of multiple errors (e.g., having 5 buggy
nodes), causing FLACK to instantiate and analyze combinations
of a large number of subexpressions.

Manual analysis on the identified buggy expressions showed
that the original Java programs consist of (single) bugs within
loops. TACO performs loop unrolling and thus spreads it into
multiple bugs in the corresponding Alloy models.

In summary, we found that FLACK works well on large real-
world Alloy models. While coming up with correct fixes for
these models remain nontrivial, FLACK can help the developers
(or automatic program repair tools) quickly locate buggy
expressions, which in turn helps understand (and hopefully
repair) the actual errors in original models.

C. RQ3: Comparing to AlloyFL

We compare FLACK with AlloyFL [19], which to the best
of our knowledge, is the only Alloy fault localization tech-
nique currently available. While both tools compute suspicious
statements, they are very different in both assumptions and
technical approaches. As discussed in Section V, AlloyFL
requires AUnit tests [25], provided by the user or generated
from the correct model, and adopts existing fault localization
techniques in imperative programs, such as mutation testing

9

TABLE V: Comparision with AlloyFL.

top avg
tool 1 5 10 > 10 failed rank time(s)

FLACK 91 126 136 6 10 2.4 0.2
AlloyFL 76 128 137 8 7 3.1 32.4

and spectrum-based fault localization; in contrast, FLACK uses
violated assertions and relies on counterexamples.

To apply AlloyFL on the 152 benchmark models, we use
the best performance configuration and testsuites described
in [19]. Specifically, we use the AlloyFlhybrid algorithm with
Ochiai formula and reuse tests in [19] (automatically generated
by MuAlloy [34] as described in [19]).

Table V compares the results of FLACK and AlloyFL. The
two approaches appear to perform similarly, with FLACK being
slightly more accurate. Overall, FLACK outperforms AlloyFL,
where on average the buggy expressions ranked 2nd and 3rd
by FLACK and AlloyFL, respectively. Also, in top 1 ranking
FLACK performs much better compared to AlloyFL (91 over
76 models). Moreover, FLACK is much faster, where the
average analysis time is far less than a second for FLACK,
it takes over 30 seconds for AlloyFL to analyze the same
specifications.

We were not able to apply AlloyFL to the models in
Section IV-B because MuAlloy [34], which is used to generate
AUnit tests for AlloyFL, does not work with these models
(e.g., mostly caused by unhandled Alloy operators). This is
not a weakness of AlloyFL, but it suggests that it is not trivial
to generate tests from existing Alloy models automatically.

D. Threats to Validity

We assume no fault in data type (sig’s) and field declara-
tions, which may limit the usage of FLACK. However, none of
the benchmark models we used has bugs at these locations.
Moreover, we could always translate constraints for sig and
field to facts. For example, one sig A could be translated
to sig A; fact{one A}.

The models in the AlloyFL benchmark are collected from
graduate student’s homework and relatively small. Thus, they
may not represent faulty Alloy models in the real world.
We also evaluate FLACK with large Alloy models, written by
experienced Alloy developer (the surgical robot models and
Android permissions model) or generated by an automatic tool
(TACO) and show that FLACK performs well on these models
(Section IV-B).

We manually create assertions for models that do not have
assertions. Thus, our assertions might be inaccurate and not
as intended. However, for other models with assertions (e.g.,
those in the AlloyFL benchmark and all the case studies), we
use those assertions directly and FLACK output similar results.

V. RELATED WORK

FLACK is related to AlloyFL [19], which adopts spectrum-
based fault localization [22], [23], [24] and mutation-based
techniques [20], [21] from imperative languages. Given AUnit

tests [25] labeled with should-pass or should-fail, AlloyFL
computes a suspicious score for expression by mutating and
giving it a higher score if the mutation increases the number
of should-pass tests pass and the number of should-fail tests
fail. AlloyFL uses MuAlloy [34] to automatically generate
tests. However, MuAlloy requires the correct Alloy model to
generate these tests. FLACK does not require tests and instead
uses assertions, which are commonly used in Alloy.

The generation of similar instances can be viewed as a
model exploration problem [35]. Bordeaux [36] uses Alloy
to find pairs of SAT/UNSAT instances with minimum relative
distances. In contrast, FLACK reduces the generation of an
instance as close as possible to the identified counterexamples
into a partial max sat problem and solves it using a PMAX-
SAT solver.

Amalgam [31] explains why some tuples of a relation
do or do not appear in certain instances. A user would
manually select a tuple to add or delete, and Amalgam tries
to explain why they can or cannot do so (typically the reason
for counterexamples is due to the assertions). FLACK instead
automatically identifies why a counterexample fails and finds
locations that relate to this violation.

Many fault localization techniques have been developed for
imperative languages. Spectrum-based techniques [22], [23],
[24], [37], [38], [29], [39], [40] identify faulty statements
by comparing passing and failing test executions. SAT-based
techniques [41], [42] convert the fault location problem into
an SAT problem. Statistic-based methods [43], [44] collect
statistical information from test executions to locate errors.
Feedback-based techniques [45], [46] interactively locates
error by getting feedback from the user. Delta debugging [47],
[48] identifies code changes responsible for test failure. There
are also works on minimizing differences in inputs based
on the assumption that similar inputs would lead to similar
runs [49], [50], [51]. Program slicing [52], [53], [54] has also
been used to aid debugging.

Model-based diagnosis (MBD) approaches identify faulty
components of a system based on abnormal behaviors. Gries-
mayer [55] applied MBD to localizing fault in imperative
programs using model checker. Marques-Silva [56] converted
the MBD problem into a MAXSAT problem to find the
minimal diagnosis, where the system description is encoded
as the hard clauses and the not abnormal predicates as the
soft clauses. There has also been another similar line work in
pinpointing axioms in description logic [57], [58].

VI. CONCLUSION AND FUTURE WORK

We introduce a new fault localization approach for declara-
tive models written Alloy. Our insight is that Alloy expressions
that likely cause an assertion violation can be obtained by
analyzing the counterexamples, unsat cores, and satisfying
instances from the Alloy Analyzer. We present FLACK, a tool
that implements these ideas to compute and rank suspicious
expressions causing an assertion violation in an Alloy model.
FLACK uses a PMAX-SAT solver to find satisfying instances
similar to counterexamples generated by the Alloy Analyzer,

10

analyzes satisfying instances and counterexamples to locate
suspicious expressions, analyzes subexpressions to achieve a
finer-grain level of localization granularity, and uses unsat
cores to help identify conflicting expressions. Preliminary
results on existing Alloy benchmarks and large, real-world
models show that FLACK is effective in finding accurate
expressions causing errors. We believe that FLACK takes an
important step in finding bugs in Alloy and exposes opportu-
nities for researchers to exploit new debugging techniques for
Alloy.

Currently, we are improving the accuracy and efficiency
of FLACK. Specifically, instead of using a default number
of instance pairs, we can search for instances incrementally
until the algorithm converges. We are also exploring new
approaches to effectively integrate FLACK with automatic
Alloy repair techniques. Preliminary results from the recent
BeAFix work [59] shows that FLACK accurately identifies
faults in Alloy specifications, which in turn helps BeAFix
automatically analyze and repair those specifications.

VII. DATA AVAILABILITY

We make FLACK and all research artifacts, models, and ex-
perimental data reported in the paper available to the research
and education community [26].

ACKNOWLEDGMENT

We thank the anonymous reviewers for helpful comments.
This work was supported in part by awards W911NF-19-1-
0054 from the Army Research Office; CCF-1948536, CCF-
1755890, and CCF-1618132 from the National Science Foun-
dation; and PICT 2016-1384, 2017-1979 and 2017-2622 from
the Argentine National Agency of Scientific and Technological
Promotion (ANPCyT).

REFERENCES

[1] D. Jackson, “Alloy: A lightweight object modelling notation,” ACM
Trans. Softw. Eng. Methodol., vol. 11, no. 2, p. 256–290, Apr. 2002.

[2] J. P. Galeotti, N. Rosner, C. G. López Pombo, and M. F. Frias, “Analysis
of invariants for efficient bounded verification,” in International Sympo-
sium on Software Testing and Analysis, ser. ISSTA ’10. New York,
NY, USA: Association for Computing Machinery, 2010, p. 25–36.

[3] P. Abad, N. Aguirre, V. S. Bengolea, D. Ciolek, M. F. Frias, J. P. Galeotti,
T. Maibaum, M. M. Moscato, N. Rosner, and I. Vissani, “Improving test
generation under rich contracts by tight bounds and incremental SAT
solving,” in International Conference on Software Testing, Verification
and Validation. IEEE Computer Society, 2013, pp. 21–30.

[4] N. Mirzaei, J. Garcia, H. Bagheri, A. Sadeghi, and S. Malek, “Reducing
combinatorics in gui testing of android applications,” in Proceedings
of the 38th International Conference on Software Engineering (ICSE),
2016, pp. 559–570.

[5] H. Bagheri and K. J. Sullivan, “Bottom-up model-driven development,”
in 35th International Conference on Software Engineering, ICSE ’13,
San Francisco, CA, USA, May 18-26, 2013, D. Notkin, B. H. C. Cheng,
and K. Pohl, Eds. IEEE Computer Society, 2013, pp. 1221–1224.
[Online]. Available: https://doi.org/10.1109/ICSE.2013.6606683

[6] ——, “Pol: specification-driven synthesis of architectural code frame-
works for platform-based applications,” in Generative Programming
and Component Engineering, GPCE’12, Dresden, Germany, September
26-28, 2012, K. Ostermann and W. Binder, Eds. ACM, 2012, pp.
93–102. [Online]. Available: https://doi.org/10.1145/2371401.2371416

[7] H. Bagheri, Y. Song, and K. J. Sullivan, “Architectural style as an
independent variable,” in ASE 2010, 25th IEEE/ACM International
Conference on Automated Software Engineering, Antwerp, Belgium,
September 20-24, 2010, C. Pecheur, J. Andrews, and E. D.
Nitto, Eds. ACM, 2010, pp. 159–162. [Online]. Available: https:
//doi.org/10.1145/1858996.1859026

[8] F. A. Maldonado-Lopez, J. Chavarriaga, and Y. Donoso, “Detecting
network policy conflicts using alloy,” in Proceedings of the 4th Interna-
tional Conference on Abstract State Machines, Alloy, B, TLA, VDM, and
Z - Volume 8477, ser. ABZ 2014. Berlin, Heidelberg: Springer-Verlag,
2014, p. 314–317.

[9] T. Nelson, C. Barratt, D. J. Dougherty, K. Fisler, and S. Krishnamurthi,
“The margrave tool for firewall analysis,” in Proceedings of the 24th
International Conference on Large Installation System Administration,
ser. LISA’10. USA: USENIX Association, 2010, p. 1–8.

[10] N. Ruchansky and D. Proserpio, “A (not) nice way to verify the openflow
switch specification: Formal modelling of the openflow switch using
alloy,” SIGCOMM Comput. Commun. Rev., vol. 43, no. 4, p. 527–528,
Aug. 2013.

[11] M. Alhanahnah, C. Stevens, and H. Bagheri, “Scalable analysis
of interaction threats in iot systems,” in ISSTA ’20: 29th ACM
SIGSOFT International Symposium on Software Testing and Analysis,
Virtual Event, USA, July 18-22, 2020, S. Khurshid and C. S.
Pasareanu, Eds. ACM, 2020, pp. 272–285. [Online]. Available:
https://doi.org/10.1145/3395363.3397347

[12] H. Bagheri, J. Wang, J. Aerts, and S. Malek, “Efficient, evolutionary se-
curity analysis of interacting android apps,” in 2018 IEEE International
Conference on Software Maintenance and Evolution (ICSME), 2018, pp.
357–368.

[13] H. Bagheri, E. Kang, S. Malek, and D. Jackson, “A formal approach
for detection of security flaws in the Android permission system,”
Formal Aspects of Computing, vol. 30, no. 5, pp. 525–544, 2018.
[Online]. Available: https://doi.org/10.1007/s00165-017-0445-z

[14] H. Bagheri, C. Tang, and K. Sullivan, “Trademaker: Automated
dynamic analysis of synthesized tradespaces,” in Proceedings of the
36th International Conference on Software Engineering, ser. ICSE
2014. New York, NY, USA: ACM, 2014, pp. 106–116. [Online].
Available: http://doi.acm.org/10.1145/2568225.2568291

[15] H. Bagheri, C. Tang, and K. J. Sullivan, “Automated synthesis and
dynamic analysis of tradeoff spaces for object-relational mapping,”
IEEE Trans. Software Eng., vol. 43, no. 2, pp. 145–163, 2017. [Online].
Available: https://doi.org/10.1109/TSE.2016.2587646

[16] J. Brunel, D. Chemouil, A. Cunha, and N. Macedo, “The electrum
analyzer: model checking relational first-order temporal specifications,”
in Proceedings of the 33rd ACM/IEEE International Conference on
Automated Software Engineering, ASE 2018, Montpellier, France,
September 3-7, 2018, M. Huchard, C. Kästner, and G. Fraser, Eds.
ACM, 2018, pp. 884–887. [Online]. Available: https://doi.org/10.1145/
3238147.3240475

[17] A. Cunha and N. Macedo, “Validating the hybrid ertms/etcs level 3
concept with electrum,” in Abstract State Machines, Alloy, B, TLA, VDM,
and Z, M. Butler, A. Raschke, T. S. Hoang, and K. Reichl, Eds. Cham:
Springer International Publishing, 2018, pp. 307–321.

[18] H. Kim, E. Kang, E. A. Lee, and D. Broman, “A toolkit for construction
of authorization service infrastructure for the internet of things,” in
2017 IEEE/ACM Second International Conference on Internet-of-Things
Design and Implementation (IoTDI), 2017, pp. 147–158.

[19] K. Wang, A. Sullivan, D. Marinov, and S. Khurshid, “Fault Localiza-
tion for Declarative Models in Alloy,” in International Symposium on
Software Reliability Engineering (ISSRE), 2020, pp. 391–402.

[20] S. Moon, Y. Kim, M. Kim, and S. Yoo, “Ask the mutants: Mutating
faulty programs for fault localization,” 03 2014, pp. 153–162.

[21] M. Papadakis and Y. Le Traon, “Metallaxis-fl: Mutation-based fault
localization,” Softw. Test. Verif. Reliab., vol. 25, no. 5-7, pp. 605–628,
Aug. 2015. [Online]. Available: https://doi.org/10.1002/stvr.1509

[22] R. Abreu, P. Zoeteweij, and A. J. C. van Gemund, “On the accuracy
of spectrum-based fault localization,” in Proceedings of the Testing:
Academic and Industrial Conference Practice and Research Techniques
- MUTATION, ser. TAICPART-MUTATION ’07. USA: IEEE Computer
Society, 2007, p. 89–98.

[23] J. A. Jones, M. J. Harrold, and J. Stasko, “Visualization of test informa-
tion to assist fault localization,” in Proceedings of the 24th International
Conference on Software Engineering, ser. ICSE ’02. New York, NY,
USA: Association for Computing Machinery, 2002, pp. 467–477.

[24] L. Naish, H. J. Lee, and K. Ramamohanarao, “A model for spectra-based
software diagnosis,” ACM Trans. Softw. Eng. Methodol., vol. 20, no. 3,
Aug. 2011.

11

https://doi.org/10.1109/ICSE.2013.6606683
https://doi.org/10.1145/2371401.2371416
https://doi.org/10.1145/1858996.1859026
https://doi.org/10.1145/1858996.1859026
https://doi.org/10.1145/3395363.3397347
https://doi.org/10.1007/s00165-017-0445-z
http://doi.acm.org/10.1145/2568225.2568291
https://doi.org/10.1109/TSE.2016.2587646
https://doi.org/10.1145/3238147.3240475
https://doi.org/10.1145/3238147.3240475
https://doi.org/10.1002/stvr.1509

[25] A. Sullivan, K. Wang, and S. Khurshid, “Aunit: A test automation tool
for alloy,” in 2018 IEEE 11th International Conference on Software
Testing, Verification and Validation (ICST), 2018, pp. 398–403.

[26] FLACK repository, 2020. [Online]. Available: https://doi.org/10.6084/
m9.figshare.13439894.v4

[27] Z. Fu and S. Malik, “On solving the partial max-sat problem,” in Theory
and Applications of Satisfiability Testing - SAT 2006, A. Biere and C. P.
Gomes, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp.
252–265.

[28] A. Cunha, N. Macedo, and T. Guimarães, “Target oriented relational
model finding,” in Fundamental Approaches to Software Engineering,
S. Gnesi and A. Rensink, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2014, pp. 17–31.

[29] J. A. Jones and M. J. Harrold, “Empirical evaluation of the tarantula
automatic fault-localization technique,” in Proceedings of the 20th
IEEE/ACM International Conference on Automated Software Engineer-
ing, ser. ASE ’05. New York, NY, USA: Association for Computing
Machinery, 2005, p. 273–282.

[30] E. Torlak and D. Jackson, “Kodkod: A relational model finder,” in
Tools and Algorithms for the Construction and Analysis of Systems,
O. Grumberg and M. Huth, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2007, pp. 632–647.

[31] T. Nelson, N. Danas, D. J. Dougherty, and S. Krishnamurthi, “The
power of ”why” and ”why not”: enriching scenario exploration with
provenance,” in Proceedings of the 2017 11th Joint Meeting on Founda-
tions of Software Engineering, ESEC/FSE 2017, Paderborn, Germany,
September 4-8, 2017, 2017, pp. 106–116.

[32] N. Mansoor, J. A. Saddler, B. Silva, H. Bagheri, M. B. Cohen, and
S. Farritor, “Modeling and testing a family of surgical robots: An
experience report,” in Proceedings of the 2018 26th ACM Joint Meeting
on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering, ser. ESEC/FSE 2018. New
York, NY, USA: Association for Computing Machinery, 2018, p.
785–790. [Online]. Available: https://doi.org/10.1145/3236024.3275534

[33] H. Bagheri, A. Sadeghi, J. Garcia, and S. Malek, “Covert: Compositional
analysis of android inter-app permission leakage,” IEEE Transactions on
Software Engineering, vol. 41, no. 9, pp. 866–886, 2015.

[34] K. Wang, A. Sullivan, and S. Khurshid, “Mualloy: A mutation
testing framework for alloy,” in Proceedings of the 40th International
Conference on Software Engineering: Companion Proceeedings, ser.
ICSE ’18. New York, NY, USA: Association for Computing
Machinery, 2018, p. 29–32. [Online]. Available: https://doi.org/10.1145/
3183440.3183488

[35] N. Macedo, A. Cunha, and T. Guimarães, “Exploring scenario explo-
ration,” in Fundamental Approaches to Software Engineering, A. Egyed
and I. Schaefer, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2015, pp. 301–315.

[36] V. Montaghami and D. Rayside, “Bordeaux: A tool for thinking
outside the box,” in Proceedings of the 20th International Conference
on Fundamental Approaches to Software Engineering - Volume
10202. Berlin, Heidelberg: Springer-Verlag, 2017, p. 22–39. [Online].
Available: https://doi.org/10.1007/978-3-662-54494-5 2

[37] R. Abreu, P. Zoeteweij, R. Golsteijn, and A. J. C. van Gemund, “A
practical evaluation of spectrum-based fault localization,” J. Syst. Softw.,
vol. 82, no. 11, p. 1780–1792, Nov. 2009.

[38] V. Dallmeier, C. Lindig, and A. Zeller, “Lightweight defect localization
for java,” in Proceedings of the 19th European Conference on Object-
Oriented Programming, ser. ECOOP’05. Berlin, Heidelberg: Springer-
Verlag, 2005, p. 528–550.

[39] B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M. I. Jordan,
“Scalable statistical bug isolation,” in Proceedings of the 2005
ACM SIGPLAN Conference on Programming Language Design and
Implementation, ser. PLDI ’05. New York, NY, USA: Association
for Computing Machinery, 2005, p. 15–26. [Online]. Available:
https://doi.org/10.1145/1065010.1065014

[40] S. Pearson, J. Campos, R. Just, G. Fraser, R. Abreu, M. D. Ernst,
D. Pang, and B. Keller, “Evaluating and improving fault localization,”
in Proceedings of the 39th International Conference on Software
Engineering, ser. ICSE ’17. IEEE Press, 2017, p. 609–620. [Online].
Available: https://doi.org/10.1109/ICSE.2017.62

[41] M. Jose and R. Majumdar, “Cause clue clauses: Error localization using
maximum satisfiability,” SIGPLAN Not., vol. 46, no. 6, pp. 437–446, Jun.
2011. [Online]. Available: https://doi.org/10.1145/1993316.1993550

[42] D. Gopinath, R. N. Zaeem, and S. Khurshid, “Improving the
effectiveness of spectra-based fault localization using specifications,”
in Proceedings of the 27th IEEE/ACM International Conference on
Automated Software Engineering, ser. ASE 2012. New York, NY,
USA: Association for Computing Machinery, 2012, p. 40–49. [Online].
Available: https://doi.org/10.1145/2351676.2351683

[43] C. Liu, X. Yan, L. Fei, J. Han, and S. P. Midkiff, “Sober:
Statistical model-based bug localization,” SIGSOFT Softw. Eng. Notes,
vol. 30, no. 5, pp. 286–295, Sep. 2005. [Online]. Available:
https://doi.org/10.1145/1095430.1081753

[44] W. E. Wong, V. Debroy, and D. Xu, “Towards better fault localization:
A crosstab-based statistical approach,” IEEE Transactions on Systems,
Man, and Cybernetics, Part C (Applications and Reviews), vol. 42, no. 3,
pp. 378–396, 2012.

[45] Y. Lin, J. Sun, Y. Xue, Y. Liu, and J. Dong, “Feedback-based
debugging,” in Proceedings of the 39th International Conference on
Software Engineering, ser. ICSE’17. IEEE Press, 2017, pp. 393–403.
[Online]. Available: https://doi.org/10.1109/ICSE.2017.43

[46] X. Li, S. Zhu, M. d’Amorim, and A. Orso, “Enlightened debugging,”
in Proceedings of the 40th International Conference on Software
Engineering, ser. ICSE ’18. New York, NY, USA: Association
for Computing Machinery, 2018, p. 82–92. [Online]. Available:
https://doi.org/10.1145/3180155.3180242

[47] B. Ness and V. Ngo, “Regression containment through source change
isolation,” 09 1997, pp. 616 – 621.

[48] A. Zeller, “Yesterday, my program worked. today, it does not. why?”
in Proceedings of the 7th European Software Engineering Conference
Held Jointly with the 7th ACM SIGSOFT International Symposium
on Foundations of Software Engineering, ser. ESEC/FSE-7. Berlin,
Heidelberg: Springer-Verlag, 1999, pp. 253–267.

[49] T. Reps, T. Ball, M. Das, and J. Larus, “The use of program profiling
for software maintenance with applications to the year 2000 problem,”
in Software Engineering — ESEC/FSE’97, M. Jazayeri and H. Schauer,
Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997, pp. 432–
449.

[50] D. B. Whalley, “Automatic isolation of compiler errors,” ACM Trans.
Program. Lang. Syst., vol. 16, no. 5, pp. 1648–1659, Sep. 1994.

[51] A. Zeller and R. Hildebrandt, “Simplifying and isolating failure-inducing
input,” IEEE Trans. Softw. Eng., vol. 28, no. 2, pp. 183–200, Feb. 2002.

[52] J. R. Lyle and M. Weiser, “Automatic program bug location by program
slicing,” 1987.

[53] H. Agrawal, J. Horgan, S. London, and W. Wong, “Fault localization
using execution slices and dataflow tests,” Proceedings of IEEE Software
Reliability Engineering, 06 1999.

[54] H. Agrawal and J. R. Horgan, “Dynamic program slicing,” SIGPLAN
Not., vol. 25, no. 6, pp. 246–256, Jun. 1990. [Online]. Available:
https://doi.org/10.1145/93548.93576

[55] A. Griesmayer, S. Staber, and R. Bloem, “Fault localization using a
model checker,” Softw. Test. Verif. Reliab., vol. 20, no. 2, p. 149–173,
Jun. 2010.

[56] J. Marques-Silva, M. Janota, A. Ignatiev, and A. Morgado, “Efficient
model based diagnosis with maximum satisfiability,” in Proceedings
of the 24th International Conference on Artificial Intelligence, ser.
IJCAI’15. AAAI Press, 2015, p. 1966–1972.

[57] F. Baader and R. Peñaloza, “Axiom pinpointing in general tableaux,”
J. Log. and Comput., vol. 20, no. 1, p. 5–34, Feb. 2010. [Online].
Available: https://doi.org/10.1093/logcom/exn058

[58] F. Baader, R. Peñaloza, and B. Suntisrivaraporn, “Pinpointing in the
description logic EL+,” in KI 2007: Advances in Artificial Intelligence,
J. Hertzberg, M. Beetz, and R. Englert, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2007, pp. 52–67.

[59] S. G. Brida, G. Regis, G. Zheng, H. Bagheri, T. Nguyen, N. Aguirre, and
M. F. Frias, “Bounded exhaustive search of alloy specification repairs,”
in International Conference on Software Engineering (ICSE). IEEE,
2021, p. to appear.

12

https://doi.org/10.6084/m9.figshare.13439894.v4
https://doi.org/10.6084/m9.figshare.13439894.v4
https://doi.org/10.1145/3236024.3275534
https://doi.org/10.1145/3183440.3183488
https://doi.org/10.1145/3183440.3183488
https://doi.org/10.1007/978-3-662-54494-5_2
https://doi.org/10.1145/1065010.1065014
https://doi.org/10.1109/ICSE.2017.62
https://doi.org/10.1145/1993316.1993550
https://doi.org/10.1145/2351676.2351683
https://doi.org/10.1145/1095430.1081753
https://doi.org/10.1109/ICSE.2017.43
https://doi.org/10.1145/3180155.3180242
https://doi.org/10.1145/93548.93576
https://doi.org/10.1093/logcom/exn058

	Introduction
	Illustration
	Approach
	The Alloy Analyzer
	The flack Algorithm
	Generating Instances
	Comparator
	Diff Analyzer
	UNSAT Core Analyzer

	Evaluation
	RQ1: Effectiveness
	RQ2: Real-world Case Studies
	RQ3: Comparing to AlloyFL
	Threats to Validity

	Related Work
	Conclusion and Future Work
	Data Availability
	References

